編寫教案可以幫助教師合理安排課程內(nèi)容和教學(xué)方法。教案中的教學(xué)資源要多樣化,能夠滿足學(xué)生不同層次的學(xué)習(xí)需求。這些教案范例覆蓋了不同學(xué)科和年級(jí)的教學(xué)內(nèi)容,旨在幫助教師提高教學(xué)效果。
公式法因式分解教案篇一
本節(jié)課的教學(xué)目標(biāo)是讓學(xué)生理解一元二次方程的根與二次三項(xiàng)式因式分解的關(guān)系,掌握公式法分解二次三項(xiàng)式。在教學(xué)引入中,通過二次三項(xiàng)式因式分解方法的探究,引導(dǎo)學(xué)生經(jīng)歷:觀察思考?xì)w納猜想論證等一系列探究過程,從而讓學(xué)生領(lǐng)會(huì)和感悟認(rèn)識(shí)問題和解決問題的一般規(guī)律:即由特殊到一般,再由一般到特殊,同時(shí)培養(yǎng)了的學(xué)生動(dòng)手能力和觀察思考和歸納小結(jié)的能力。另一方面通過運(yùn)用一元二次方程根的知識(shí)來分解因式,讓學(xué)生體會(huì)知識(shí)間普遍聯(lián)系的數(shù)學(xué)美。
總的來說,建立在對(duì)所任教的學(xué)生仔細(xì)分析和對(duì)教學(xué)大綱認(rèn)真研究基礎(chǔ)上所作的教材處理和教學(xué)預(yù)設(shè)是貼近學(xué)生實(shí)際的`,經(jīng)過這節(jié)課的學(xué)習(xí),學(xué)生較好的達(dá)到了教學(xué)目標(biāo)的要求,較好的完成了教學(xué)任務(wù),教學(xué)效果良好。此外,整節(jié)課比較好地體現(xiàn)了多媒體在教學(xué)上的輔助作用,特別是實(shí)物投影儀的運(yùn)用可以直觀快捷地把學(xué)生的練習(xí)情況反映在全班學(xué)生面前,這些都大大提高了教學(xué)效率,增大了教學(xué)容量,取得了良好的教學(xué)效果。
但本節(jié)課也有許多不足之處,如:
2、作業(yè)布置這一教學(xué)環(huán)節(jié)作為重要的一環(huán)應(yīng)放入課堂上;
3、模仿練習(xí)的題目應(yīng)該把分解好的部分乘出來看是否與左邊相等,做好返回檢驗(yàn)的工作,這樣更便于學(xué)生的理解。
在今后的教學(xué)中應(yīng)該更好更深刻的研究教材、研究教法、研究我們的學(xué)生,備課更充分、更完善些,從而更好的提高課堂教學(xué)的有效性。
上海市梅園中學(xué):傅琳。
公式法因式分解教案篇二
教學(xué)目標(biāo):
1、進(jìn)一步鞏固因式分解的概念;2、鞏固因式分解常用的三種方法。
3、選擇恰當(dāng)?shù)姆椒ㄟM(jìn)行因式分解4、應(yīng)用因式分解來解決一些實(shí)際問題。
5、體驗(yàn)應(yīng)用知識(shí)解決問題的樂趣。
教學(xué)重點(diǎn):靈活運(yùn)用因式分解解決問題。
教學(xué)難點(diǎn):靈活運(yùn)用恰當(dāng)?shù)囊蚴椒纸獾姆椒ǎ卣咕毩?xí)2、3。
教學(xué)過程:
一、創(chuàng)設(shè)情景:若a=101,b=99,求a2-b2的值。
利用因式分解往往能將一些復(fù)雜的運(yùn)算簡(jiǎn)單化,那么我們先來回顧一下什么是因式分解和怎樣來因式分解。
二、知識(shí)回顧。
1、因式分解定義:把一個(gè)多項(xiàng)式化成幾個(gè)整式積的形式,這種變形叫做把這個(gè)多項(xiàng)式分解因式.
判斷下列各式哪些是因式分解?(讓學(xué)生先思考,教師提問講解,讓學(xué)生明確因式分解的概念以及與乘法的關(guān)系)。
2、.規(guī)律總結(jié)(教師講解):分解因式與整式乘法是互逆過程.
分解因式要注意以下幾點(diǎn):(1).分解的對(duì)象必須是多項(xiàng)式.
(2).分解的結(jié)果一定是幾個(gè)整式的乘積的形式.(3).要分解到不能分解為止.
4、強(qiáng)化訓(xùn)練。
(3).4x2-8x=4x(x-2)(4).2x2y-6xy2=2xy(x-3y)。
三、例題講解。
例1、分解因式。
(1)-x3y3+x2y+xy(2)6(x-2)+2x(2-x)。
(3)(4)y2+y+例2、分解因式。
4、-1-2a-a2=5、x2-6x+9-y26、x2-4y2+x+2y=。
例3、分解因式。
1、72-2(13x-7)22、8a2b2-2a4b-8b3。
三、知識(shí)應(yīng)用。
1、(4x2-9y2)÷(2x+3y)2、(a2b-ab2)÷(b-a)。
3、解方程:(1)x2=5x(2)(x-2)2=(2x+1)2。
四、拓展應(yīng)用。
1.計(jì)算:7652×17-2352×17解:7652×17-2352×17=17(7652-2352)=17(765+235)(765-235)。
2、20042+20xx被20xx整除嗎?
3、若n是整數(shù),證明(2n+1)2-(2n-1)2是8的倍數(shù).
五、課堂小結(jié):今天你對(duì)因式分解又有哪些新的認(rèn)識(shí)?
