勾股定理的說課范文(21篇)

格式:DOC 上傳日期:2023-11-13 04:48:03
勾股定理的說課范文(21篇)
時(shí)間:2023-11-13 04:48:03     小編:琴心月

總結(jié)是一種思維的整理和梳理,可以提高思考的深度和廣度。總結(jié)的撰寫需要多次修改和潤飾,以確保語言流暢、表達(dá)準(zhǔn)確。高效閱讀的技巧是成功學(xué)習(xí)的重要組成部分。

勾股定理的說課篇一

中國是發(fā)現(xiàn)和研究勾股定理最古老的國家之一。中國古代數(shù)學(xué)家稱直角三角形為勾股形,較短的直角邊稱為勾,另一直角邊稱為股,斜邊稱為弦,所以勾股定理也稱為勾股弦定理。在公元前1000多年,據(jù)記載,商高(約公元前11)答周公曰“故折矩,以為勾廣三,股修四,徑隅五。既方之,外半其一矩,環(huán)而共盤,得成三四五。兩矩共長二十有五,是謂積矩?!币虼耍垂啥ɡ碓谥袊址Q“商高定理”。在公元前7至6世紀(jì)一中國學(xué)者陳子,曾經(jīng)給出過任意直角三角形的三邊關(guān)系:以日下為勾,日高為股,勾、股各乘并開方除之得斜至日。

2、主要意義。

1、勾股定理是聯(lián)系數(shù)學(xué)中最基本也是最原始的兩個(gè)對象——數(shù)與形的第一定理。

2、勾股定理導(dǎo)致不可通約量的發(fā)現(xiàn),從而深刻揭示了數(shù)與量的區(qū)別,即所謂“無理數(shù)“與有理數(shù)的差別,這就是所謂第一次數(shù)學(xué)危機(jī)。

3、勾股定理開始把數(shù)學(xué)由計(jì)算與測量的技術(shù)轉(zhuǎn)變?yōu)樽C明與推理的科學(xué)。

4、勾股定理中的公式是第一個(gè)不定方程,也是最早得出完整解答的不定方程,它一方面引導(dǎo)到各式各樣的不定方程,另一方面也為不定方程的解題程序樹立了一個(gè)范式。

勾股定理的說課篇二

1、通過拼圖,用面積的方法說明勾股定理的正確性.

2、通過實(shí)例應(yīng)用勾股定理,培養(yǎng)學(xué)生的知識(shí)應(yīng)用技能.

一、學(xué)前準(zhǔn)備:

1、閱讀課本第46頁到第47頁,完成下列問題:。

2、剪四個(gè)完全相同的直角三角形,然后將它們拼成如圖所示的'圖形。大正方形的面積可以表示為_________________________,又可以表示為__________________________.對比兩種表示方法,看看能不能得到勾股定理的結(jié)論。用上面得到的完全相同的四個(gè)直角三角形,還可以拼成如下圖所示的圖形,與上面的方法類似,也能說明勾股定理是正確的方法(請逐一說明)。

二、合作探究:

(一)自學(xué)、相信自己:

(二)思索、交流:

(三)應(yīng)用、探究:

(四)鞏固練習(xí):

1、如圖,64、400分別為所在正方形的面積,則圖中字。

母a所代表的正方形面積是_________。

三.學(xué)習(xí)體會(huì):

本節(jié)課我們進(jìn)一步認(rèn)識(shí)了勾股定理,并用兩種方法證明了這個(gè)定理,在應(yīng)用此定理解決問題時(shí),應(yīng)注意只有直角三角形的三邊才有這樣的關(guān)系,如果不是直角三角形應(yīng)該構(gòu)造直角三角形來解決。

2②圖。

四.自我測試:

五.自我提高:

勾股定理的說課篇三

(一)教材所處的地位。

這節(jié)課是九年制義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書八年級(jí)第一章第一節(jié)探索勾股定理第一課時(shí),勾股定理是幾何中幾個(gè)重要定理之一,它揭示的是直角三角形中三邊的數(shù)量關(guān)系。它在數(shù)學(xué)的發(fā)展中起過重要的作用,在現(xiàn)時(shí)世界中也有著廣泛的作用。學(xué)生通過對勾股定理的學(xué)習(xí),可以在原有的基礎(chǔ)上對直角三角形有進(jìn)一步的認(rèn)識(shí)和理解。

(二)根據(jù)課程標(biāo)準(zhǔn),本課的教學(xué)目標(biāo)是:

2、會(huì)初步運(yùn)用勾股定理進(jìn)行簡單的計(jì)算和實(shí)際運(yùn)用。

3、在探索勾股定理的過程中,讓學(xué)生經(jīng)歷“觀察—猜想—?dú)w納—驗(yàn)證”的數(shù)學(xué)思想,并體會(huì)數(shù)形結(jié)合和特殊到一般的思想方法。

4、通過介紹勾股定理在中國古代的研究,激發(fā)學(xué)生熱愛祖國,熱愛祖國悠久文化的思想,激勵(lì)學(xué)生發(fā)奮學(xué)習(xí)。

本課的教學(xué)難點(diǎn):以直角三角形為邊的正方形面積的計(jì)算。

教法分析:針對初二年級(jí)學(xué)生的知識(shí)結(jié)構(gòu)和心理特征,本節(jié)課可選擇引導(dǎo)探索法,由淺入深,由特殊到一般地提出問題。引導(dǎo)學(xué)生自主探索,合作交流,這種教學(xué)理念反映了時(shí)代精神,有利于提高學(xué)生的思維能力,能有效地激發(fā)學(xué)生的思維積極性,基本教學(xué)流程是:提出問題—實(shí)驗(yàn)操作—?dú)w納驗(yàn)證—問題解決—課堂小結(jié)—布置作業(yè)六部分。

學(xué)法分析:在教師的組織引導(dǎo)下,采用自主探索、合作交流的研討式學(xué)習(xí)方式,讓學(xué)生思考問題,獲取知識(shí),掌握方法,借此培養(yǎng)學(xué)生動(dòng)手、動(dòng)腦、動(dòng)口的能力,使學(xué)生真正成為學(xué)習(xí)的主體。

首先創(chuàng)設(shè)這樣一個(gè)問題情境:某樓房三樓失火,消防隊(duì)員趕來救火,了解到每層樓高3米,消防隊(duì)員取來6.5米長的云梯,如果梯子的底部離墻基的距離是2.5米,請問消防隊(duì)員能否進(jìn)入三樓滅火?問題設(shè)計(jì)具有一定的挑戰(zhàn)性,目的是激發(fā)學(xué)生的探究欲望,教師引導(dǎo)學(xué)生將實(shí)際問題轉(zhuǎn)化成數(shù)學(xué)問題,也就是“已知一直角三角形的兩邊,如何求第三邊?”的問題。學(xué)生會(huì)感到困難,從而教師指出學(xué)習(xí)了今天這一課后就有辦法解決了。這種以實(shí)際問題為切入點(diǎn)引入新課,不僅自然,而且反映了數(shù)學(xué)來源于實(shí)際生活,數(shù)學(xué)是從人的需要中產(chǎn)生這一認(rèn)識(shí)的基本觀點(diǎn),同時(shí)也體現(xiàn)了知識(shí)的發(fā)生過程,而且解決問題的過程也是一個(gè)“數(shù)學(xué)化”的過程。

1、投影課本圖1—1,圖1—2的有關(guān)直角三角形問題,讓學(xué)生計(jì)算正方形a,b,c的面積,學(xué)生可能有不同的方法,不管是通過直接數(shù)小方格的個(gè)數(shù),還是將c劃分為4個(gè)全等的等腰直角三角形來求等等,各種方法都應(yīng)予于肯定,并鼓勵(lì)學(xué)生用語言進(jìn)行表達(dá),引導(dǎo)學(xué)生發(fā)現(xiàn)正方形a,b,c的面積之間的數(shù)量關(guān)系,從而學(xué)生通過正方形面積之間的關(guān)系容易發(fā)現(xiàn)對于等腰直角三角形而言滿足兩直角邊的平方和等于斜邊的平方。這樣做有利于學(xué)生參與探索,感受數(shù)學(xué)學(xué)習(xí)的過程,也有利于培養(yǎng)學(xué)生的語言表達(dá)能力,體會(huì)數(shù)形結(jié)合的思想。

2、接著讓學(xué)生思考:如果是其它一般的直角三角形,是否也具備這一結(jié)論呢?于是投影圖1—3,圖1—4,同樣讓學(xué)生計(jì)算正方形的面積,但正方形c的面積不易求出,可讓學(xué)生在預(yù)先準(zhǔn)備的方格紙上畫出圖形,在剪一剪,拼一拼后學(xué)生也不難發(fā)現(xiàn)對于一般的以整數(shù)為邊長的直角三角形也有兩直角邊的平方和等于斜邊的平方。這樣設(shè)計(jì)不僅有利于突破難點(diǎn),而且為歸納結(jié)論打下了基礎(chǔ),讓學(xué)生體會(huì)到觀察、猜想、歸納的思想,也讓學(xué)生的分析問題和解決問題的能力在無形中得到了提高,這對后面的學(xué)習(xí)及有幫助。

3、給出一個(gè)邊長為0.5,1.2,1.3,這種含小數(shù)的直角三角形,讓學(xué)生計(jì)算是否也滿足這個(gè)結(jié)論,設(shè)計(jì)的目的是讓學(xué)生體會(huì)到結(jié)論更具有一般性。

1、歸納通過對邊長為整數(shù)的等腰直角三角形到一般直角三角形再到邊長含小數(shù)的直角三角形三邊關(guān)系的研究,讓學(xué)生用數(shù)學(xué)語言概括出一般的結(jié)論,盡管學(xué)生可能講的不完全正確,但對于培養(yǎng)學(xué)生運(yùn)用數(shù)學(xué)語言進(jìn)行抽象、概括的能力是有益的,同時(shí)發(fā)揮了學(xué)生的主體作用,也便于記憶和理解,這比教師直接教給學(xué)生一個(gè)結(jié)論要好的多。

2、驗(yàn)證為了讓學(xué)生確信結(jié)論的正確性,引導(dǎo)學(xué)生在紙上任意作一個(gè)直角三角形,通過測量、計(jì)算來驗(yàn)證結(jié)論的正確性。這一過程有利于培養(yǎng)學(xué)生嚴(yán)謹(jǐn)、科學(xué)的學(xué)習(xí)態(tài)度。然后引導(dǎo)學(xué)生用符號(hào)語言表示,因?yàn)閷⑽淖终Z言轉(zhuǎn)化為數(shù)學(xué)語言是學(xué)習(xí)數(shù)學(xué)學(xué)習(xí)的一項(xiàng)基本能力。接著教師向?qū)W生介紹“勾,股,弦”的含義、勾股定理,進(jìn)行點(diǎn)題,并指出勾股定理只適用于直角三角形。最后向?qū)W生介紹古今中外對勾股定理的研究,對學(xué)生進(jìn)行愛國主義教育。

讓學(xué)生解決開頭的實(shí)際問題,前后呼應(yīng),學(xué)生從中能體會(huì)到成功的喜悅。完成課本“想一想”進(jìn)一步體會(huì)勾股定理在實(shí)際生活中的應(yīng)用,數(shù)學(xué)是與實(shí)際生活緊密相連的。

主要通過學(xué)生回憶本節(jié)課所學(xué)內(nèi)容,從內(nèi)容、應(yīng)用、數(shù)學(xué)思想方法、獲取新知的途徑方面先進(jìn)行小結(jié),后由教師總結(jié)。

課本p6習(xí)題1.11,2,3,4一方面鞏固勾股定理,另一方面進(jìn)一步體會(huì)定理與實(shí)際生活的聯(lián)系。另外,補(bǔ)充一道開放題。

1、本節(jié)課是公式課,根據(jù)學(xué)生的知識(shí)結(jié)構(gòu),我采用的教學(xué)流程是:提出問題—實(shí)驗(yàn)操作—?dú)w納驗(yàn)證—問題解決—課堂小結(jié)—布置作業(yè)六部分,這一流程體現(xiàn)了知識(shí)發(fā)生、形成和發(fā)展的過程,讓學(xué)生體會(huì)到觀察、猜想、歸納、驗(yàn)證的思想和數(shù)形結(jié)合的思想。

3、關(guān)于練習(xí)的設(shè)計(jì),除兩個(gè)實(shí)際問題和課本習(xí)題以外,我準(zhǔn)備設(shè)計(jì)一道開放題,大致思路是在已畫出斜邊上的高的直角三角形中讓學(xué)生盡量地找出線段之間的關(guān)系。

4、本課小結(jié)從內(nèi)容,應(yīng)用,數(shù)學(xué)思想方法,獲取知識(shí)的途徑等幾個(gè)方面展開,既有知識(shí)的總結(jié),又有方法的提煉,這樣對于學(xué)生學(xué)知識(shí),用知識(shí)的意識(shí)是有很大的促進(jìn)的。

勾股定理的說課篇四

教學(xué)目標(biāo):

1、知識(shí)目標(biāo):

(2)學(xué)會(huì)利用勾股定理進(jìn)行計(jì)算、證明與作圖;

(3)了解有關(guān)勾股定理的歷史。

2、能力目標(biāo):

(1)在定理的證明中培養(yǎng)學(xué)生的拼圖能力;

(2)通過問題的解決,提高學(xué)生的運(yùn)算能力。

3、情感目標(biāo):

(1)通過自主學(xué)習(xí)的發(fā)展體驗(yàn)獲取數(shù)學(xué)知識(shí)的感受;

(2)通過有關(guān)勾股定理的歷史講解,對學(xué)生進(jìn)行德育教育。

教學(xué)難點(diǎn):通過有關(guān)勾股定理的歷史講解,對學(xué)生進(jìn)行德育教育。

教學(xué)用具:直尺,微機(jī)。

教學(xué)方法:以學(xué)生為主體的討論探索法。

教學(xué)過程:

1、新課背景知識(shí)復(fù)習(xí)。

(1)三角形的三邊關(guān)系。

(2)問題:(投影顯示)。

直角三角形的三邊關(guān)系,除了滿足一般關(guān)系外,還有另外的特殊關(guān)系嗎?