公式法因式分解教案篇三
知識(shí)點(diǎn):
因式分解定義,提取公因式、應(yīng)用公式法、分組分解法、二次三項(xiàng)式的因式(十字相乘法、求根)、因式分解一般步驟。
教學(xué)目標(biāo):
理解因式分解的概念,掌握提取公因式法、公式法、分組分解法等因式分解方法,掌握利用二次方程求根公式分解二次二項(xiàng)式的方法,能把簡(jiǎn)單多項(xiàng)式分解因式。
考查重難點(diǎn)與常見題型:
考查因式分解能力,在中考試題中,因式分解出現(xiàn)的頻率很高。重點(diǎn)考查的分式提取公因式、應(yīng)用公式法、分組分解法及它們的綜合運(yùn)用。習(xí)題類型以填空題為多,也有選擇題和解答題。
教學(xué)過程:
多項(xiàng)式的因式分解,就是把一個(gè)多項(xiàng)式化為幾個(gè)整式的積。分解因式要進(jìn)行到每一個(gè)因式都不能再分解為止。分解因式的常用方法有:
(1)提公因式法。
如多項(xiàng)式。
其中m叫做這個(gè)多項(xiàng)式各項(xiàng)的公因式,m既可以是一個(gè)單項(xiàng)式,也可以是一個(gè)多項(xiàng)式。
(2)運(yùn)用公式法,即用寫出結(jié)果。
(3)十字相乘法。
(4)分組分解法:把各項(xiàng)適當(dāng)分組,先使分解因式能分組進(jìn)行,再使分解因式在各組之間進(jìn)行。
分組時(shí)要用到添括號(hào):括號(hào)前面是“+”號(hào),括到括號(hào)里的各項(xiàng)都不變符號(hào);括號(hào)前面是“-”號(hào),括到括號(hào)里的各項(xiàng)都改變符號(hào)。
(5)求根公式法:如果有兩個(gè)根x1,x2,那么。
2、教學(xué)實(shí)例:學(xué)案示例。
3、課堂練習(xí):學(xué)案作業(yè)。
4、課堂:
5、板書:
6、課堂作業(yè):學(xué)案作業(yè)。
7、教學(xué)反思:
公式法因式分解教案篇四
2.理解完全平方式的意義和特點(diǎn),培養(yǎng)學(xué)生的判斷能力.
3.進(jìn)一步培養(yǎng)學(xué)生全面地觀察問題、分析問題和逆向思維的能力.。
4.通過運(yùn)用公式法分解因式的教學(xué),使學(xué)生進(jìn)一步體會(huì)“把一個(gè)代數(shù)式看作一個(gè)字母”的換元思想。
教學(xué)重點(diǎn)和難點(diǎn)。
重點(diǎn):運(yùn)用完全平方式分解因式.
難點(diǎn):靈活運(yùn)用完全平方公式公解因式.
教學(xué)過程設(shè)計(jì)。
一、復(fù)習(xí)。
1.問:什么叫把一個(gè)多項(xiàng)式因式分解?我們已經(jīng)學(xué)習(xí)了哪些因式分解的方法?
答:把一個(gè)多項(xiàng)式化成幾個(gè)整式乘積形式,叫做把這個(gè)多項(xiàng)式因式分解.我們學(xué)過的因式分解的方法有提取公因式法及運(yùn)用平方差公式法.
2.把下列各式分解因式:
(1)ax4-ax2(2)16m4-n4.
解(1)ax4-ax2=ax2(x2-1)=ax2(x+1)(x-1)。
(2)16m4-n4=(4m2)2-(n2)2。
=(4m2+n2)(4m2-n2)。
=(4m2+n2)(2m+n)(2m-n).
問:我們學(xué)過的乘法公式除了平方差公式之外,還有哪些公式?
答:有完全平方公式.
請(qǐng)寫出完全平方公式.
完全平方公式是:
(a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2.
這節(jié)課我們就來討論如何運(yùn)用完全平方公式把多項(xiàng)式因式分解.
二、新課。
和討論運(yùn)用平方差公式把多項(xiàng)式因式分解的思路一樣,把完全平方公式反過來,就得到。
a2+2ab+b2=(a+b)2;a2-2ab+b2=(a-b)2.
這就是說,兩個(gè)數(shù)的平方和,加上(或者減去)這兩個(gè)數(shù)的積的2倍,等于這兩個(gè)數(shù)的和(或者差)的平方.式子a2+2ab+b2及a2-2ab+b2叫做完全平方式,上面的兩個(gè)公式就是完全平方公式.運(yùn)用這兩個(gè)式子,可以把形式是完全平方式的多項(xiàng)式分解因式.
問:具備什么特征的多項(xiàng)是完全平方式?
答:一個(gè)多項(xiàng)式如果是由三部分組成,其中的兩部分是兩個(gè)式子(或數(shù))的平方,并且這兩部分的符號(hào)都是正號(hào),第三部分是上面兩個(gè)式子(或數(shù))的乘積的二倍,符號(hào)可正可負(fù),像這樣的式子就是完全平方式.
問:下列多項(xiàng)式是否為完全平方式?為什么?
(1)x2+6x+9;(2)x2+xy+y2;
(3)25x4-10x2+1;(4)16a2+1.
x2+6x+9=(x+3).
(2)不是完全平方式.因?yàn)榈谌糠直仨毷?xy.
(3)是完全平方式.25x=(5x),1=1,10x=2·5x·1,所以。
25x-10x+1=(5x-1).
(4)不是完全平方式.因?yàn)槿钡谌糠?
答:完全平方公式為:
其中a=3x,b=y,2ab=2·(3x)·y.
例1把25x4+10x2+1分解因式.
分析:這個(gè)多項(xiàng)式是由三部分組成,第一項(xiàng)“25x4”是(5x2)的平方,第三項(xiàng)“1”是1的平方,第二項(xiàng)“10x2”是5x2與1的積的2倍.所以多項(xiàng)式25x4+10x2+1是完全平方式,可以運(yùn)用完全平方公式分解因式.
解25x4+10x2+1=(5x2)2+2·5x2·1+12=(5x2+1)2.
例2把1-m+分解因式.
問:請(qǐng)同學(xué)分析這個(gè)多項(xiàng)式的特點(diǎn),是否可以用完全平方公式分解因式?有幾種解法?
答:這個(gè)多項(xiàng)式由三部分組成,第一項(xiàng)“1”是1的平方,第三項(xiàng)“”是的平方,第二項(xiàng)“-m”是1與m/4的積的2倍的相反數(shù),因此這個(gè)多項(xiàng)式是完全平方式,可以用完全平方公式分解因式.
解法11-m+=1-2·1·+2=(1-)2.
解法2先提出,則。
1-m+=(16-8m+m2)。
=(42-2·4·m+m2)。
=(4-m)2.
三、課堂練習(xí)(投影)。
1.填空:
(1)x2-10x+()2=()2;
(2)9x2+()+4y2=()2;
(3)1-()+m2/9=()2.
2.下列各多項(xiàng)式是不是完全平方式?如果是,可以分解成什么式子?如果不是,請(qǐng)把多。
項(xiàng)式改變?yōu)橥耆椒绞?
(1)x2-2x+4;(2)9x2+4x+1;(3)a2-4ab+4b2;
(4)9m2+12m+4;(5)1-a+a2/4.
3.把下列各式分解因式:
(1)a2-24a+144;(2)4a2b2+4ab+1;
(3)19x2+2xy+9y2;(4)14a2-ab+b2.
答案:
1.(1)25,(x-5)2;(2)12xy,(3x+2y)2;(3)2m/3,(1-m3)2.
2.(1)不是完全平方式,如果把第二項(xiàng)的“-2x”改為“-4x”,原式就變?yōu)閤2-4x+4,它是完全平方式;或把第三項(xiàng)的“4”改為1,原式就變?yōu)閤2-2x+1,它是完全平方式.
(2)不是完全平方式,如果把第二項(xiàng)“4x”改為“6x”,原式變?yōu)?x2+6x+1,它是完全平方式.
(3)是完全平方式,a2-4ab+4b2=(a-2b)2.
(4)是完全平方式,9m2+12m+4=(3m+2)2.
(5)是完全平方式,1-a+a2/4=(1-a2)2.
3.(1)(a-12)2;(2)(2ab+1)2;
(3)(13x+3y)2;(4)(12a-b)2.
四、小結(jié)。
運(yùn)用完全平方公式把一個(gè)多項(xiàng)式分解因式的.主要思路與方法是:
1.首先要觀察、分析和判斷所給出的多項(xiàng)式是否為一個(gè)完全平方式,如果這個(gè)多項(xiàng)式是一個(gè)完全平方式,再運(yùn)用完全平方公式把它進(jìn)行因式分解.有時(shí)需要先把多項(xiàng)式經(jīng)過適當(dāng)變形,得到一個(gè)完全平方式,然后再把它因式分解.
2.在選用完全平方公式時(shí),關(guān)鍵是看多項(xiàng)式中的第二項(xiàng)的符號(hào),如果是正號(hào),則用公式a2+2ab+b2=(a+b)2;如果是負(fù)號(hào),則用公式a2-2ab+b2=(a-b)2.
五、作業(yè)。
把下列各式分解因式:
1.(1)a2+8a+16;(2)1-4t+4t2;
(3)m2-14m+49;(4)y2+y+1/4.
2.(1)25m2-80m+64;(2)4a2+36a+81;
(3)4p2-20pq+25q2;(4)16-8xy+x2y2;
(5)a2b2-4ab+4;(6)25a4-40a2b2+16b4.
3.(1)m2n-2mn+1;(2)7am+1-14am+7am-1;
4.(1)x-4x;(2)a5+a4+a3.
答案:
1.(1)(a+4)2;(2)(1-2t)2;
(3)(m-7)2;(4)(y+12)2.
2.(1)(5m-8)2;(2)(2a+9)2;
(3)(2p-5q)2;(4)(4-xy)2;
(5)(ab-2)2;(6)(5a2-4b2)2.
3.(1)(mn-1)2;(2)7am-1(a-1)2.
4.(1)x(x+4)(x-4);(2)14a3(2a+1)2.
課堂教學(xué)設(shè)計(jì)說明。
1.利用完全平方公式進(jìn)行多項(xiàng)式的因式分解是在學(xué)生已經(jīng)學(xué)習(xí)了提取公因式法及利用平方差公式分解因式的基礎(chǔ)上進(jìn)行的,因此在教學(xué)設(shè)計(jì)中,重點(diǎn)放在判斷一個(gè)多項(xiàng)式是否為完全平方式上,采取啟發(fā)式的教學(xué)方法,引導(dǎo)學(xué)生積極思考問題,從中培養(yǎng)學(xué)生的思維品質(zhì).
2.本節(jié)課要求學(xué)生掌握完全平方公式的特點(diǎn)和靈活運(yùn)用公式把多項(xiàng)式進(jìn)行因式分解的方法.在教學(xué)設(shè)計(jì)中安排了形式多樣的課堂練習(xí),讓學(xué)生從不同側(cè)面理解完全平方公式的特點(diǎn).例1和例2的講解可以在老師的引導(dǎo)下,師生共同分析和解答,使學(xué)生當(dāng)堂能夠掌握運(yùn)用平方公式進(jìn)行完全因式分解的方法.
公式法因式分解教案篇五
大家好!今天我說課的內(nèi)容是《14.3.2公式法》(第一課時(shí)),主要內(nèi)容是用平方差公式分解因式。我準(zhǔn)備從教材的地位和作用、學(xué)情分析、學(xué)習(xí)目標(biāo)和重難點(diǎn)的確定、教學(xué)環(huán)節(jié)的設(shè)計(jì)等方面確定本節(jié)課。
一、教材的地位和作用。
因式分解是解析式的一種恒等變形,因式分解不但在解方程等問題中及其重要,在數(shù)學(xué)科學(xué)其他問題和一般科學(xué)研究中也具有廣泛應(yīng)用,是重要的數(shù)學(xué)基礎(chǔ)知識(shí)。因式分解的方法一般包括提公因式法、公式法、分組分解法、十字相乘法、待定系數(shù)法等。而在本章只學(xué)習(xí)提公因式法和公式法,這兩種基本知識(shí)和方法。它對(duì)數(shù)感和符號(hào)意識(shí)的形成具有重要作用,是進(jìn)一步學(xué)習(xí)分式和分式方程的基礎(chǔ)。在中考題中分式化簡(jiǎn)求值問題,不可避免地用到因式分解。而利用平方差公式進(jìn)行因式分解的基本方法。
二、學(xué)生的學(xué)情分析。
學(xué)生已經(jīng)學(xué)習(xí)了用字母表示數(shù)、整式的概念、整式的加、減、乘、除、乘方,以及用提公因式法分解因式,具備繼續(xù)學(xué)習(xí)知識(shí)的基礎(chǔ)和經(jīng)驗(yàn),但在細(xì)節(jié)方面還處在欠缺。
三、教學(xué)目標(biāo)的確定。
我認(rèn)真鉆研教材,在考慮學(xué)生的實(shí)際水平情況下,我設(shè)計(jì)如下教學(xué)目標(biāo)。
教學(xué)目標(biāo):
1、掌握平方差公式的特點(diǎn),能運(yùn)用平方差公式進(jìn)行因式分解。
2、掌握平方差公式分解因式的方法,掌握提公因式法、公式法分解因式綜合應(yīng)用。
3、經(jīng)歷探究平方差公式進(jìn)行因式分解的過程,發(fā)展學(xué)生的逆向思維,感受數(shù)學(xué)知識(shí)的完整性。
4、培養(yǎng)學(xué)生良好的互動(dòng)交流的習(xí)慣,體會(huì)數(shù)學(xué)在實(shí)際問題中的`應(yīng)用價(jià)值。
教學(xué)重點(diǎn):熟練運(yùn)用平方差公式進(jìn)行因式分解。
教學(xué)難點(diǎn):
1、掌握平方差公式的特點(diǎn)。
四、教學(xué)過程的設(shè)計(jì)。
本著學(xué)生的認(rèn)知規(guī)律是由淺入深、由易到難。因此在教學(xué)環(huán)節(jié)設(shè)計(jì)時(shí),我特意設(shè)計(jì)如下教學(xué)環(huán)節(jié):
第二環(huán)節(jié)讓學(xué)生帶著問題自學(xué)課本p116例題以前部分,嘗試回答下列問題:
(1)有什么特點(diǎn)?