2、定理的獲得。

讓學(xué)生用文字語言將上述問題表述出來。

勾股定理:直角三角形兩直角邊的平方和等于斜邊的平方。

強(qiáng)調(diào)說明:

(1)勾――最短的邊、股――較長的直角邊、弦――斜邊。

(2)學(xué)生根據(jù)上述學(xué)習(xí),提出自己的問題(待定)。

3、定理的證明方法。

方法一:將四個(gè)全等的直角三角形拼成如圖1所示的正方形。

方法二:將四個(gè)全等的直角三角形拼成如圖2所示的正方形。

方法三:“總統(tǒng)”法、如圖所示將兩個(gè)直角三角形拼成直角梯形。

以上證明方法都由學(xué)生先分組討論獲得,教師只做指導(dǎo)、最后總結(jié)說明。

4、定理與逆定理的應(yīng)用。

5、課堂小結(jié):

已知直角三角形的兩邊求第三邊。

已知直角三角形的一邊,求另兩邊的關(guān)系。

6、布置作業(yè):

a、書面作業(yè)p130#1、2、3。

b、上交作業(yè)p132#1、3。

勾股定理的說課篇五

摘要:勾股定理又名商高定理,也名畢達(dá)哥拉斯定理。從兩千多年前至今都有人在研究,其證明方法多達(dá)500種,并且在實(shí)際生活中有廣泛應(yīng)用。在中學(xué)階段,勾股定理是幾何部分最重要的定理之一,不僅是教學(xué)的重點(diǎn)、難點(diǎn)、考點(diǎn),而且也是幾何學(xué)習(xí)的基礎(chǔ),除此之外,還可以激發(fā)學(xué)生學(xué)習(xí)興趣,開拓學(xué)生知識(shí)面,提升學(xué)生思維水平。

關(guān)鍵詞:勾股定理中學(xué)生心理特征證明方法解題思路。

在古代中國,數(shù)學(xué)著作《周髀算經(jīng)》開頭,記載著一段周公向商高請教數(shù)學(xué)知識(shí)的對話:昔者周公問于商高曰:“竊聞乎大夫善數(shù)也,請問昔者包犧立周天歷度——夫天可不階而升,地不可得尺寸而度,請問數(shù)安從出?”商高答曰:“若求邪至日者,以日下為勾,日高為股,勾股各自乘,并而開方除之,得邪至日”這是中國古代對勾股定理的最早記錄。在《九章算術(shù)》中,“勾股術(shù)曰:勾股各自乘,并而開方除之,即弦.又股自乘,以減弦自乘,其余開方除之,即勾.又勾自乘,以減弦自乘,其余開方除之,即股”。畢達(dá)哥拉斯參加一次餐會(huì),餐廳鋪著正方形大理石地磚,他凝視這些排列規(guī)則、美麗的方形磁磚,但畢達(dá)哥拉斯不只是欣賞磁磚的美麗,而是想到它們和“數(shù)”之間的關(guān)系,于是拿了畫筆并且蹲在地板上,選了一塊磁磚以它的對角線為邊畫一個(gè)正方形,他發(fā)現(xiàn)這個(gè)正方形面積恰好等于兩塊磁磚的面積和。這是西方對畢達(dá)哥拉斯定理最早的描述。

二、中學(xué)生心理特征。

中學(xué)階段的學(xué)生正處于發(fā)育的第二高峰期,在生理和心理上都有很大的變化,在心理上的普遍特征:1.有意注意發(fā)展顯著,注意的范圍擴(kuò)大,穩(wěn)定性和集中性增強(qiáng);2.記憶力隨著年齡的增長而增加,對圖片、音頻等感性的記憶較好,對公式、定理等純理論的記憶較差,尤其是數(shù)學(xué)學(xué)科,基礎(chǔ)的理論公式很多,學(xué)生很容易記混淆;3.抽象思維的能力有提升,處于形式運(yùn)算階段,但對事物的思考基本還停留在事物表面,沒有完全形成自主有意識(shí)的抽象思維傾向;4.自制力有所提升,他們開始喜歡崇拜有意志力、自控力的人,但是自身的自制力比較薄弱。雖然我并不贊成把學(xué)生分為優(yōu)等生、中等生和差等生,但是在實(shí)際的教育中,是存在這樣的分化,并且學(xué)生都存在上述的四個(gè)普遍特征,也存在一些差異:學(xué)習(xí)能力、思維方式、自制力等不同。優(yōu)等生在各個(gè)方面普遍比中等生好,而中等生又普遍比差等生好,我們應(yīng)該從這些差異點(diǎn)著手,因材施教,激發(fā)學(xué)習(xí)興趣,提升學(xué)習(xí)能力,引導(dǎo)自主學(xué)習(xí),減少學(xué)生之間的差異,使學(xué)生健康成長,實(shí)現(xiàn)自我價(jià)值。

勾股定理是全人類文明的一個(gè)象征,也是平面幾何學(xué)的一顆明珠,在實(shí)際生活中也有廣泛應(yīng)用。兩千年以來,人們從來沒有停止對勾股定理的研究。據(jù)不完全統(tǒng)計(jì),勾股定理的證明方法多達(dá)500種,每一種方法都有優(yōu)點(diǎn),每一種方法都包含全人類的智慧。但在中學(xué)教學(xué)中,我們不可能做到面面俱到,只能教給學(xué)生一些典型、基礎(chǔ)的證明方法,通過教學(xué)引導(dǎo)學(xué)生自主學(xué)習(xí),自主探索。

說明:第一種證明方法有兩個(gè)要點(diǎn):1.幾何圖形的變化;2.確定等量關(guān)系。初中生可以理解這兩個(gè)要點(diǎn),因此,我們可以以探究的形式讓學(xué)生自己做,一來可以提高學(xué)生自主學(xué)習(xí)的興趣,二來也符合當(dāng)下的教育理念——探究學(xué)習(xí)。對于基礎(chǔ)較薄弱的學(xué)生而言,在掌握基本知識(shí)點(diǎn)的同時(shí),可以增加他們學(xué)習(xí)數(shù)學(xué)的興趣,減少對數(shù)學(xué)的畏懼情緒,對于基礎(chǔ)較好的學(xué)生而言,他們可以通過這種證明方法,自學(xué)勾股定理的基本知識(shí)。第二、三種方法分別結(jié)合了相似三角形和圓的基礎(chǔ)知識(shí)點(diǎn),在教授相似三角形和圓的`相關(guān)定理時(shí),提出他們在勾股定理證明中的運(yùn)用。把前后知識(shí)點(diǎn)串聯(lián)起來,差等生可以回顧勾股定理,加深理解,激發(fā)他們學(xué)習(xí)的興趣,中等生和優(yōu)等生可以構(gòu)建不同知識(shí)點(diǎn)之間的聯(lián)系,形成知識(shí)體系,提升他們的抽象思維能力,對后繼學(xué)習(xí)有很大幫助。

本題先通過不變量尋找等量關(guān)系,再利用勾股定理求解問題。引導(dǎo)基礎(chǔ)較差的學(xué)生通過折疊尋找圖形中的不變量,建立等量關(guān)系,提升其處理數(shù)學(xué)問題的信心,學(xué)會(huì)一些數(shù)學(xué)的基本方法和思維方式;引導(dǎo)基礎(chǔ)較好的學(xué)生復(fù)習(xí)對稱圖形的性質(zhì),適當(dāng)提煉解題思路,構(gòu)建知識(shí)體系。

說明:題目本身很簡單,由題目容易想到勾股數(shù)3、4、5,而忽略分類討論。我們應(yīng)引導(dǎo)學(xué)生突破慣性思維,不能過于片面、主觀,應(yīng)認(rèn)真仔細(xì)省題。初中生對問題有思考,但思考的深度不夠。通過這道題可以告訴學(xué)生:突破慣性思維,全面思考問題,不懼怕數(shù)學(xué)題,使他們愿意主動(dòng)思考數(shù)學(xué)題。本題運(yùn)用到分類討論思想,這個(gè)思想在數(shù)學(xué)上的運(yùn)用十分廣泛。

五、結(jié)語。

勾股定理是中學(xué)階段最重要的定理之一,本文從中學(xué)生的心理特征,以及不同層次的學(xué)生的不同學(xué)習(xí)特點(diǎn)、心理特點(diǎn)出發(fā),立足縮小學(xué)生間的層次差異、實(shí)現(xiàn)學(xué)生自我價(jià)值的觀點(diǎn),討論勾股定理在實(shí)際教學(xué)中的不同證明方法的教法,和一些典型題型的解題思路,以及如何在教課過程中引導(dǎo)不同層次的學(xué)生學(xué)習(xí),產(chǎn)生數(shù)學(xué)學(xué)習(xí)興趣,構(gòu)建數(shù)學(xué)知識(shí)體系。

參考文獻(xiàn):

[1]《周髀算經(jīng)》[m].文物出版社1980年3月.據(jù)宋代嘉靖六年本影印.

[2]《九章算術(shù)》[m].重慶大學(xué)出版社.10月.

勾股定理的說課篇六

中國最早的一部數(shù)學(xué)著作——《周髀算經(jīng)》的開頭,記載著一段周公向商高請教數(shù)學(xué)知識(shí)的對話:

周公問:“我聽說您對數(shù)學(xué)非常精通,我想請教一下:天沒有梯子可以上去,地也沒法用尺子去一段一段丈量,那么

怎樣

才能得到

關(guān)于

天地得到數(shù)據(jù)呢?”

商高回答說:“數(shù)的產(chǎn)生來源于對方和圓這些形體餓認(rèn)識(shí)。其中有一條原理:當(dāng)直角三角形‘矩’得到的一條直角邊‘勾’等于3,另一條直角邊‘股’等于4的時(shí)候,那么它的斜邊‘弦’就必定是5。這個(gè)原理是大禹在治水的時(shí)候就總結(jié)出來的呵?!?/p>

從上面所引的這段對話中,我們可以清楚地看到,我國古代的人民早在幾千年以前就已經(jīng)發(fā)現(xiàn)并應(yīng)用勾股定理這一重要懂得數(shù)學(xué)原理了。稍懂平面幾何餓讀者都知道,所謂勾股定理,就是指在直角三角形中,兩條直角邊的平方和等于斜邊的平方。

用勾(a)和股(b)分別表示直角三角形得到兩條直角邊,用弦(c)來表示斜邊,則可得:

勾2+股2=弦2

亦即:

a2+b2=c2

勾股定理在西方被稱為畢達(dá)哥拉斯定理,相傳是古希臘數(shù)學(xué)家兼哲學(xué)家畢達(dá)哥拉斯于公元前550年首先發(fā)現(xiàn)的。其實(shí),我國古代得到人民對這一數(shù)學(xué)定理的發(fā)現(xiàn)和應(yīng)用,遠(yuǎn)比畢達(dá)哥拉斯早得多。如果說大禹治水因年代久遠(yuǎn)而無法確切考證的話,那么周公與商高的.對話則可以確定在公元前1100年左右的西周時(shí)期,比畢達(dá)哥拉斯要早了

五百

多年。其中所說的勾3股4弦5,正是勾股定理的一個(gè)應(yīng)用特例(32+42=52)。所以現(xiàn)在數(shù)學(xué)界把它稱為勾股定理,應(yīng)該是非常恰當(dāng)?shù)摹?/p>

在稍后一點(diǎn)的《九章算術(shù)一書》中,勾股定理得到了更加規(guī)范的一般性表達(dá)。書中的《勾股章》說;“把勾和股分別自乘,然后把它們的積加起來,再進(jìn)行開方,便可以得到弦?!卑堰@段話列成算式,即為:

弦=(勾2+股2)(1/2)

亦即:

c=(a2+b2)(1/2)

中國古代的數(shù)學(xué)家們不僅很早就發(fā)現(xiàn)并應(yīng)用勾股定理,而且很早就嘗試對勾股定理作理論的證明。最早對勾股定理進(jìn)行證明的,是三國時(shí)期吳國的數(shù)學(xué)家趙爽。趙爽創(chuàng)制了一幅“勾股圓方圖”,用形數(shù)結(jié)合得到方法,給出了勾股定理的詳細(xì)證明。在這幅“勾股圓方圖”中,以弦為邊長得到正方形abde是由4個(gè)相等的直角三角形再加上中間的那個(gè)小正方形組成的。每個(gè)直角三角形的面積為ab/2;中間懂得小正方形邊長為b-a,則面積為(b-a)2。于是便可得如下的式子:

4×(ab/2)+(b-a)2=c2

化簡后便可得:

a2+b2=c2

亦即:

c=(a2+b2)(1/2)

趙爽的這個(gè)證明可謂別具匠心,極富創(chuàng)新意識(shí)。他用幾何圖形的截、割、拼、補(bǔ)來證明代數(shù)式之間的恒等關(guān)系,既具嚴(yán)密性,又具直觀性,為中國古代以形證數(shù)、形數(shù)統(tǒng)一、代數(shù)和幾何緊密結(jié)合、互不可分的獨(dú)特風(fēng)格樹立了一個(gè)典范。以后的數(shù)學(xué)家大多繼承了這一風(fēng)格并且代有發(fā)展。例如稍后一點(diǎn)的劉徽在證明勾股定理時(shí)也是用的以形證數(shù)的方法,只是具體圖形的分合移補(bǔ)略有不同而已。

中國古代數(shù)學(xué)家們對于勾股定理的發(fā)現(xiàn)和證明,在世界數(shù)學(xué)史上具有獨(dú)特的貢獻(xiàn)和地位。尤其是其中體現(xiàn)出來的“形數(shù)統(tǒng)一”的思想方法,更具有科學(xué)創(chuàng)新的重大意義。事實(shí)上,“形數(shù)統(tǒng)一”的思想方法正是數(shù)學(xué)發(fā)展的一個(gè)極其重要的條件。正如當(dāng)代中國數(shù)學(xué)家吳文俊所說:“在中國的傳統(tǒng)數(shù)學(xué)中,數(shù)量關(guān)系與空間形式往往是形影不離地并肩發(fā)展著的......十七世紀(jì)笛卡兒解析幾何的發(fā)明,正是中國這種傳統(tǒng)思想與方法在幾百年停頓后的重現(xiàn)與繼續(xù)?!薄?/p>

勾股定理的說課篇七

“探索勾股定理”是人教版八年級(jí)《數(shù)學(xué)》下冊內(nèi)容。“勾股定理”是安排在學(xué)生學(xué)習(xí)了三角形、全等三角形、等腰三角形等有關(guān)知識(shí)之后,它揭示了直角三角形三邊之間的一種美妙關(guān)系,將數(shù)與形密切聯(lián)系起來,在幾何學(xué)中占有非常重要的位置。同時(shí)勾股定理在生產(chǎn)、生活中也有很大的用途。

綜上分析及教學(xué)大綱要求,本課時(shí)教學(xué)目標(biāo)制定如下:

知道勾股定理的由來,初步理解割補(bǔ)拼接的面積證法。

掌握勾股定理,通過動(dòng)手操作利用等積法理解勾股定理的證明過程。

在探索勾股定理的過程中,讓學(xué)生經(jīng)歷“觀察——合理猜想——?dú)w納——驗(yàn)證”的數(shù)學(xué)思想,并體會(huì)數(shù)形結(jié)合以及由特殊到一般的思想方法,培養(yǎng)學(xué)生的觀察力、抽象概括能力、創(chuàng)造想象能力以及科學(xué)探究問題的能力。

通過觀察、猜想、拼圖、證明等操作,使學(xué)生深刻感受到數(shù)學(xué)知識(shí)的發(fā)生、發(fā)展過程。

介紹“趙爽弦圖”,讓學(xué)生感受到中國古代在勾股定理研究方面所取得的偉大成就,激發(fā)學(xué)生的數(shù)學(xué)激情及愛國情感。

本課重點(diǎn)是掌握勾股定理,讓學(xué)生深刻感悟到直角三角形三邊所具備的特殊關(guān)系。由于八年級(jí)學(xué)生構(gòu)造能力較低以及對面積證法的不熟悉,因此本課的難點(diǎn)便是勾股定理的證明。

本 節(jié)主要攻克的問題就是本節(jié)的難點(diǎn):勾股定理的證明。我打算采用面積法來講解,但這種借助于圖形的面積來探索、驗(yàn)證數(shù)學(xué)結(jié)論的數(shù)形結(jié)合思想,對于學(xué)生來說, 有些陌生,難以理解,又加之?dāng)?shù)學(xué)課本身的課程特征,在講解時(shí),沒有文科那么深動(dòng)形象,所以針對這一現(xiàn)狀,我在教法和學(xué)法上都進(jìn)行了改進(jìn)。

[教學(xué)方法與手段] 針對八年級(jí)學(xué)生的知識(shí)結(jié)構(gòu)和心理特征,本節(jié)課選擇引導(dǎo)探索法,由淺入深,由特殊到一般地提出問題,引導(dǎo)學(xué)生自主探索,合作交流,并利用多媒體進(jìn)行教學(xué)。

[學(xué)法分析] 在教師組織引導(dǎo)下,采用自主探索、合作交流的方式,讓學(xué)生自己實(shí)驗(yàn),自己獲取知識(shí),并感悟?qū)W習(xí)方法,借此培養(yǎng)學(xué)生動(dòng)手、動(dòng)口、動(dòng)腦能力,使學(xué)生真正成為學(xué)習(xí)的主體。讓學(xué)生感受到自己是學(xué)習(xí)的主體,增強(qiáng)他們的主動(dòng)感和責(zé)任感,這樣對掌握新知會(huì)事半功倍。

本節(jié)課開始利用多媒體介紹了在北京召開的20xx年 國際數(shù)學(xué)家大會(huì)的會(huì)標(biāo),其圖案為“趙爽弦圖”,由此導(dǎo)入新課,是為了激發(fā)學(xué)生的興趣和民族自豪感,它是課堂教學(xué)的重要一環(huán)。“好的開始是成功的一半”,在 課的起始階段迅速集中學(xué)生注意力,把他們的思緒帶進(jìn)特定的學(xué)習(xí)情境中,激發(fā)學(xué)生濃厚的學(xué)習(xí)興趣和強(qiáng)烈的求知欲。多媒體展示這一有意義的圖案,可有效開啟學(xué) 生思維的閘門,激勵(lì)探究,使學(xué)生的學(xué)習(xí)狀態(tài)由被動(dòng)變?yōu)橹鲃?dòng),在輕松愉悅的氛圍中學(xué)到知識(shí)。

讓學(xué)生仔細(xì)觀察畢達(dá)哥拉斯朋友家的瓷磚(圖1), 從而得到特殊的等腰直角三角形三邊關(guān)系,緊接著由特殊到一般,讓學(xué)生合理猜測:是否任意直角三角形都符合這個(gè)“三邊關(guān)系”的結(jié)論?同學(xué)們很輕易的得到了結(jié) 論。最后對此結(jié)論通過在網(wǎng)格中數(shù)格子進(jìn)行驗(yàn)證,讓學(xué)生經(jīng)歷了“觀察——合理猜測——?dú)w納——驗(yàn)證”的這一數(shù)學(xué)思想。在數(shù)格子的驗(yàn)證過程中,發(fā)現(xiàn)任意直角三 角形(圖2)斜邊上長出的正方形中網(wǎng)格不規(guī)則,沒法數(shù)出。通過同學(xué)們的討論,發(fā)現(xiàn)數(shù)不出來的原因是格子不規(guī)則,從而想到了用補(bǔ)或割的方法進(jìn)行計(jì)算,其原則就是由不規(guī)則經(jīng)過割補(bǔ)變?yōu)橐?guī)則。

因?yàn)楣垂啥ɡ淼某霈F(xiàn),使數(shù)學(xué)從單一的純計(jì)算進(jìn)入了幾何圖形的證明,所以為了讓學(xué)生感受數(shù)形結(jié)合這一數(shù)學(xué)思想,讓學(xué)生親自動(dòng)手,互相協(xié)作,拿一塊由a2和b2組成的不規(guī)則的平面圖形經(jīng)割補(bǔ),變?yōu)橐?guī)則的c2,又因兩塊割補(bǔ)前后面積相等,從而得到勾股定理:a2+b2= c2,也因此引入了“等積法”證明勾股定理。

這是“總統(tǒng)證法”,此時(shí)讓學(xué)生自己探索,然后討論。選用“總統(tǒng)證法”,第一是為了讓同學(xué)們熟悉“等積法”,第二讓學(xué)生感受數(shù)學(xué)的地位之高,第三在沒有講解的情況下,學(xué)生自己得出了“總統(tǒng)證法”,大大增強(qiáng)了學(xué)生的自信心和自豪感。

5、自己動(dòng)手,拼出弦圖

讓同學(xué)們拿出了提前準(zhǔn)備好的四個(gè)全等的邊長為a、b、c的 直角三角形進(jìn)行拼圖,小組活動(dòng),拼出自己喜愛的圖形,但有一個(gè)前提是所拼出的圖形必須能夠用等積法證明勾股定理。此時(shí)已經(jīng)是把課堂全部還給了學(xué)生,讓他們 在數(shù)學(xué)的海洋中馳騁,提供這種學(xué)習(xí)方式就是為了讓孩子們更加開闊,更加自主,更方便于他們到廣闊的海洋中去尋找寶藏,學(xué)生們拼得很好,并且都給出了正確的 證明,在黑板上盡情地展示了一番。

6、總結(jié)反思

通 過這一堂課,我認(rèn)為數(shù)學(xué)教學(xué)的核心不是知識(shí)本身,而是數(shù)學(xué)的思維方式,而培養(yǎng)這種數(shù)學(xué)思維方式需要豐富的數(shù)學(xué)活動(dòng)。在活動(dòng)中學(xué)生可以用自己創(chuàng)造與體驗(yàn)的方 法來學(xué)習(xí)數(shù)學(xué),這樣才能真正的掌握數(shù)學(xué),真正擁有數(shù)學(xué)的思維方式,這一課的學(xué)習(xí)就是通過讓學(xué)生自主探索知識(shí),從而將其轉(zhuǎn)化為自己的,真正做到了先激發(fā)興 趣,再合作交流,最后展示成果的自主學(xué)習(xí),教學(xué)模式也從教師講授為主轉(zhuǎn)為了學(xué)生動(dòng)腦、動(dòng)手、自主研究,小組學(xué)習(xí)討論交流為主,把數(shù)學(xué)課堂轉(zhuǎn)化為“數(shù)學(xué)實(shí)驗(yàn) 室”,學(xué)生通過自己活動(dòng)得出結(jié)論,使創(chuàng)新精神與實(shí)踐能力得到了發(fā)展。

1、根據(jù)學(xué)生的知識(shí)結(jié)構(gòu),我采用的數(shù)學(xué)流程是:創(chuàng)設(shè)情境引入新課——觀察發(fā)現(xiàn)類比猜想——實(shí)驗(yàn)探究證明結(jié)論——自己動(dòng)手拼出弦圖——總結(jié)反思這五部分。這一流程體現(xiàn)了知識(shí)的發(fā)生、形成和發(fā)展的過程,讓學(xué)生經(jīng)歷了觀察——猜想——?dú)w納——驗(yàn)證的思想和數(shù)形結(jié)合的思想。

2、探索定理采用了面積法,引導(dǎo)學(xué)生利用實(shí)驗(yàn)由特殊到一般的數(shù)學(xué)思想對直角三角形三邊關(guān)系進(jìn)行了研究,并得出了結(jié)論。這種方法是認(rèn)識(shí)事物規(guī)律的重要方法之一,通過教學(xué)讓學(xué)生初步掌握這種方法,對于學(xué)生良好的思維品質(zhì)的形成有重要作用,對學(xué)生終身發(fā)展也有很大作用。

勾股定理的說課篇八

教學(xué)目標(biāo)1.在探索平行四邊形的判別條件中,理解并掌握用邊、對角線來判定平行四邊形的方法.

2.會(huì)綜合運(yùn)用平行四邊形的判定方法和性質(zhì)來解決問題。

教學(xué)重點(diǎn):平行四邊形的判定方法及應(yīng)用。

教學(xué)難點(diǎn):平行四邊形的判定定理與性質(zhì)定理的靈活應(yīng)用。

二.探。

閱讀教材p44至p45。

利用手中的學(xué)具——硬紙板條,通過觀察、測量、猜想、驗(yàn)證、探索構(gòu)成平行四邊形的條件,思考并探討:

(1)你能適當(dāng)選擇手中的硬紙板條搭建一個(gè)平行四邊形嗎?

(2)你怎樣驗(yàn)證你搭建的四邊形一定是平行四邊形?

(3)你能說出你的做法及其道理嗎?

(4)能否將你的探索結(jié)論作為平行四邊形的一種判別方法?你能用文字語言表述出來嗎?

(5)你還能找出其他方法嗎?