(2)你能將它分解因式嗎?讓學(xué)生帶著問題去自學(xué),目的明確,針對(duì)性強(qiáng),通過學(xué)生發(fā)現(xiàn)并描述特點(diǎn),為下面公式剖析做了鋪墊。然后讓學(xué)生口答課本p117頁第一題用一組練習(xí)進(jìn)行鞏固加深對(duì)公式的認(rèn)識(shí),另外我選擇教材的練習(xí)題的目的是書本是我們學(xué)習(xí)的藍(lán)本,是專家們深思熟慮后的成果。
第三個(gè)環(huán)節(jié)通過小組互學(xué),探討公式。用3個(gè)問題,觀察公式回答下列問題:
(1)這個(gè)公式有什么特點(diǎn)?你能用語言敘述這個(gè)公式嗎?
(2)公式中字母a、b可以表示什么?
(3)因式分解平方差公式與我們前面所學(xué)的乘法公式平方差公式有什么區(qū)別?通過小組合作探究,學(xué)生深入探究,教師加以引導(dǎo),剖析公式,學(xué)習(xí)難點(diǎn)得以突破。
第四個(gè)環(huán)節(jié),在學(xué)生已經(jīng)掌握公式的基礎(chǔ)上,進(jìn)行運(yùn)用平方差公式進(jìn)行因式分解,由一組簡(jiǎn)單基礎(chǔ)題目入手,符合學(xué)生認(rèn)知規(guī)律,同時(shí)有利于增強(qiáng)學(xué)生的自信心。然后解決課前引入的問題,提出問題,便要解決問題,這樣前后呼應(yīng)。)。
第五個(gè)環(huán)節(jié)通過教師引導(dǎo),例題精講,讓學(xué)生掌握因式分解的方法。
(1)(2)(3)通過例題第一小題的設(shè)計(jì)目的是讓學(xué)生發(fā)現(xiàn)因式分解應(yīng)分解徹底,第二和第三個(gè)題目目的是讓學(xué)生能夠總結(jié)出因式分解的一般步驟:一提;二用;三查。教師要強(qiáng)調(diào)必須進(jìn)行到每一個(gè)多項(xiàng)式都不能分解為止。題目設(shè)計(jì)層層深入,符合學(xué)生認(rèn)知規(guī)律。然后通過嘗試練習(xí),學(xué)生進(jìn)行展示,便于發(fā)現(xiàn)學(xué)生的出現(xiàn)的問題,及時(shí)進(jìn)行糾正。
第六個(gè)環(huán)節(jié),檢驗(yàn)學(xué)生對(duì)本節(jié)課的掌握情況,我側(cè)重于學(xué)生收獲方面的體驗(yàn)。通過學(xué)生暢談收獲,有利于培養(yǎng)學(xué)生的自信心。
第七個(gè)環(huán)節(jié),通過四個(gè)題目,檢測(cè)學(xué)生本節(jié)課對(duì)知識(shí)的掌握情況。通過四個(gè)題目的設(shè)計(jì),旨在讓學(xué)生掌握公式的特點(diǎn),并會(huì)熟練地利用平方差公式進(jìn)行因式分解。其中第四題是實(shí)際問題,設(shè)計(jì)此題是為了讓學(xué)生學(xué)會(huì)用已有的知識(shí)解決實(shí)際問題。
以上是我對(duì)本節(jié)課的整體設(shè)計(jì)思路,不當(dāng)之處,敬請(qǐng)專家們批評(píng)指正!
公式法因式分解教案篇六
“整式的乘法”是整式的加減的后續(xù)學(xué)習(xí)從冪的運(yùn)算到各種整式的乘法,整章教材都突出了學(xué)生的自主探索過程,依據(jù)原有的知識(shí)基礎(chǔ),或運(yùn)用乘法的各種運(yùn)算規(guī)律,或借助直觀而又形象的圖形面積,得到各種運(yùn)算的基本法則、兩個(gè)主要的乘法公式及因式分解的基本方法學(xué)生自己對(duì)知識(shí)內(nèi)容的探索、認(rèn)識(shí)與體驗(yàn),完全有利于學(xué)生形成合理的知識(shí)結(jié)構(gòu),提高數(shù)學(xué)思維能力.利用公式法進(jìn)行因式分解時(shí),注意把握多項(xiàng)式的特點(diǎn),對(duì)比乘法公式乘積結(jié)果的形式,選擇正確的分解方法。
因式分解是一種常用的代數(shù)式的恒等變形,因式分解是多項(xiàng)式乘法公式的逆向變形,它是將一個(gè)多項(xiàng)式變形為多項(xiàng)式與多項(xiàng)式的乘積。
2、教學(xué)目標(biāo)。
(1)會(huì)推導(dǎo)乘法公式。
(2)在應(yīng)用乘法公式進(jìn)行計(jì)算的基礎(chǔ)上,感受乘法公式的作用和價(jià)值。
(3)會(huì)用提公因式法、公式法進(jìn)行因式分解。
(5)在因式分解中,經(jīng)歷觀察、探索和做出推斷的過程,提高分析問題和解決問題的能力。
3、重點(diǎn)、難點(diǎn)和關(guān)鍵。
重點(diǎn):乘法公式的意義、分式的由來和正確運(yùn)用;用提公因式法和公式法進(jìn)行因式分解。
難點(diǎn):正確運(yùn)用乘法公式;正確分解因式。
關(guān)鍵:正確理解乘法公式和因式分解的意義。
二、本單元教學(xué)的方法和策略:
3.讓學(xué)生掌握基本的數(shù)學(xué)事實(shí)與數(shù)學(xué)活動(dòng)經(jīng)驗(yàn),減輕不必要的記憶負(fù)擔(dān).。
三、課時(shí)安排:
2.1平方差公式1課時(shí)。
2.2完全平方公式2課時(shí)。
公式法因式分解教案篇七
教學(xué)設(shè)計(jì)示例。
――完全平方公式(1)。
教學(xué)目標(biāo)。
2.理解完全平方式的意義和特點(diǎn),培養(yǎng)學(xué)生的判斷能力.