從探究中得到:

平行四邊形判定方法1兩組對邊分別相等的四邊形是平行四邊形。

平行四邊形判定方法2對角線互相平分的四邊形是平行四邊形。

證一證。

平行四邊形判定方法1兩組對邊分別相等的四邊形是平行四邊形。

證明:(畫出圖形)。

平行四邊形判定方法2一組對邊平行且相等的四邊形是平行四邊形。

證明:(畫出圖形)。

三.結(jié)。

兩組對邊分別相等的四邊形是平行四邊形。

對角線互相平分的四邊形是平行四邊形。

四.用。

勾股定理的說課篇九

即直角三角形兩直角的平方和等于斜邊的平方.。

因此,在運(yùn)用勾股定理計(jì)算三角形的邊長時(shí),要注意如下三點(diǎn):

(2)注意分清斜邊和直角邊,避免盲目代入公式致錯(cuò);

如,利用四個(gè)如圖1所示的直角三角形三角形,拼出如圖2所示的三個(gè)圖形.。

請讀者證明.。

請同學(xué)們自己證明圖(2)、(3).。

3.在數(shù)軸上表示無理數(shù)。

二、典例精析。

132-52=144,所以另一條直角邊的長為12.。

所以這個(gè)直角三角形的面積是×12×5=30(cm2).。

例2如圖3(1),一只螞蟻沿棱長為a的正方體表面從頂點(diǎn)a爬到。

頂點(diǎn)b,則它走過的最短路程為。

a.b.c.3ad.分析:本題顯然與例2屬同種類型,思路相同.但正方體的。

各棱長相等,因此只有一種展開圖.。

解:將正方體側(cè)面展開。

勾股定理的說課篇十

編寫各部分的文字材料、圖形,設(shè)計(jì)需用的動(dòng)畫,拿出各個(gè)部分課件的制作稿本。如《引言》的稿本內(nèi)容是:1.在“旭日”畫面中打出字幕標(biāo)題:引言及引言的文字內(nèi)容,其中“旭日”畫面事先在photoshop中經(jīng)掃描儀輸入;2.與1同步播放背景音樂《春江花月夜》片斷;3.接1插入商高勾股定理的動(dòng)畫演示;4.提出思考題,引出課題與要求(其余部分因篇幅關(guān)系省略)。

在windows98下,點(diǎn)擊“開始/程序/wps集成辦公系統(tǒng)”,進(jìn)入wps2000軟件的編輯窗口,在wps2000的菜單欄上選中“查看/工具條/操作向?qū)А泵?,點(diǎn)擊啟動(dòng)該功能,進(jìn)入wps2000的全功能制作狀態(tài)。下面以制作《引言》分課件為例介紹制作方法。

2.輸入文稿:接著在課件文件中輸入《引言》文字稿;

3.插入背景音樂:將錄有《春江花月夜》的光盤插入光驅(qū),點(diǎn)擊“操作向?qū)А敝械摹岸嗝襟w對象”,選中存入的音樂文件類型“cd音樂”,在“曲目”選擇欄中選光盤上曲目《春江花月夜》;在“時(shí)間“選擇欄中選中播放時(shí)間0:00――0:50分鐘,然后點(diǎn)擊“試聽”,滿意后點(diǎn)擊“確定“,就將背景音樂插入到了你的演示課件中,將此時(shí)做成的文件存為“前言1”。

5.制作《思考題,引出課題》幻燈片:在wps2000中重新建一個(gè)新文件,在該文件中分別輸入思考題內(nèi)容、本課課題與要求等文稿,將其編輯排版成符合課件要求的形式,將完成的文件命名為“思考1”。

6.設(shè)置演示形式:由于wps2000的演示功能只能對同一個(gè)文件中的對象或插入的有關(guān)視頻、音頻進(jìn)行演播,故將做好的“勾股動(dòng)畫1”、“思考1”以圖標(biāo)的形式插入到“引言1”中,將“引言1”設(shè)為全屏幕形式,用點(diǎn)擊圖標(biāo)的形式演播。通過演示再將不合理的地方進(jìn)行修改,最后完成“引言”分課件的設(shè)計(jì)。

用同樣的方法制作好其余各分課件后,再在wps2000的操作向?qū)е袘?yīng)用其“ole對象”將各分課件連接起來,構(gòu)成《勾股定理》課堂教學(xué)課件后,反復(fù)演示幾遍,修改調(diào)試直至能滿足課堂教學(xué)的要求,完成課件的制作。

課件制作完成,筆者將它拿到正式課堂里向?qū)W生一演示,引起不小的轟動(dòng),那堂課同學(xué)們聽課特別地專注,課后作業(yè)也做得格外地好。

通過制作《勾股定理》課件,更深入地了解到wps2000軟件的強(qiáng)大功能,同時(shí)在制作教學(xué)課件的過程中,感到wps2000也還有如下方面值得改進(jìn):

3、改進(jìn)“演示”功能,增加調(diào)節(jié)演示對象次序的功能,添加平面“路徑動(dòng)畫”的功能。

以上僅是筆者個(gè)人意見,提出來供大家討論。歡迎與筆者交流。

點(diǎn)擊閱讀更多學(xué)院。

勾股定理的說課篇十一

尊敬的各位評(píng)委、老師,大家好!

我說課的題目是華師版八年級(jí)上冊第十四章第一節(jié)第一課時(shí)《勾股定理》。

如果說數(shù)學(xué)思想是解決數(shù)學(xué)問題的一首經(jīng)典老歌,那么本節(jié)課蘊(yùn)含的由特殊到一般的思想、數(shù)學(xué)建模的思想、轉(zhuǎn)化的思想就是歌中最為活躍的音符!本節(jié)的內(nèi)容是在學(xué)習(xí)了二次根式之后的教學(xué),是在學(xué)生已經(jīng)掌握了直角三角形的有關(guān)性質(zhì)的基礎(chǔ)上進(jìn)行的后繼學(xué)習(xí),是中學(xué)數(shù)學(xué)幾個(gè)重要定理之一。它揭示了直角三角形三條邊之間的數(shù)量關(guān)系,是解直角三角形的主要根據(jù)之一,是解決四邊形、圓等知識(shí)的靈魂,在實(shí)際生活中有著極其廣泛的應(yīng)用。

勾股定理的發(fā)現(xiàn)、驗(yàn)證和應(yīng)用蘊(yùn)含著豐富的文化價(jià)值,在理論上占有重要地位,因此本節(jié)在教材中起著承前啟后的橋梁作用。

新課標(biāo)下的數(shù)學(xué)教學(xué)不僅是知識(shí)的教學(xué),更應(yīng)注重能力的培養(yǎng)及情感的教育,因此,根據(jù)本節(jié)在教學(xué)中的地位和作用,結(jié)合初二學(xué)生不愛表現(xiàn)、好靜不好動(dòng)的特點(diǎn),我確定本節(jié)教學(xué)目標(biāo)如下:

1、探索并利用拼圖證明勾股定理。

2、利用勾股定理解決簡單的數(shù)學(xué)問題。

3、感受數(shù)學(xué)文化,體會(huì)解決問題方法的多樣性和數(shù)形結(jié)合的思想。

本著課標(biāo)的要求,在吃透教材的基礎(chǔ)上,我確定本節(jié)的教學(xué)重點(diǎn)、難點(diǎn)、關(guān)鍵如下:

勾股定理的證明和簡單應(yīng)用是本節(jié)的重點(diǎn),用拼圖的方法證明勾股定理是難點(diǎn),而解決難點(diǎn)的關(guān)鍵是充分利用圖形面積的各種表示方法構(gòu)造恒等式。

為了講清重點(diǎn)、突破難點(diǎn)、抓住關(guān)鍵,使學(xué)生達(dá)到預(yù)定目標(biāo),我對教法和學(xué)法分析如下:

新課程標(biāo)準(zhǔn)強(qiáng)調(diào)要從學(xué)生已有的經(jīng)驗(yàn)出發(fā),最大限度的激發(fā)學(xué)生學(xué)習(xí)積極性,新課程下的數(shù)學(xué)教師更應(yīng)是學(xué)生學(xué)習(xí)活動(dòng)的組織者、引導(dǎo)者、合作者,因此,鑒于教材的重點(diǎn)和初二學(xué)生的認(rèn)知水平,我以學(xué)生充分預(yù)習(xí)為前提,以學(xué)生的動(dòng)手操作、講解為中心,讓學(xué)生親歷親為,體會(huì)做數(shù)學(xué)的過程,激發(fā)學(xué)生的探索興趣,使課堂活躍起來,提高課堂效率。運(yùn)用觀察法、歸納法、引導(dǎo)發(fā)現(xiàn)法、討論法等多種教學(xué)方法相結(jié)合的形式,讓學(xué)生充分展示預(yù)習(xí)成果,體驗(yàn)成功的快樂,為終身學(xué)習(xí)和發(fā)展打下堅(jiān)實(shí)的基礎(chǔ)。為了增大課堂容量、給學(xué)生創(chuàng)設(shè)高效的數(shù)學(xué)課堂,給學(xué)生提供足夠從事數(shù)學(xué)活動(dòng)的時(shí)間,以導(dǎo)學(xué)案的形式、運(yùn)用多媒體輔助教學(xué)。

學(xué)法是學(xué)生再生知識(shí)的法寶,為了把學(xué)生學(xué)習(xí)過程當(dāng)作認(rèn)知事物的過程來解決,教學(xué)中我首先引導(dǎo)學(xué)生先動(dòng)手操作,再合作交流,培養(yǎng)學(xué)生良好的學(xué)習(xí)品質(zhì)和與人合作的能力;接下來,我讓學(xué)生獨(dú)立思考,點(diǎn)撥學(xué)生用特殊到一般的思想大膽償試,水到渠成的突出勾股定理的探索這一重點(diǎn),然后通過學(xué)生展示成果讓學(xué)生抓住用不同的方式拼出圖形,從而用不同的方式表示圖形面積建立恒等式這一關(guān)健,以自己拼圖操作、講解展示預(yù)習(xí)成果突破定理證明這一難點(diǎn),指導(dǎo)學(xué)生嚴(yán)謹(jǐn)、合理的書寫格式,培養(yǎng)學(xué)生的邏輯思維能力和語言表達(dá)能力。

為了充分調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性,創(chuàng)設(shè)優(yōu)化高效的數(shù)學(xué)課堂,我以導(dǎo)學(xué)案的方式循序見進(jìn)的設(shè)計(jì)教學(xué)流程。

1、勾股定理的探究:讓學(xué)生歷經(jīng)量一量、算一算、想一想的由特殊到一般的數(shù)學(xué)思想引導(dǎo)好學(xué)生課前預(yù)習(xí),再以檢查預(yù)習(xí)成果的形式為新知的探究作好鋪墊。

2、勾股定理的證明:以學(xué)生拼圖展示、講解預(yù)習(xí)成果的形式完成對定理的證明。

3、勾股定理的應(yīng)用:以課堂練習(xí)、學(xué)生個(gè)性補(bǔ)充和老師適當(dāng)?shù)膫€(gè)性化追加的形式實(shí)現(xiàn)對定理的靈活應(yīng)用。

4、學(xué)后反思:以學(xué)生小結(jié)的形式引導(dǎo)學(xué)生從知識(shí)、情感兩方面實(shí)現(xiàn)對本節(jié)內(nèi)容的鞏固與升華。

為了給學(xué)生營造一個(gè)和諧、民主、平等而高效的數(shù)學(xué)課堂,我以新課程標(biāo)準(zhǔn)的基本理念和總體目標(biāo)為指導(dǎo)思想,面向全體學(xué)生,選擇適當(dāng)?shù)钠瘘c(diǎn)和方法,充分發(fā)揮學(xué)生的主體地位與教師主導(dǎo)作用相統(tǒng)一的原則。教學(xué)中注重學(xué)生的動(dòng)手操作能力的培養(yǎng),化繁為簡,化抽象為直觀。例如我以展示預(yù)習(xí)成果為主線,以學(xué)生動(dòng)手操作、講解等直觀方式代替老師畫圖、剪圖、講評(píng)費(fèi)時(shí)費(fèi)力的方式,既讓每個(gè)學(xué)生都能積極的參與進(jìn)來,培養(yǎng)學(xué)生的語言表達(dá)能力、邏輯推理能力,又達(dá)到了直觀高效的效果。

教學(xué)中我注重人文環(huán)境的創(chuàng)設(shè),使數(shù)學(xué)課堂充滿親切、民主的氣氛,例如整節(jié)課我以學(xué)生的操作、展示、講解、個(gè)性補(bǔ)充為主,拉近了數(shù)學(xué)與學(xué)生的距離,激發(fā)了學(xué)生的學(xué)習(xí)興趣;為了使不同的學(xué)生得到不同的發(fā)展,人人學(xué)有價(jià)值的數(shù)學(xué),在教學(xué)中我創(chuàng)造性的使用教材,在不改變例題的本意為前提,創(chuàng)設(shè)身邊暖房工程為情境,體現(xiàn)數(shù)學(xué)的生活化;以一題多變、中考題改編等形式進(jìn)行練習(xí)題的層層深入,體現(xiàn)數(shù)學(xué)的變化美。