3.進(jìn)一步培養(yǎng)學(xué)生全面地觀察問題、分析問題和逆向思維的能力.。
4.通過分解因式的教學(xué),使學(xué)生進(jìn)一步體會(huì)“把一個(gè)代數(shù)式看作一個(gè)字母”的換元思想。
教學(xué)重點(diǎn)和難點(diǎn)。
重點(diǎn):運(yùn)用完全平方式分解因式.
難點(diǎn):靈活運(yùn)用完全平方公式公解因式.
教學(xué)過程設(shè)計(jì)。
一、復(fù)習(xí)。
1.問:什么叫把一個(gè)多項(xiàng)式因式分解?我們已經(jīng)學(xué)習(xí)了哪些因式分解的方法?
答:把一個(gè)多項(xiàng)式化成幾個(gè)整式乘積形式,叫做把這個(gè)多項(xiàng)式因式分解.我們學(xué)過的因式分解的方法有提取公因式法及運(yùn)用平方差公式法.
2.把下列各式分解因式:
(1)ax4-ax2(2)16m4-n4.
解(1)ax4-ax2=ax2(x2-1)=ax2(x+1)(x-1)。
(2)16m4-n4=(4m2)2-(n2)2。
=(4m2+n2)(4m2-n2)。
=(4m2+n2)(2m+n)(2m-n).
問:我們學(xué)過的乘法公式除了平方差公式之外,還有哪些公式?
答:有完全平方公式.
請(qǐng)寫出完全平方公式.
完全平方公式是:
(a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2.
這節(jié)課我們就來討論如何運(yùn)用完全平方公式把多項(xiàng)式因式分解.
二、新課。
和討論運(yùn)用平方差公式把多項(xiàng)式因式分解的思路一樣,把完全平方公式反過來,就得到。
a2+2ab+b2=(a+b)2;a2-2ab+b2=(a-b)2.
這就是說,兩個(gè)數(shù)的平方和,加上(或者減去)這兩個(gè)數(shù)的積的2倍,等于這兩個(gè)數(shù)的和(或者差)的平方.式子a2+2ab+b2及a2-2ab+b2叫做完全平方式,上面的兩個(gè)公式就是完全平方公式.運(yùn)用這兩個(gè)式子,可以把形式是完全平方式的多項(xiàng)式分解因式.
問:具備什么特征的多項(xiàng)是完全平方式?
答:一個(gè)多項(xiàng)式如果是由三部分組成,其中的兩部分是兩個(gè)式子(或數(shù))的平方,并且這兩部分的符號(hào)都是正號(hào),第三部分是上面兩個(gè)式子(或數(shù))的乘積的二倍,符號(hào)可正可負(fù),像這樣的式子就是完全平方式.
問:下列多項(xiàng)式是否為完全平方式?為什么?
(1)x2+6x+9;(2)x2+xy+y2;
(3)25x4-10x2+1;(4)16a2+1.
答:(1)式是完全平方式.因?yàn)閤2與9分別是x的平方與3的平方,6x=2·x·3,所以。
x2+6x+9=(x+3).
(2)不是完全平方式.因?yàn)榈谌糠直仨毷?xy.
(3)是完全平方式.25x=(5x),1=1,10x=2·5x·1,所以。
25x-10x+1=(5x-1).
(4)不是完全平方式.因?yàn)槿钡谌糠?
答:完全平方公式為:
其中a=3x,b=y,2ab=2·(3x)·y.
例1把25x4+10x2+1分解因式.
分析:這個(gè)多項(xiàng)式是由三部分組成,第一項(xiàng)“25x4”是(5x2)的平方,第三項(xiàng)“1”是1的平方,第二項(xiàng)“10x2”是5x2與1的積的2倍.所以多項(xiàng)式25x4+10x2+1是完全平方式,可以運(yùn)用完全平方公式分解因式.
解25x4+10x2+1=(5x2)2+2·5x2·1+12=(5x2+1)2.
例2把1-m+分解因式.
問:請(qǐng)同學(xué)分析這個(gè)多項(xiàng)式的特點(diǎn),是否可以用完全平方公式分解因式?有幾種解法?
答:這個(gè)多項(xiàng)式由三部分組成,第一項(xiàng)“1”是1的平方,第三項(xiàng)“”是的平方,第二項(xiàng)“-m”是1與m/4的積的2倍的相反數(shù),因此這個(gè)多項(xiàng)式是完全平方式,可以用完全平方公式分解因式.
解法11-m+=1-2·1·+()2=(1-)2.
解法2先提出,則。
1-m+=(16-8m+m2)。
=(42-2·4·m+m2)。
=(4-m)2.
第12頁。
公式法因式分解教案篇八
1、會(huì)運(yùn)用因式分解進(jìn)行簡(jiǎn)單的多項(xiàng)式除法。
二、教學(xué)重點(diǎn)與難點(diǎn)教學(xué)重點(diǎn):
教學(xué)重點(diǎn)。
因式分解在多項(xiàng)式除法和解方程兩方面的應(yīng)用。
教學(xué)難點(diǎn):
應(yīng)用因式分解解方程涉及較多的推理過程。
三、教學(xué)過程。
(一)引入新課。
(二)師生互動(dòng),講授新課。
一個(gè)小問題:這里的x能等于3/2嗎?為什么?
想一想:那么(4x—9)(3—2x)呢?練習(xí):課本p162課內(nèi)練習(xí)。
合作學(xué)習(xí)。
等練習(xí):課本p162課內(nèi)練習(xí)2。
(三)梳理知識(shí),總結(jié)收獲因式分解的兩種應(yīng)用:
(四)布置課后作業(yè)。
作業(yè)本6、42、課本p163作業(yè)題(選做)。
公式法因式分解教案篇九
因式分解定義,提取公因式、應(yīng)用公式法、分組分解法、二次三項(xiàng)式的因式(十字相乘法、求根)、因式分解一般步驟。
理解因式分解的概念,掌握提取公因式法、公式法、分組分解法等因式分解方法,掌握利用二次方程求根公式分解二次二項(xiàng)式的方法,能把簡(jiǎn)單多項(xiàng)式分解因式。
考查因式分解能力,在中考試題中,因式分解出現(xiàn)的頻率很高。重點(diǎn)考查的分式提取公因式、應(yīng)用公式法、分組分解法及它們的綜合運(yùn)用。習(xí)題類型以填空題為多,也有選擇題和解答題。
因式分解知識(shí)點(diǎn)
多項(xiàng)式的因式分解,就是把一個(gè)多項(xiàng)式化為幾個(gè)整式的積。分解因式要進(jìn)行到每一個(gè)因式都不能再分解為止。分解因式的常用方法有:
(1)提公因式法
如多項(xiàng)式
其中m叫做這個(gè)多項(xiàng)式各項(xiàng)的公因式, m既可以是一個(gè)單項(xiàng)式,也可以是一個(gè)多項(xiàng)式。
(2)運(yùn)用公式法,即用
寫出結(jié)果。
(3)十字相乘法
(4)分組分解法:把各項(xiàng)適當(dāng)分組,先使分解因式能分組進(jìn)行,再使分解因式在各組之間進(jìn)行。
分組時(shí)要用到添括號(hào):括號(hào)前面是“+”號(hào),括到括號(hào)里的各項(xiàng)都不變符號(hào);括號(hào)前面是“-”號(hào),括到括號(hào)里的各項(xiàng)都改變符號(hào)。
(5)求根公式法:如果有兩個(gè)根x1,x2,那么
2、教學(xué)實(shí)例:學(xué)案示例
3、課堂練習(xí):學(xué)案作業(yè)
4、課堂:
5、板書:
6、課堂作業(yè):學(xué)案作業(yè)
7、教學(xué)反思:
公式法因式分解教案篇十
因式分解是代數(shù)式的一種重要恒等變形?!稊?shù)學(xué)課程標(biāo)準(zhǔn)》雖然降低了因式分解的特殊技巧的要求,也對(duì)因式分解常用的四種方法減少為兩種,且公式法的應(yīng)用中,也減少為兩個(gè)公式,但絲毫沒有否定因式分解的教育價(jià)值及其在代數(shù)運(yùn)算中的重要作用。本章教材是在學(xué)生學(xué)習(xí)了整式運(yùn)算的基礎(chǔ)上提出來的,事實(shí)上,它是整式乘法的逆向運(yùn)用,與整式乘法運(yùn)算有密切的聯(lián)系。分解因式的變形不僅體現(xiàn)了一種“化歸”的思想,而且也是解決后續(xù)—分式的化簡(jiǎn)、解方程等—恒等變形的基礎(chǔ),為數(shù)學(xué)交流提供了有效的途徑。分解因式這一章在整個(gè)教材中起到了承上啟下的作用。本章的教育價(jià)值還體現(xiàn)在使學(xué)生接受對(duì)立統(tǒng)一的觀點(diǎn),培養(yǎng)學(xué)生善于觀察、善于分析、正確預(yù)見、解決問題的能力。
通過探究平方差公式和運(yùn)用平方差公式分解因式的活動(dòng)中,讓學(xué)生發(fā)表自己的觀點(diǎn),從交流中獲益,讓學(xué)生獲得成功的體驗(yàn),鍛煉克服困難的意志建立自信心。
1、在分解因式的過程中體會(huì)整式乘法與因式分解之間的聯(lián)系。
2、通過公式a-b=(a+b)(a-b)的逆向變形,進(jìn)一步發(fā)展觀察、歸納、類比、等能力,發(fā)展有條理地思考及語言表達(dá)能力。
3、能運(yùn)用提公因式法、公式法進(jìn)行綜合運(yùn)用。
4、通過活動(dòng)4,能將高偶指數(shù)冪轉(zhuǎn)化為2次指數(shù)冪,培養(yǎng)學(xué)生的化歸思想。
靈活運(yùn)用平方差公式進(jìn)行分解因式。
平方差公式的推導(dǎo)及其運(yùn)用,兩種因式分解方法(提公因式法、平方差公式)的綜合運(yùn)用。
公式法因式分解教案篇十一
教學(xué)過程中滲透類比的數(shù)學(xué)思想,形成新的知識(shí)結(jié)構(gòu)體系;設(shè)置探究式教學(xué),讓學(xué)生經(jīng)歷知識(shí)的形成,從而達(dá)到對(duì)知識(shí)的深刻理解與靈活應(yīng)用。
學(xué)法:自主、合作、探索的學(xué)習(xí)方式。
在教學(xué)活動(dòng)中,既要提高學(xué)生獨(dú)立解決問題的能力,又要培養(yǎng)團(tuán)結(jié)協(xié)作精神,拓展學(xué)生探究問題的深度與廣度,體現(xiàn)素質(zhì)教育的要求。
公式法因式分解教案篇十二
王老師上課時(shí)通過學(xué)生自己的試算、觀察、發(fā)現(xiàn)、總結(jié)、歸納,得出用平方差公式進(jìn)行因式分解,這樣得出平方差公式后,并且把乘法公式進(jìn)行對(duì)比,通過例題、練習(xí)與小結(jié),教會(huì)學(xué)生如何正確應(yīng)用平方差公式.這里特別要求學(xué)生注意公式的結(jié)構(gòu),教師可以用對(duì)應(yīng)思想來加強(qiáng)對(duì)公式結(jié)構(gòu)的理解和訓(xùn)練。王老師放手讓學(xué)生探索,促進(jìn)學(xué)生主動(dòng)發(fā)展的教學(xué)方法貫穿于這節(jié)課的始終。