以學(xué)生個(gè)性補(bǔ)充的形式促進(jìn)課堂新的生成,最大限度的培養(yǎng)學(xué)生創(chuàng)新思維,使不同的人在數(shù)學(xué)上有不同的發(fā)展。本節(jié)課既做到了課程的開放,為充分發(fā)揮學(xué)生聰明智慧和創(chuàng)造性的思維提供了空間,又創(chuàng)設(shè)了具有獨(dú)特教學(xué)風(fēng)格的作文式數(shù)學(xué)課堂。而多媒體教學(xué)的引入更為學(xué)生提供了廣闊的思考空間和時(shí)間;同時(shí),我注重對學(xué)生進(jìn)行數(shù)學(xué)文化的薰陶和數(shù)學(xué)思想的滲透,注重美育、德育與教育的三統(tǒng)一,如小結(jié)時(shí)由“勾股樹”到“智慧樹”的希望寄語。

勾股定理的說課篇十二

尊敬的各位考官:

大家好,我是x號(hào)考生,今天我說課的題目是《勾股定理的逆定理》。

新課標(biāo)指出:數(shù)學(xué)課程要面向全體學(xué)生,適應(yīng)學(xué)生個(gè)性發(fā)展的需要,使得人人都能獲得良好的數(shù)學(xué)教育,不同的人在數(shù)學(xué)上都能得到不同的發(fā)展。今天我將貫徹這一理念從教材分析、學(xué)情分析、教學(xué)過程等幾個(gè)方面展開我的說課。

首先來談一談我對教材的理解。

本節(jié)課選自人教版初中數(shù)學(xué)八年級(jí)下冊第十七章第二節(jié)《勾股定理的逆定理》,它是在學(xué)生掌握勾股定理及一般三角形性質(zhì)的基礎(chǔ)上進(jìn)行教學(xué)的。應(yīng)用前面學(xué)習(xí)的勾股定理及三角形全等證明逆定理是本節(jié)課的關(guān)鍵步驟,同時(shí)本節(jié)課又豐富了三角形的性質(zhì),是后面幾何問題的基礎(chǔ)理論性知識(shí)。

接下來談?wù)剬W(xué)生的實(shí)際情況。本階段的學(xué)生已經(jīng)掌握了一定的基礎(chǔ)知識(shí),處于由幾何內(nèi)容的初級(jí)向高級(jí)行進(jìn)的過程。他們的幾何思維正在逐步形成和發(fā)展,對幾何題目具有一定的分析、想象、概括能力,具有對未知事物的新鮮感和探求欲。同時(shí)也要注意到學(xué)生能力的不成熟,教學(xué)中鼓勵(lì)與引導(dǎo)并重。

根據(jù)以上對教材的分析以及對學(xué)情的把握,我制定了如下教學(xué)目標(biāo):

(一)知識(shí)與技能。

理解并掌握勾股定理的逆定理,會(huì)應(yīng)用定理判定直角三角形;理解勾股定理與勾股定理逆定理的區(qū)別與聯(lián)系;理解原命題和逆命題的概念,知道二者的關(guān)系及二者真假性的關(guān)系。

(二)過程與方法。

經(jīng)歷得出猜想、推理證明的過程,提升自主探究、分析問題、解決問題的能力。

(三)情感、態(tài)度與價(jià)值觀。

體會(huì)事物之間的聯(lián)系,感受幾何的魅力。

在教學(xué)目標(biāo)的實(shí)現(xiàn)過程中,教學(xué)重點(diǎn)是勾股定理的逆定理及其證明,教學(xué)難點(diǎn)是勾股定理的逆定理的證明。

為了突破重點(diǎn),解決難點(diǎn),順利達(dá)成教學(xué)目標(biāo),教學(xué)中我將主要采用小組討論、自主探究的教學(xué)方法,輔以適量的教師講解和引導(dǎo),把課堂還給學(xué)生。

下面我將重點(diǎn)談?wù)勎覍虒W(xué)過程的設(shè)計(jì)。

(一)導(dǎo)入新課。

課堂伊始,我采用復(fù)習(xí)舊知與創(chuàng)設(shè)情境相結(jié)合的導(dǎo)入方式。首先我會(huì)帶領(lǐng)學(xué)生復(fù)習(xí)勾股定理并明確其題設(shè)和結(jié)論,為后面提出逆命題、逆定理做鋪墊。接著提問學(xué)生如何畫直角三角形,學(xué)生很容易想到用三角尺或量角器。此時(shí)我會(huì)要求學(xué)生不能用繩子以外的工具,借助學(xué)生的困惑,給出古埃及人利用等長的3、4、5個(gè)繩結(jié)間距畫直角三角形的情境。以古埃及人所用方法中蘊(yùn)含何道理為切入點(diǎn)引出課題。

通過這樣的導(dǎo)入方式,能夠帶領(lǐng)學(xué)生回顧上節(jié)課的內(nèi)容,為本節(jié)課奠定好基礎(chǔ),同時(shí)用情境激發(fā)學(xué)生的好奇心和求知欲,更好地展開教學(xué)。

(二)講解新知。

接下來是最重要的新授環(huán)節(jié)。

請學(xué)生思考3,4,5之間的關(guān)系,結(jié)合勾股定理的學(xué)習(xí)經(jīng)驗(yàn)明確。

出示數(shù)據(jù)2.5cm,6cm,6.5cm,請學(xué)生計(jì)算驗(yàn)證數(shù)據(jù)滿足上述平方和關(guān)系,并畫出相應(yīng)邊長的三角形檢驗(yàn)是否為直角三角形。

學(xué)生活動(dòng):同桌兩人一組,將三邊換成其他滿足上述平方和關(guān)系的數(shù)據(jù),如4cm,7.5cm,8.5cm,畫出相應(yīng)邊長的三角形檢驗(yàn)是否為直角三角形。

在得到肯定結(jié)論后,引導(dǎo)學(xué)生基于以上例子大膽猜想得出命題。

勾股定理的說課篇十三

今天我說課的題目是《勾股定理的逆定理》。

新課標(biāo)指出:數(shù)學(xué)課程要面向全體學(xué)生,適應(yīng)學(xué)生個(gè)性發(fā)展的需要,使得人人都能獲得良好的數(shù)學(xué)教育,不同的人在數(shù)學(xué)上都能得到不同的發(fā)展。今天我將貫徹這一理念從教材分析、學(xué)情分析、教學(xué)過程等幾個(gè)方面展開我的說課。

首先來談一談我對教材的理解。

本節(jié)課選自人教版初中數(shù)學(xué)八年級(jí)下冊第十七章第二節(jié)《勾股定理的逆定理》,它是在學(xué)生掌握勾股定理及一般三角形性質(zhì)的基礎(chǔ)上進(jìn)行教學(xué)的。應(yīng)用前面學(xué)習(xí)的勾股定理及三角形全等證明逆定理是本節(jié)課的關(guān)鍵步驟,同時(shí)本節(jié)課又豐富了三角形的性質(zhì),是后面幾何問題的基礎(chǔ)理論性知識(shí)。

接下來談?wù)剬W(xué)生的實(shí)際情況。本階段的學(xué)生已經(jīng)掌握了一定的基礎(chǔ)知識(shí),處于由幾何內(nèi)容的初級(jí)向高級(jí)行進(jìn)的過程。他們的幾何思維正在逐步形成和發(fā)展,對幾何題目具有一定的分析、想象、概括能力,具有對未知事物的新鮮感和探求欲。同時(shí)也要注意到學(xué)生能力的不成熟,教學(xué)中鼓勵(lì)與引導(dǎo)并重。

根據(jù)以上對教材的分析以及對學(xué)情的把握,我制定了如下教學(xué)目標(biāo):

(一)知識(shí)與技能。

理解并掌握勾股定理的逆定理,會(huì)應(yīng)用定理判定直角三角形;理解勾股定理與勾股定理逆定理的區(qū)別與聯(lián)系;理解原命題和逆命題的概念,知道二者的關(guān)系及二者真假性的關(guān)系。

(二)過程與方法。

經(jīng)歷得出猜想、推理證明的過程,提升自主探究、分析問題、解決問題的能力。

(三)情感、態(tài)度與價(jià)值觀。

體會(huì)事物之間的聯(lián)系,感受幾何的魅力。

在教學(xué)目標(biāo)的實(shí)現(xiàn)過程中,教學(xué)重點(diǎn)是勾股定理的逆定理及其證明,教學(xué)難點(diǎn)是勾股定理的逆定理的證明。

為了突破重點(diǎn),解決難點(diǎn),順利達(dá)成教學(xué)目標(biāo),教學(xué)中我將主要采用小組討論、自主探究的教學(xué)方法,輔以適量的教師講解和引導(dǎo),把課堂還給學(xué)生。

下面我將重點(diǎn)談?wù)勎覍虒W(xué)過程的設(shè)計(jì)。

(一)導(dǎo)入新課。

課堂伊始,我采用復(fù)習(xí)舊知與創(chuàng)設(shè)情境相結(jié)合的導(dǎo)入方式。首先我會(huì)帶領(lǐng)學(xué)生復(fù)習(xí)勾股定理并明確其題設(shè)和結(jié)論,為后面提出逆命題、逆定理做鋪墊。接著提問學(xué)生如何畫直角三角形,學(xué)生很容易想到用三角尺或量角器。此時(shí)我會(huì)要求學(xué)生不能用繩子以外的工具,借助學(xué)生的困惑,給出古埃及人利用等長的3、4、5個(gè)繩結(jié)間距畫直角三角形的情境。以古埃及人所用方法中蘊(yùn)含何道理為切入點(diǎn)引出課題。

通過這樣的導(dǎo)入方式,能夠帶領(lǐng)學(xué)生回顧上節(jié)課的內(nèi)容,為本節(jié)課奠定好基礎(chǔ),同時(shí)用情境激發(fā)學(xué)生的好奇心和求知欲,更好地展開教學(xué)。

(二)講解新知。

接下來是最重要的新授環(huán)節(jié)。

請學(xué)生思考3,4,5之間的關(guān)系,結(jié)合勾股定理的學(xué)習(xí)經(jīng)驗(yàn)明確。

出示數(shù)據(jù)2.5cm,6cm,6.5cm,請學(xué)生計(jì)算驗(yàn)證數(shù)據(jù)滿足上述平方和關(guān)系,并畫出相應(yīng)邊長的三角形檢驗(yàn)是否為直角三角形。

學(xué)生活動(dòng):同桌兩人一組,將三邊換成其他滿足上述平方和關(guān)系的數(shù)據(jù),如4cm,7.5cm,8.5cm,畫出相應(yīng)邊長的三角形檢驗(yàn)是否為直角三角形。

在得到肯定結(jié)論后,引導(dǎo)學(xué)生基于以上例子大膽猜想得出命題。

勾股定理的說課篇十四

勾股定理就是學(xué)生在已經(jīng)掌握了直角三角形的有關(guān)性質(zhì)的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,它就是直角三角形的一條非常重要的性質(zhì),是幾何中最重要的定理之一,它揭示了一個(gè)三角形三條邊之間的數(shù)量關(guān)系,它可以解決直角三角形中的計(jì)算問題,這就是解直角三角形的主要根據(jù)之一,在實(shí)際生活中用途很大。教材在編寫時(shí)注意培養(yǎng)學(xué)生的動(dòng)手操作能力和分析問題的能力,通過實(shí)際分析、拼圖等活動(dòng),使學(xué)生獲得較為直觀的印象;通過聯(lián)系和比較,理解勾股定理,以利于正確的進(jìn)行運(yùn)用。

據(jù)此,制定教學(xué)目標(biāo)如下:

1、理解并掌握勾股定理及其證明。

2、能夠靈活地運(yùn)用勾股定理及其計(jì)算。

3、培養(yǎng)學(xué)生觀察、比較、分析、推理的能力。

4、通過介紹中國古代勾股方面的成就,激發(fā)學(xué)生熱愛祖國與熱愛祖國悠久文化的思想感情,培養(yǎng)他們的民族自豪感和鉆研精神。

教學(xué)重點(diǎn):勾股定理的證明和應(yīng)用。

教學(xué)難點(diǎn):勾股定理的證明。

教法和學(xué)法就是體現(xiàn)在整個(gè)教學(xué)過程中的,本課的教法和學(xué)法體現(xiàn)如下特點(diǎn):

1、以自學(xué)輔導(dǎo)為主,充分發(fā)揮教師的主導(dǎo)作用,運(yùn)用各種手段激發(fā)學(xué)生學(xué)習(xí)欲望和興趣,組織學(xué)生活動(dòng),讓學(xué)生主動(dòng)參與學(xué)習(xí)全過程。

2、切實(shí)體現(xiàn)學(xué)生的主體地位,讓學(xué)生通過觀察、分析、討論、操作、歸納,理解定理,提高學(xué)生動(dòng)手操作能力,以及分析問題和解決問題的能力。

3、通過演示實(shí)物,要引導(dǎo)學(xué)生觀察、操作、分析、證明,使學(xué)生得到獲得新知的成功感受,從而激發(fā)學(xué)生鉆研新知的欲望。

本節(jié)內(nèi)容的教學(xué)主要體現(xiàn)在學(xué)生動(dòng)手、動(dòng)腦方面,根據(jù)學(xué)生的認(rèn)知規(guī)律和學(xué)習(xí)心理,教學(xué)程序設(shè)計(jì)如下:

1、由故事引入,3000多年前有個(gè)叫商高的人對周公說,把一根直尺折成直角,兩端連接得到一個(gè)直角三角形,如果勾是3,股是4,那么弦等于5。這樣引起學(xué)生學(xué)習(xí)興趣,激發(fā)學(xué)生求知欲。

2、是不是所有的直角三角形都有這個(gè)性質(zhì)呢?教師要善于激疑,使學(xué)生進(jìn)入樂學(xué)狀態(tài)。

3、板書課題,出示學(xué)習(xí)目標(biāo)。

教師是指導(dǎo)學(xué)生自學(xué)教材,通過自學(xué)感悟理解新知,這也體現(xiàn)了學(xué)生的自主學(xué)習(xí)意識(shí),鍛煉學(xué)生主動(dòng)探究知識(shí),養(yǎng)成良好的自學(xué)習(xí)慣。

1、教師設(shè)疑或?qū)W生提疑。如:怎樣證明勾股定理?學(xué)生通過自學(xué),中等以上的學(xué)生基本掌握,這時(shí)能激發(fā)學(xué)生的表現(xiàn)欲。

2、教師引導(dǎo)學(xué)生按照要求進(jìn)行拼圖,觀察并分析;

(1)這兩個(gè)圖形有什么特點(diǎn)呢?