從學(xué)生的練習(xí)情況來看,許多同學(xué)都掌握了這節(jié)課的知識(shí),整個(gè)課堂中,以學(xué)生練為主,王老師能敢于創(chuàng)新、敢于探索,整節(jié)課的學(xué)習(xí),教師始終是學(xué)生學(xué)習(xí)活動(dòng)的組織者、指導(dǎo)者和合作者,而學(xué)生始終都是一個(gè)發(fā)現(xiàn)者、探索者,充分發(fā)揮他們的學(xué)習(xí)主體作用。這樣大大提高了這節(jié)課的效率。
教師講課語言簡(jiǎn)捷、清晰,有較強(qiáng)的表達(dá)和應(yīng)變能力,課堂教學(xué)基本功好。乘法公式的引入由兩種形式的'引入,又形象直觀地理解了乘法公式的內(nèi)在實(shí)質(zhì)。做到以點(diǎn)撥為主的教學(xué)。對(duì)于公式的牲能嚴(yán)格要求學(xué)生理解,并能讓學(xué)生自己舉例符合公式形狀的例子,課堂內(nèi)的練習(xí)量、內(nèi)容及安排上恰當(dāng)好處,有基本運(yùn)用公式,有變式運(yùn)用公式,也有適當(dāng)?shù)募由顟?yīng)用,滿足了不同層次的學(xué)生的學(xué)習(xí)。效果是比較顯著的。
公式法因式分解教案篇十三
知識(shí)點(diǎn):
因式分解定義,提取公因式、應(yīng)用公式法、分組分解法、二次三項(xiàng)式的因式(十字相乘法、求根)、因式分解一般步驟。
教學(xué)目標(biāo):
理解因式分解的概念,掌握提取公因式法、公式法、分組分解法等因式分解方法,掌握利用二次方程求根公式分解二次二項(xiàng)式的方法,能把簡(jiǎn)單多項(xiàng)式分解因式。
考查重難點(diǎn)與常見題型:
考查因式分解能力,在中考試題中,因式分解出現(xiàn)的頻率很高。重點(diǎn)考查的分式提取公因式、應(yīng)用公式法、分組分解法及它們的綜合運(yùn)用。習(xí)題類型以填空題為多,也有選擇題和解答題。
教學(xué)過程:
多項(xiàng)式的因式分解,就是把一個(gè)多項(xiàng)式化為幾個(gè)整式的積。分解因式要進(jìn)行到每一個(gè)因式都不能再分解為止。分解因式的常用方法有:
如多項(xiàng)式。
其中m叫做這個(gè)多項(xiàng)式各項(xiàng)的公因式,m既可以是一個(gè)單項(xiàng)式,也可以是一個(gè)多項(xiàng)式。
(2)運(yùn)用公式法,即用。
寫出結(jié)果。
(3)十字相乘法。
(4)分組分解法:把各項(xiàng)適當(dāng)分組,先使分解因式能分組進(jìn)行,再使分解因式在各組之間進(jìn)行。
分組時(shí)要用到添括號(hào):括號(hào)前面是“+”號(hào),括到括號(hào)里的各項(xiàng)都不變符號(hào);括號(hào)前面是“-”號(hào),括到括號(hào)里的各項(xiàng)都改變符號(hào)。
(5)求根公式法:如果有兩個(gè)根x1,x2,那么。
1、教學(xué)實(shí)例:學(xué)案示例。
2、課堂練習(xí):學(xué)案作業(yè)。
3、課堂:
4、板書:
5、課堂作業(yè):學(xué)案作業(yè)。
6、教學(xué)反思:
公式法因式分解教案篇十四
會(huì)應(yīng)用平方差公式進(jìn)行因式分解,發(fā)展學(xué)生推理能力。
2、過程與方法。
經(jīng)歷探索利用平方差公式進(jìn)行因式分解的過程,發(fā)展學(xué)生的逆向思維,感受數(shù)學(xué)知識(shí)的完整性。
3、情感、態(tài)度與價(jià)值觀。
培養(yǎng)學(xué)生良好的互動(dòng)交流的習(xí)慣,體會(huì)數(shù)學(xué)在實(shí)際問題中的應(yīng)用價(jià)值。
1、重點(diǎn):利用平方差公式分解因式。
2、難點(diǎn):領(lǐng)會(huì)因式分解的解題步驟和分解因式的徹底性。
3、關(guān)鍵:應(yīng)用逆向思維的方向,演繹出平方差公式,對(duì)公式的應(yīng)用首先要注意其特征,其次要做好式的變形,把問題轉(zhuǎn)化成能夠應(yīng)用公式的方面上來。
采用“問題解決”的教學(xué)方法,讓學(xué)生在問題的'牽引下,推進(jìn)自己的思維。
一、觀察探討,體驗(yàn)新知。
【問題牽引】。
請(qǐng)同學(xué)們計(jì)算下列各式。
(1)(a+5)(a—5);(2)(4m+3n)(4m—3n)。
【學(xué)生活動(dòng)】動(dòng)筆計(jì)算出上面的兩道題,并踴躍上臺(tái)板演。
(1)(a+5)(a—5)=a2—52=a2—25;
(2)(4m+3n)(4m—3n)=(4m)2—(3n)2=16m2—9n2。
【教師活動(dòng)】引導(dǎo)學(xué)生完成下面的兩道題目,并運(yùn)用數(shù)學(xué)“互逆”的思想,尋找因式分解的規(guī)律。
1、分解因式:a2—25;2、分解因式16m2—9n。
【學(xué)生活動(dòng)】從逆向思維入手,很快得到下面答案:
(1)a2—25=a2—52=(a+5)(a—5)。
(2)16m2—9n2=(4m)2—(3n)2=(4m+3n)(4m—3n)。
【教師活動(dòng)】引導(dǎo)學(xué)生完成a2—b2=(a+b)(a—b)的同時(shí),導(dǎo)出課題:用平方差公式因式分解。
平方差公式:a2—b2=(a+b)(a—b)。
評(píng)析:平方差公式中的字母a、b,教學(xué)中還要強(qiáng)調(diào)一下,可以表示數(shù)、含字母的代數(shù)式(單項(xiàng)式、多項(xiàng)式)。
二、范例學(xué)習(xí),應(yīng)用所學(xué)。
【例1】把下列各式分解因式:(投影顯示或板書)。
(1)x2—9y2;(2)16x4—y4;