(2)你能寫出這兩個(gè)圖形的面積嗎?

(3)如何運(yùn)用勾股定理?是否還有其他形式?

這時(shí)教師組織學(xué)生分組討論,調(diào)動(dòng)全體學(xué)生的積極性,達(dá)到人人參與的效果,接著全班交流。先有某一組代表發(fā)言,說明本組對問題的理解程度,其他各組作評(píng)價(jià)和補(bǔ)充。教師及時(shí)進(jìn)行富有啟發(fā)性的點(diǎn)撥,最后,師生共同歸納,形成一致意見,最終解決疑難。

1、出示練習(xí),學(xué)生分組來解答,并由學(xué)生總結(jié)解題規(guī)律。課堂教學(xué)中動(dòng)靜結(jié)合,以免引起學(xué)生的疲勞。

2、出示例1學(xué)生試解,師生共同評(píng)價(jià),以加深對例題的理解與運(yùn)用。針對例題再次出現(xiàn)鞏固練習(xí),進(jìn)一步提高學(xué)生運(yùn)用知識(shí)的能力,對練習(xí)中出現(xiàn)的情況可采取互評(píng)、互議的形式,在互評(píng)互議中出現(xiàn)的具有代表性的問題,教師可以采取全班討論的形式予以解決,以此突出教學(xué)重點(diǎn)。

引導(dǎo)學(xué)生對知識(shí)要點(diǎn)進(jìn)行總結(jié),梳理學(xué)習(xí)思路。分發(fā)自我反饋練習(xí),學(xué)生獨(dú)立完成。

本課意在創(chuàng)設(shè)愉悅和諧的樂學(xué)氣氛,優(yōu)化教學(xué)手段,借助電教手段提高課堂教學(xué)效率,建立平等、民主、和諧的師生關(guān)系。加強(qiáng)師生間的合作,營造一種學(xué)生敢想、感說、感問的課堂氣氛,讓全體學(xué)生都能生動(dòng)活潑、積極主動(dòng)地教學(xué)活動(dòng),在學(xué)習(xí)中創(chuàng)新精神和實(shí)踐能力得到培養(yǎng)。

勾股定理的說課篇十五

勾股定理就是學(xué)生在已經(jīng)掌握了直角三角形的有關(guān)性質(zhì)的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,它就是直角三角形的一條非常重要的性質(zhì),就是幾何中最重要的定理之一,它揭示了一個(gè)三角形三條邊之間的數(shù)量關(guān)系,它可以解決直角三角形中的計(jì)算問題,就是解直角三角形的主要根據(jù)之一,在實(shí)際生活中用途很大。教材在編寫時(shí)注意培養(yǎng)學(xué)生的動(dòng)手操作能力和分析問題的能力,通過實(shí)際分析、拼圖等活動(dòng),使學(xué)生獲得較為直觀的印象;通過聯(lián)系和比較,理解勾股定理,以利于正確的進(jìn)行運(yùn)用。據(jù)此,制定教學(xué)目標(biāo)如下:

1、理解并掌握勾股定理及其證明。2、能夠靈活地運(yùn)用勾股定理及其計(jì)算。3、培養(yǎng)學(xué)生觀察、比較、分析、推理的能力。

4、通過介紹中國古代勾股方面的成就,激發(fā)學(xué)生熱愛祖國與熱愛祖國悠久文化的思想感情,培養(yǎng)他們的民族自豪感和鉆研精神。

教學(xué)重點(diǎn):勾股定理的證明和應(yīng)用。教學(xué)難點(diǎn):勾股定理的證明。

教法和學(xué)法就是體現(xiàn)在整個(gè)教學(xué)過程中的,本課的教法和學(xué)法體現(xiàn)如下特點(diǎn):

1、以自學(xué)輔導(dǎo)為主,充分發(fā)揮教師的主導(dǎo)作用,運(yùn)用各種手段激發(fā)學(xué)生學(xué)習(xí)欲望和興趣,組織學(xué)生活動(dòng),讓學(xué)生主動(dòng)參與學(xué)習(xí)全過程。

2、切實(shí)體現(xiàn)學(xué)生的主體地位,讓學(xué)生通過觀察、分析、討論、操作、歸納,理解定理,提高學(xué)生動(dòng)手操作能力,以及分析問題和解決問題的能力。

本節(jié)內(nèi)容的教學(xué)主要體現(xiàn)在學(xué)生動(dòng)手、動(dòng)腦方面,根據(jù)學(xué)生的認(rèn)知規(guī)律和學(xué)習(xí)心理,教學(xué)程序設(shè)計(jì)如下:

(一)創(chuàng)設(shè)情境以古引新。

1、由故事引入,3000多年前有個(gè)叫商高的人對周公說,把一根直尺折成直角,兩端連接得到一個(gè)直角三角形,如果勾就是3,股就是4,那么弦等于5。這樣引起學(xué)生學(xué)習(xí)興趣,激發(fā)學(xué)生求知欲。

2、就是不就是所有的直角三角形都有這個(gè)性質(zhì)呢?教師要善于激疑,使學(xué)生進(jìn)入樂學(xué)狀態(tài)。

3、板書課題,出示學(xué)習(xí)目標(biāo)。

(二)初步感知理解教材。

教師指導(dǎo)學(xué)生自學(xué)教材,通過自學(xué)感悟理解新知,體現(xiàn)了學(xué)生的自主學(xué)習(xí)意識(shí),鍛煉學(xué)生主動(dòng)探究知識(shí),養(yǎng)成良好的自學(xué)習(xí)慣。

(三)質(zhì)疑解難討論歸納。

1、教師設(shè)疑或?qū)W生提疑。如:怎樣證明勾股定理?學(xué)生通過自學(xué),中等以上的.學(xué)生基本掌握,這時(shí)能激發(fā)學(xué)生的表現(xiàn)欲。

2、教師引導(dǎo)學(xué)生按照要求進(jìn)行拼圖,觀察并分析;

(1)這兩個(gè)圖形有什么特點(diǎn)?

(2)你能寫出這兩個(gè)圖形的面積嗎?

(3)如何運(yùn)用勾股定理?就是否還有其他形式?這時(shí)教師組織學(xué)生分組討論,調(diào)動(dòng)全體學(xué)生的積極性,達(dá)到人人參與的效果,接著全班交流。先有某一組代表發(fā)言,說明本組對問題的理解程度,其他各組作評(píng)價(jià)和補(bǔ)充。教師及時(shí)進(jìn)行富有啟發(fā)性的點(diǎn)撥,最后,師生共同歸納,形成一致意見,最終解決疑難。

(四)鞏固練習(xí)強(qiáng)化提高。

1、出示練習(xí),學(xué)生分組解答,并由學(xué)生總結(jié)解題規(guī)律。課堂教學(xué)中動(dòng)靜結(jié)合,以免引起學(xué)生的疲勞。

2、出示例1學(xué)生試解,師生共同評(píng)價(jià),以加深對例題的理解與運(yùn)用。針對例題再次出現(xiàn)鞏固練習(xí),進(jìn)一步提高學(xué)生運(yùn)用知識(shí)的能力,對練習(xí)中出現(xiàn)的情況可采取互評(píng)、互議的形式,在互評(píng)互議中出現(xiàn)的具有代表性的問題,教師可以采取全班討論的形式予以解決,以此突出教學(xué)重點(diǎn)。

(五)歸納總結(jié)練習(xí)反饋。

引導(dǎo)學(xué)生對知識(shí)要點(diǎn)進(jìn)行總結(jié),梳理學(xué)習(xí)思路。分發(fā)自我反饋練習(xí),學(xué)生獨(dú)立完成。

本課意在創(chuàng)設(shè)愉悅和諧的樂學(xué)氣氛,優(yōu)化教學(xué)手段,借助電教手段提高課堂教學(xué)效率,建立平等、民主、和諧的師生關(guān)系。加強(qiáng)師生間的合作,營造一種學(xué)生敢想、感說、感問的課堂氣氛,讓全體學(xué)生都能生動(dòng)活潑、積極主動(dòng)地教學(xué)活動(dòng),在學(xué)習(xí)中創(chuàng)新精神和實(shí)踐能力得到培養(yǎng)。

勾股定理的說課篇十六

勾股定理是學(xué)生在已經(jīng)掌握了直角三角形的有關(guān)性質(zhì)的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,它是直角三角形的一條非常重要的性質(zhì),是幾何中最重要的定理之一。它揭示了一個(gè)三角形三條邊之間的數(shù)量關(guān)系,它可以解決直角三角形中的計(jì)算問題,是解直角三角形的主要根據(jù)之一。在實(shí)際生活中用途很大,教材在編寫時(shí)注意培養(yǎng)學(xué)生的動(dòng)手操作能力和分析問題的能力,通過實(shí)際分析、拼圖等活動(dòng),讓學(xué)生獲得較為直觀的印象;通過聯(lián)系和比較,理解勾股定理,以利于正確的進(jìn)行運(yùn)用。

據(jù)此,制定教學(xué)目標(biāo)如下:

2、能夠靈活地運(yùn)用勾股定理及其計(jì)算。

3、培養(yǎng)學(xué)生觀察、比較、分析、推理的能力。

4、通過介紹中國古代勾股方面的成就,激發(fā)學(xué)生熱愛祖國與熱愛祖國悠久文化的思想感情,培養(yǎng)他們的民族自豪感和鉆研精神。

教法和學(xué)法是體現(xiàn)在整個(gè)教學(xué)過程中的,本課的教法和學(xué)法體現(xiàn)如下特點(diǎn):

1、以自學(xué)輔導(dǎo)為主,充分發(fā)揮教師的主導(dǎo)作用;運(yùn)用各種手段激發(fā)學(xué)生學(xué)習(xí)欲望和興趣,組織學(xué)生活動(dòng),讓學(xué)生主動(dòng)參與學(xué)習(xí)全過程。

2、切實(shí)體現(xiàn)學(xué)生的主體地位,讓學(xué)生通過觀察、分析、討論、操作、歸納,理解定理。提高學(xué)生動(dòng)手操作能力,以及分析問題和解決問題的能力。

3、通過演示實(shí)物,引導(dǎo)學(xué)生觀察、操作、分析、證明,使學(xué)生得到獲得新知的成功感受,從而激發(fā)學(xué)生鉆研新知的欲望。

本節(jié)內(nèi)容的教學(xué)主要體現(xiàn)在學(xué)生動(dòng)手、動(dòng)腦方面,根據(jù)學(xué)生的認(rèn)知規(guī)律和學(xué)習(xí)心理,教學(xué)程序設(shè)計(jì)如下:

(一)創(chuàng)設(shè)情境以古引新。

1、由故事引入,3000多年前有個(gè)叫商高的人對周公說,把一根直尺折成直角,兩端連接得到一個(gè)直角三角形,如果勾是3,股是4,那么弦等于5。這樣引起學(xué)生學(xué)習(xí)興趣,激發(fā)學(xué)生求知欲。

2、是不是所有的直角三角形都有這個(gè)性質(zhì)呢?教師要善于激疑,使學(xué)生進(jìn)入樂學(xué)狀態(tài)。

3、板書課題,出示學(xué)習(xí)目標(biāo)。

(二)初步感知理解教材。

教師指導(dǎo)學(xué)生自學(xué)教材,通過自學(xué)感悟理解新知,體現(xiàn)了學(xué)生的自主學(xué)習(xí)意識(shí),鍛煉學(xué)生主動(dòng)探究知識(shí),養(yǎng)成良好的自學(xué)習(xí)慣。

(三)質(zhì)疑解難討論歸納。

1、教師設(shè)疑或?qū)W生提疑。如:怎樣證明勾股定理?學(xué)生通過自學(xué),中等以上的學(xué)生基本掌握,這時(shí)能激發(fā)學(xué)生的表現(xiàn)欲。

2、教師引導(dǎo)學(xué)生按照要求進(jìn)行拼圖,觀察并分析;

(1)這兩個(gè)圖形有什么特點(diǎn)?

(2)你能寫出這兩個(gè)圖形的面積嗎?

(3)如何運(yùn)用勾股定理?是否還有其他形式?

這時(shí)教師組織學(xué)生分組討論,調(diào)動(dòng)全體學(xué)生的積極性,達(dá)到人人參與的效果,接著全班交流。先有某一組代表發(fā)言,說明本組對問題的理解程度,其他各組作評(píng)價(jià)和補(bǔ)充。教師及時(shí)進(jìn)行富有啟發(fā)性的點(diǎn)撥,最后,師生共同歸納,形成一致意見,最終解決疑難。

(四)鞏固練習(xí)強(qiáng)化提高。

1、出示練習(xí),學(xué)生分組解答,并由學(xué)生總結(jié)解題規(guī)律。課堂教學(xué)中動(dòng)靜結(jié)合,以免引起學(xué)生的疲勞。

2、出示例1學(xué)生試解,師生共同評(píng)價(jià),以加深對例題的理解與運(yùn)用。針對例題再次出現(xiàn)鞏固練習(xí),進(jìn)一步提高學(xué)生運(yùn)用知識(shí)的能力,對練習(xí)中出現(xiàn)的情況可采取互評(píng)、互議的形式,在互評(píng)互議中出現(xiàn)的具有代表性的問題,教師可以采取全班討論的形式予以解決,以此突出教學(xué)重點(diǎn)。

(五)歸納總結(jié)練習(xí)反饋。

引導(dǎo)學(xué)生對知識(shí)要點(diǎn)進(jìn)行總結(jié),梳理學(xué)習(xí)思路。分發(fā)自我反饋練習(xí),學(xué)生獨(dú)立完成。

本課意在創(chuàng)設(shè)愉悅和諧的樂學(xué)氣氛,優(yōu)化教學(xué)手段,借助電教手段提高課堂教學(xué)效率,建立平等、民主、和諧的師生關(guān)系。加強(qiáng)師生間的合作,營造一種學(xué)生敢想、感說、感問的課堂氣氛,讓全體學(xué)生都能生動(dòng)活潑、積極主動(dòng)地教學(xué)活動(dòng),在學(xué)習(xí)中創(chuàng)新精神和實(shí)踐能力得到培養(yǎng)。

勾股定理的說課篇十七

如果說數(shù)學(xué)思想是解決數(shù)學(xué)問題的一首經(jīng)典老歌,那么本節(jié)課蘊(yùn)含的由特殊到一般的思想、數(shù)學(xué)建模的思想、轉(zhuǎn)化的思想就是歌中最為活躍的音符!本節(jié)的內(nèi)容是在學(xué)習(xí)了二次根式之后的教學(xué),是在學(xué)生已經(jīng)掌握了直角三角形的有關(guān)性質(zhì)的基礎(chǔ)上進(jìn)行的后繼學(xué)習(xí),是中學(xué)數(shù)學(xué)幾個(gè)重要定理之一。它揭示了直角三角形三條邊之間的數(shù)量關(guān)系,是解直角三角形的主要根據(jù)之一,是解決四邊形、圓等知識(shí)的靈魂,在實(shí)際生活中有著極其廣泛的應(yīng)用。

勾股定理的發(fā)現(xiàn)、驗(yàn)證和應(yīng)用蘊(yùn)含著豐富的文化價(jià)值,在理論上占有重要地位,因此本節(jié)在教材中起著承前啟后的橋梁作用。

新課標(biāo)下的數(shù)學(xué)教學(xué)不僅是知識(shí)的教學(xué),更應(yīng)注重能力的培養(yǎng)及情感的教育,因此,根據(jù)本節(jié)在教學(xué)中的地位和作用,結(jié)合初二學(xué)生不愛表現(xiàn)、好靜不好動(dòng)的特點(diǎn),我確定本節(jié)教學(xué)目標(biāo)如下:

1、探索并利用拼圖證明勾股定理。

2、利用勾股定理解決簡單的數(shù)學(xué)問題。

3、感受數(shù)學(xué)文化,體會(huì)解決問題方法的多樣性和數(shù)形結(jié)合的思想。

本著課標(biāo)的要求,在吃透教材的基礎(chǔ)上,我確定本節(jié)的教學(xué)重點(diǎn)、難點(diǎn)、關(guān)鍵如下:

勾股定理的證明和簡單應(yīng)用是本節(jié)的重點(diǎn),用拼圖的方法證明勾股定理是難點(diǎn),而解決難點(diǎn)的關(guān)鍵是充分利用圖形面積的各種表示方法構(gòu)造恒等式。

為了講清重點(diǎn)、突破難點(diǎn)、抓住關(guān)鍵,使學(xué)生達(dá)到預(yù)定目標(biāo),我對教法和學(xué)法分析如下:

新課程標(biāo)準(zhǔn)強(qiáng)調(diào)要從學(xué)生已有的經(jīng)驗(yàn)出發(fā),最大限度的激發(fā)學(xué)生學(xué)習(xí)積極性,新課程下的數(shù)學(xué)教師更應(yīng)是學(xué)生學(xué)習(xí)活動(dòng)的組織者、引導(dǎo)者、合作者,因此,鑒于教材的重點(diǎn)和初二學(xué)生的認(rèn)知水平,我以學(xué)生充分預(yù)習(xí)為前提,以學(xué)生的動(dòng)手操作、講解為中心,讓學(xué)生親歷親為,體會(huì)做數(shù)學(xué)的過程,激發(fā)學(xué)生的探索興趣,使課堂活躍起來,提高課堂效率。運(yùn)用觀察法、歸納法、引導(dǎo)發(fā)現(xiàn)法、討論法等多種教學(xué)方法相結(jié)合的形式,讓學(xué)生充分展示預(yù)習(xí)成果,體驗(yàn)成功的快樂,為終身學(xué)習(xí)和發(fā)展打下堅(jiān)實(shí)的基礎(chǔ)。為了增大課堂容量、給學(xué)生創(chuàng)設(shè)高效的數(shù)學(xué)課堂,給學(xué)生提供足夠從事數(shù)學(xué)活動(dòng)的時(shí)間,以導(dǎo)學(xué)案的形式、運(yùn)用多媒體輔助教學(xué)。

學(xué)法是學(xué)生再生知識(shí)的法寶,為了把學(xué)生學(xué)習(xí)過程當(dāng)作認(rèn)知事物的過程來解決,教學(xué)中我首先引導(dǎo)學(xué)生先動(dòng)手操作,再合作交流,培養(yǎng)學(xué)生良好的學(xué)習(xí)品質(zhì)和與人合作的能力;接下來,我讓學(xué)生獨(dú)立思考,點(diǎn)撥學(xué)生用特殊到一般的思想大膽償試,水到渠成的突出勾股定理的探索這一重點(diǎn),然后通過學(xué)生展示成果讓學(xué)生抓住用不同的方式拼出圖形,從而用不同的方式表示圖形面積建立恒等式這一關(guān)健,以自己拼圖操作、講解展示預(yù)習(xí)成果突破定理證明這一難點(diǎn),指導(dǎo)學(xué)生嚴(yán)謹(jǐn)、合理的書寫格式,培養(yǎng)學(xué)生的邏輯思維能力和語言表達(dá)能力。

為了充分調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性,創(chuàng)設(shè)優(yōu)化高效的數(shù)學(xué)課堂,我以導(dǎo)學(xué)案的方式循序見進(jìn)的設(shè)計(jì)教學(xué)流程。

1、勾股定理的探究:讓學(xué)生歷經(jīng)量一量、算一算、想一想的由特殊到一般的數(shù)學(xué)思想引導(dǎo)好學(xué)生課前預(yù)習(xí),再以檢查預(yù)習(xí)成果的形式為新知的探究作好鋪墊。

2、勾股定理的證明:以學(xué)生拼圖展示、講解預(yù)習(xí)成果的形式完成對定理的證明。

3、勾股定理的應(yīng)用:以課堂練習(xí)、學(xué)生個(gè)性補(bǔ)充和老師適當(dāng)?shù)膫€(gè)性化追加的形式實(shí)現(xiàn)對定理的靈活應(yīng)用。

4、學(xué)后反思:以學(xué)生小結(jié)的形式引導(dǎo)學(xué)生從知識(shí)、情感兩方面實(shí)現(xiàn)對本節(jié)內(nèi)容的鞏固與升華。

為了給學(xué)生營造一個(gè)和諧、民主、平等而高效的數(shù)學(xué)課堂,我以新課程標(biāo)準(zhǔn)的基本理念和總體目標(biāo)為指導(dǎo)思想,面向全體學(xué)生,選擇適當(dāng)?shù)钠瘘c(diǎn)和方法,充分發(fā)揮學(xué)生的主體地位與教師主導(dǎo)作用相統(tǒng)一的原則。教學(xué)中注重學(xué)生的動(dòng)手操作能力的培養(yǎng),化繁為簡,化抽象為直觀。例如我以展示預(yù)習(xí)成果為主線,以學(xué)生動(dòng)手操作、講解等直觀方式代替老師畫圖、剪圖、講評(píng)費(fèi)時(shí)費(fèi)力的方式,既讓每個(gè)學(xué)生都能積極的參與進(jìn)來,培養(yǎng)學(xué)生的語言表達(dá)能力、邏輯推理能力,又達(dá)到了直觀高效的效果。

教學(xué)中我注重人文環(huán)境的創(chuàng)設(shè),使數(shù)學(xué)課堂充滿親切、民主的氣氛,例如整節(jié)課我以學(xué)生的操作、展示、講解、個(gè)性補(bǔ)充為主,拉近了數(shù)學(xué)與學(xué)生的距離,激發(fā)了學(xué)生的學(xué)習(xí)興趣;為了使不同的學(xué)生得到不同的發(fā)展,人人學(xué)有價(jià)值的數(shù)學(xué),在教學(xué)中我創(chuàng)造性的使用教材,在不改變例題的本意為前提,創(chuàng)設(shè)身邊暖房工程為情境,體現(xiàn)數(shù)學(xué)的生活化;以一題多變、中考題改編等形式進(jìn)行練習(xí)題的層層深入,體現(xiàn)數(shù)學(xué)的變化美。

以學(xué)生個(gè)性補(bǔ)充的形式促進(jìn)課堂新的生成,最大限度的培養(yǎng)學(xué)生創(chuàng)新思維,使不同的人在數(shù)學(xué)上有不同的發(fā)展。本節(jié)課既做到了課程的開放,為充分發(fā)揮學(xué)生聰明智慧和創(chuàng)造性的思維提供了空間,又創(chuàng)設(shè)了具有獨(dú)特教學(xué)風(fēng)格的作文式數(shù)學(xué)課堂。而多媒體教學(xué)的引入更為學(xué)生提供了廣闊的思考空間和時(shí)間;同時(shí),我注重對學(xué)生進(jìn)行數(shù)學(xué)文化的薰陶和數(shù)學(xué)思想的滲透,注重美育、德育與教育的三統(tǒng)一,如小結(jié)時(shí)由“勾股樹”到“智慧樹”的希望寄語。

勾股定理的說課篇十八

本節(jié)課是九年制義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(蘇科版)八年級(jí)上冊第二章第一節(jié)“勾股定理”的第一課時(shí).在本節(jié)課以前,學(xué)生已經(jīng)學(xué)習(xí)了有關(guān)三角形的一些知識(shí),如三角形的三邊不等關(guān)系,三角形全等的判定等。也學(xué)過不少利用圖形面積來探求數(shù)式運(yùn)算規(guī)律的例子,如探求乘法公式、單項(xiàng)式乘多項(xiàng)式法則、多項(xiàng)式乘多項(xiàng)式法則等。在學(xué)生這些原有的認(rèn)知水平基礎(chǔ)上,探求直角三角形的又一重要性質(zhì)――勾股定理。讓學(xué)生的知識(shí)形成知識(shí)鏈,讓學(xué)生已具有的數(shù)學(xué)思維能力得以充分發(fā)揮和發(fā)展。

二、教學(xué)目標(biāo)。

1、讓學(xué)生經(jīng)歷從數(shù)到形再由形到數(shù)的轉(zhuǎn)化過程,經(jīng)歷探求三個(gè)正方形面積間的關(guān)系轉(zhuǎn)化為三邊數(shù)量關(guān)系的過程。并從過程中讓學(xué)生體會(huì)數(shù)形結(jié)合思想,發(fā)展將未知轉(zhuǎn)化為已知,由特殊推測一般的合情推理能力。

3、能說出勾股定理,并能用勾股定理解決簡單問題.。

三、教學(xué)重點(diǎn)。

四、教學(xué)難點(diǎn)。

將邊不在格線上的圖形轉(zhuǎn)化為邊在格線上的圖形,以便于計(jì)算圖形面積.。

五、教學(xué)方法與教學(xué)手段。

六、教學(xué)過程。

(一)創(chuàng)設(shè)情境提出問題。

2.如果又已知這兩邊的夾角,那么第三邊的長是多少?