(3)12a2x2—27b2y2;(4)(x+2y)2—(x—3y)2;
(5)m2(16x—y)+n2(y—16x)。
【思路點(diǎn)撥】在觀察中發(fā)現(xiàn)1~5題均滿足平方差公式的特征,可以使用平方差公式因式分解。
【教師活動(dòng)】啟發(fā)學(xué)生從平方差公式的角度進(jìn)行因式分解,請(qǐng)5位學(xué)生上講臺(tái)板演。
【學(xué)生活動(dòng)】分四人小組,合作探究。
解:(1)x2—9y2=(x+3y)(x—3y);
(5)m2(16x—y)+n2(y—16x)。
=(16x—y)(m2—n2)=(16x—y)(m+n)(m—n)。
公式法因式分解教案篇十五
“整式的乘法”是整式的加減的后續(xù)學(xué)習(xí)從冪的運(yùn)算到各種整式的乘法,整章教材都突出了學(xué)生的自主探索過程,依據(jù)原有的知識(shí)基礎(chǔ),或運(yùn)用乘法的各種運(yùn)算規(guī)律,或借助直觀而又形象的圖形面積,得到各種運(yùn)算的基本法則、兩個(gè)主要的乘法公式及因式分解的基本方法學(xué)生自己對(duì)知識(shí)內(nèi)容的探索、認(rèn)識(shí)與體驗(yàn),完全有利于學(xué)生形成合理的知識(shí)結(jié)構(gòu),提高數(shù)學(xué)思維能力.利用公式法進(jìn)行因式分解時(shí),注意把握多項(xiàng)式的特點(diǎn),對(duì)比乘法公式乘積結(jié)果的形式,選擇正確的分解方法。
因式分解是一種常用的代數(shù)式的恒等變形,因式分解是多項(xiàng)式乘法公式的逆向變形,它是將一個(gè)多項(xiàng)式變形為多項(xiàng)式與多項(xiàng)式的乘積。
2、教學(xué)目標(biāo)。
(1)會(huì)推導(dǎo)乘法公式。
(2)在應(yīng)用乘法公式進(jìn)行計(jì)算的基礎(chǔ)上,感受乘法公式的作用和價(jià)值。
(3)會(huì)用提公因式法、公式法進(jìn)行因式分解。
(4)了解因式分解的一般步驟。
(5)在因式分解中,經(jīng)歷觀察、探索和做出推斷的過程,提高分析問題和解決問題的能力。
3、重點(diǎn)、難點(diǎn)和關(guān)鍵。
重點(diǎn):乘法公式的意義、分式的由來和正確運(yùn)用;用提公因式法和公式法進(jìn)行因式分解。
難點(diǎn):正確運(yùn)用乘法公式;正確分解因式。
關(guān)鍵:正確理解乘法公式和因式分解的意義。
3.讓學(xué)生掌握基本的數(shù)學(xué)事實(shí)與數(shù)學(xué)活動(dòng)經(jīng)驗(yàn),減輕不必要的記憶負(fù)擔(dān).。
2.1平方差公式1課時(shí)。
2.2完全平方公式2課時(shí)。
初中優(yōu)秀......
初中(通用13篇)作為一位不辭辛勞的人民教師,通常需要用到教案來輔助教學(xué),教案有利于教學(xué)水平的提高,有助于教研活動(dòng)的開展。來參考自己需要的教案吧!下面是小編為......
公式法因式分解教案篇十六
1.會(huì)求反比例函數(shù)的解析式;2.鞏固反比例函數(shù)圖象和性質(zhì),通過對(duì)圖象的分析,進(jìn)一步探究反比例函數(shù)的增減性.
【過程與方法】。
經(jīng)歷觀察、分析、交流的過程,逐步提高運(yùn)用知識(shí)的能力.
【情感態(tài)度】。
提高學(xué)生的觀察、分析能力和對(duì)圖形的感知水平.
【教學(xué)重點(diǎn)】。
會(huì)求反比例函數(shù)的解析式.
【教學(xué)難點(diǎn)】。
反比例函數(shù)圖象和性質(zhì)的運(yùn)用.
教學(xué)過程。
一、情景導(dǎo)入,初步認(rèn)知。
【教學(xué)說明】復(fù)習(xí)上節(jié)課的內(nèi)容,同時(shí)引入新課.
二、思考探究,獲取新知。
1.思考:已知反比例函數(shù)y=的圖象經(jīng)過點(diǎn)p(2,4)。
(1)求k的值,并寫出該函數(shù)的表達(dá)式;。
(2)判斷點(diǎn)a(-2,-4),b(3,5)是否在這個(gè)函數(shù)的圖象上;。
分析:
(1)題中已知圖象經(jīng)過點(diǎn)p(2,4),即表明把p點(diǎn)坐標(biāo)代入解析式成立,這樣能求出k,解析式也就確定了.
(2)要判斷a、b是否在這條函數(shù)圖象上,就是把a(bǔ)、b的坐標(biāo)代入函數(shù)解析式中,如能使解析式成立,則這個(gè)點(diǎn)就在函數(shù)圖象上.否則不在.
(3)根據(jù)k的正負(fù)性,利用反比例函數(shù)的性質(zhì)來判定函數(shù)圖象所在的象限、y隨x的值的變化情況.
【歸納結(jié)論】這種求解析式的方法叫做待定系數(shù)法求解析式.
2.下圖是反比例函數(shù)y=的圖象,根據(jù)圖象,回答下列問題:
(1)k的取值范圍是k0還是k0?說明理由;。
(2)如果點(diǎn)a(-3,y1),b(-2,y2)是該函數(shù)圖象上的兩點(diǎn),試比較y1,y2的大小.分析:
(1)由圖象可知,反比例函數(shù)y=kx的圖象的兩支曲線分別位于第一、三象限內(nèi),在每個(gè)象限內(nèi),函數(shù)值y隨自變量x的增大而減小,因此,k0.
(2)因?yàn)辄c(diǎn)a(-3,y1),b(-2,y2)是該函數(shù)圖象上的兩點(diǎn)且-30,-20.所以點(diǎn)a、b都位于第三象限,又因?yàn)?3-2,由反比例函數(shù)的圖像的性質(zhì)可知:y1y2.
【教學(xué)說明】通過觀察圖象,使學(xué)生掌握利用函數(shù)圖象比較函數(shù)值大小的方法.
【本文地址:http://aiweibaby.com/zuowen/11146457.html】