(這是對三角形三邊的不等關(guān)系和三角形全等的判定的回顧,從學(xué)生從原有的認(rèn)知水平出發(fā),揭示這節(jié)課產(chǎn)生的根源,符合學(xué)生的認(rèn)知心理,也自然地引出本節(jié)課的目標(biāo).讓學(xué)生體會(huì)到當(dāng)一般性的問題不好解決時(shí),可以先將一般問題轉(zhuǎn)化為特殊問題來研究.)。

(二)實(shí)踐探索猜想歸納。

1、用什么方法來探求板書:直角三角形三邊數(shù)量關(guān)系呢?

回憶我們曾經(jīng)利用圖形面積探索過數(shù)學(xué)公式,大家還記得在哪用過嗎?

(學(xué)生討論)。

課件展示:平方差公式、完全平方公式、單項(xiàng)式乘多項(xiàng)式、多項(xiàng)式乘多項(xiàng)式.。

今天,讓我們試一試通過計(jì)算圖形的面積能不能得到直角三角形三邊數(shù)量關(guān)系.。

(從學(xué)生已有的學(xué)習(xí)經(jīng)驗(yàn)出發(fā),將探求邊長之間的關(guān)系轉(zhuǎn)化為探求面積之間的關(guān)系,讓學(xué)生覺得解決今天問題的方法并不陌生,增強(qiáng)探索問題的信心.)。

(同位利用教師提供的學(xué)案,合作拼圖。)。

通過拼圖,你有什么發(fā)現(xiàn)?

(如圖3,以bc為邊的正方形面積與以ac為邊的正方形面積的和等于以ab為邊的正方形面積.拼圖活動(dòng),引發(fā)了學(xué)生的猜想,增加了研究的趣味性,鍛煉了學(xué)生的空間思維能力和動(dòng)手能力.體現(xiàn)了活動(dòng)――數(shù)學(xué)的思想.)。

3、拼圖活動(dòng)引發(fā)我們的靈感;運(yùn)算推演。

證實(shí)我們的猜想.為了計(jì)算面積方便,我們可。

(學(xué)生容易回答sp=9,sq=16。)。

你是如何得到的?

(可以數(shù)圖形中的小方格的個(gè)數(shù),也可以通。

過正方形面積公式計(jì)算得到。)。

如何計(jì)算?

(的求法是這節(jié)課的難點(diǎn),這時(shí)可讓學(xué)生先在學(xué)案上獨(dú)立分析,再通過小組交流,最后由小組代表到臺(tái)前展示.學(xué)生可能提出割(圖5)、補(bǔ)(圖6)、平移(圖7)、旋轉(zhuǎn)(圖8)等方法,旋轉(zhuǎn)這種方法只適用于斜邊為整數(shù)的情況,沒有一般性,若有學(xué)生提出,應(yīng)提醒學(xué)生.)。

(把圖形進(jìn)行“割”和“補(bǔ)”,即把不能利用網(wǎng)格線直接計(jì)算面積的圖形轉(zhuǎn)化成可以利用網(wǎng)格線直接計(jì)算面積的圖形,讓學(xué)生體會(huì)將較難的問題轉(zhuǎn)化為簡單問題的思想)。

(這是轉(zhuǎn)化思想,也是“割補(bǔ)”方法的再一次應(yīng)用.在。

前面的探求過程中有的學(xué)生沒能自己做出來,提供再一次的機(jī)會(huì),可讓全體學(xué)生再次感受轉(zhuǎn)化思想,體驗(yàn)成功的樂趣.)。

通過計(jì)算,你發(fā)現(xiàn)這三個(gè)正方形面積間有什么關(guān)系嗎?

(sp+sq=sr,要給學(xué)生留有思考時(shí)間.)。

(以直角邊為邊所作的正方形的面積和等于以斜邊為邊所作的正方形的面積。如果學(xué)生提出我們討論的都是邊長為整數(shù)的直角三角形情況,那么邊長是小數(shù)時(shí),結(jié)論是否成立?教師就演示以下實(shí)驗(yàn)。)。

將網(wǎng)格線去掉,利用《幾何畫板》的度量工具可以看到sp+sq=sr.。

(利用幾何畫板的高效性、動(dòng)態(tài)性反映這一過程,讓學(xué)生體會(huì)到更多的特殊情形,從而為歸納提供基礎(chǔ),這樣歸納的結(jié)論更具有一般性,學(xué)生的印象也更深刻.)。

(面積是邊長的平方,面積間的等量關(guān)系轉(zhuǎn)化為邊長間的等量關(guān)系,即直角三角形三邊的等量關(guān)系:兩直角邊的平方和等于下邊的平方.)。

(這一問題的結(jié)論是本節(jié)課的點(diǎn)睛之筆,應(yīng)充分讓學(xué)生總結(jié),交流,表達(dá).)。

(這樣既活躍了課堂氣氛,又展現(xiàn)了勾股歷史,激發(fā)學(xué)生熱愛祖國悠久歷史文化,

激勵(lì)學(xué)生發(fā)奮學(xué)習(xí)的情感.)。

9、閱讀課本,提出問題。

(讓學(xué)生有將知識(shí)內(nèi)化為自己的知識(shí)結(jié)構(gòu)的過程,教師巡視,對有困難的同學(xué)給予幫助,促進(jìn)全班同學(xué)共同進(jìn)步,體現(xiàn)面向全體的教學(xué)原則.)。

(三)課堂練習(xí)鞏固新知。

1.完成課本第45頁練習(xí)第1題、第2題.。

(1)求下列直角三角形中未知邊的長:

(2)求下列圖中未知數(shù)x、y、z的值:

(充分利用課本,在前面閱讀的基礎(chǔ)上做課本上的練習(xí)題。提問學(xué)生口答,老師再規(guī)范板書一題.通過對勾股定理的基本應(yīng)用,讓學(xué)生知道已知直角三角形三邊中的任意兩邊,可以求第三邊.)。

2、如圖:一塊長約80m、寬約60m的長方形草坪,被幾個(gè)不自覺的學(xué)生沿對角線踏出了一條斜“路”,這種情況在生活中時(shí)有發(fā)生。請問同學(xué)們:

(1)這幾位同學(xué)為什么不走正路,走斜“路”?

(2)他們知道走斜“路”比正路少走幾步嗎?

(3)他們這樣這樣做,值得嗎?

(這是一道貼近學(xué)生生活的實(shí)例,在勾股定理的運(yùn)用中滲透了德育教育.)。

(四)課堂小結(jié)布置作業(yè)。

(學(xué)生總結(jié)本堂課的收獲,可以是知識(shí)、應(yīng)用、數(shù)學(xué)思想方法以及獲取新知的途徑等.給學(xué)生自由的空間,鼓勵(lì)學(xué)生多說.這樣引導(dǎo)學(xué)生從多角度對本節(jié)課歸納總結(jié),感悟點(diǎn)滴,使學(xué)生將知識(shí)系統(tǒng)化,提高學(xué)生的綜合表達(dá)能力.如果學(xué)生沒有提出繼續(xù)要探討的問題,教師可以引導(dǎo)學(xué)生思考:直角三角形的三邊有特殊的等量關(guān)系,一般三角形三邊是否也存在一種等量關(guān)系呢?再展示上課開始的問題:如果一個(gè)三角形的兩條邊分別長6和8,這兩邊的夾角確定了,你知道第三邊的長是多少?這是我們今后將要探討的內(nèi)容,首尾呼應(yīng),激發(fā)學(xué)生不滿足于現(xiàn)狀,有不斷提出新問題的欲望,即培養(yǎng)學(xué)生的創(chuàng)新意識(shí).)。

2、作業(yè)。

(1)課本第471頁第2題,并完成第45頁的實(shí)驗(yàn)。

(2)在以下網(wǎng)頁中你可以找到有關(guān)勾股定理的豐富的內(nèi)容,請你結(jié)合本節(jié)課的學(xué)習(xí)。

n

(作業(yè)的多元化、多層次,有利于全體學(xué)生的全面素質(zhì)發(fā)展。)教育大全。

七、教學(xué)設(shè)計(jì)說明:

將本文的word文檔下載到電腦,方便收藏和打印。

勾股定理的說課篇十九

初略統(tǒng)計(jì),何老師在課堂上,共提出以下8個(gè)問題:

(1)在一般的直角三角形中,有這樣的結(jié)論成立嗎?

(3)使用勾股定理,需要弄清楚什么?

(4)為什么用減法?(在勾股定理的簡單應(yīng)用這一環(huán)節(jié),用到。

(5)我們是否應(yīng)該在這個(gè)表格中創(chuàng)造直角三角形呢?(引導(dǎo)學(xué)。

(6)那你還能創(chuàng)造出其它勾股數(shù)嗎?

(7)怎么理解東南方向、東北方向?

(8)勾股定理,難道只是為了求斜邊嗎?(在本課小結(jié)環(huán)節(jié))。

以上八個(gè)問題環(huán)環(huán)緊扣,出現(xiàn)的時(shí)機(jī)恰到好處。比如,在應(yīng)用勾股定理時(shí),沒有現(xiàn)成的直角三角形,學(xué)生無從下手。何老師,不失時(shí)機(jī)地問了一句:是否應(yīng)該構(gòu)造一個(gè)直角三角形呢?這樣一個(gè)問題,既非常好地點(diǎn)撥了學(xué)生,又讓學(xué)生深刻地領(lǐng)悟到了勾股定理的使用是有條件的。

發(fā)現(xiàn)定理到證明定理,再到應(yīng)用定理,板塊分明,學(xué)生聽的真切。思路清晰,三個(gè)情景:蝸牛爬行、小鳥飛行、輪船航海,貫穿整個(gè)課堂,從三個(gè)情景里模糊感知定理,從三個(gè)情景里充分應(yīng)用定理,并擴(kuò)充延展定理。

蝸牛爬行涉及到直角三角形的構(gòu)造,回答了第2個(gè)問題;小鳥飛行涉及到勾和股的確定,回答了第3個(gè)問題;輪船航海涉及到直角三角形的尋找。

如果我是一名學(xué)生,很愿意跟著何老師學(xué)習(xí)。他有種讓學(xué)生很安心很靜心的能力,讓學(xué)生有踏實(shí)感,覺得跟著這位老師學(xué)習(xí)一定能學(xué)到東西。

勾股定理的說課篇二十

亮點(diǎn)一:學(xué)案設(shè)計(jì)簡潔,到位,有梯度。簡潔體現(xiàn)在整張學(xué)案圍繞勾股定理,分為探索和應(yīng)用部分,沒有旁枝末節(jié),沒有虛張聲勢,直指核心。到位體現(xiàn)在,把握了大綱的要求,讓學(xué)生新身經(jīng)歷探索的過程,并能靈活運(yùn)用。有梯度體現(xiàn)在練習(xí)題的設(shè)計(jì)上。習(xí)題有梯度,有層次。

亮點(diǎn)二:語言簡煉,重點(diǎn)突出。非重點(diǎn)處,惜時(shí)如金,重點(diǎn)處,濃墨重彩。如,探索一般直角三角形部分,最大的正方形的面積是25,一般的學(xué)生不知道怎么數(shù)?在這個(gè)環(huán)節(jié),舍得花時(shí)間,讓學(xué)生操作,用割和補(bǔ)這2種方法去求。小環(huán)節(jié)的處理可體現(xiàn)教師的智慧。

亮點(diǎn)三:教師功底扎實(shí),能站在高處,指導(dǎo)學(xué)生學(xué)習(xí),發(fā)散。發(fā)散必須在我們每個(gè)老師的心中。我一直有個(gè)觀點(diǎn),數(shù)學(xué)最重要的是思維訓(xùn)練,思維訓(xùn)練中最核心的是發(fā)散,是舉一反三,觸類旁通。有這幾處細(xì)節(jié),讓我記憶深刻。如第三組勾股數(shù)6、8、10,教師問:它和3、4、5相比分別是3、4、5的幾倍?那你能不能創(chuàng)造一組勾股數(shù)?我相信好的學(xué)生能迅速領(lǐng)會(huì)。習(xí)題中也能凸顯發(fā)散。求一條斜邊的是基礎(chǔ)題,求三條斜邊的和,我認(rèn)為這個(gè)發(fā)散練習(xí)設(shè)計(jì)得好,有利于拓寬學(xué)生視野。

接下來,我想就在觀課中發(fā)現(xiàn)的一個(gè)問題,和大家一起探討:

原因有二:1、思維定勢。三邊的關(guān)系,首先會(huì)想到相等,但一看,不相等,不知所措。2、第1個(gè)問題和第2個(gè)問題之間,學(xué)生看不出聯(lián)系。不會(huì)把正方形的面積轉(zhuǎn)化為邊的平方。何老師的學(xué)案設(shè)計(jì)本身沒有任何問題,如果面對的是重點(diǎn)班的學(xué)生,會(huì)很流暢很順暢。但面對我們這里的學(xué)生,呈現(xiàn)出一種理想很美好,但現(xiàn)實(shí)很骨感的狀態(tài):絕大部分學(xué)生這幾分鐘都在絞盡腦汁想這一題,后面的題目沒有去完成。也就是說,其實(shí)探索環(huán)節(jié)實(shí)效性不高。那針對學(xué)情,學(xué)案該怎樣設(shè)計(jì)?我建議:凸顯正方形的面積和邊長之間的關(guān)系。

(1)正方形p的面積=(1)=(ac)。

正方形q的面積=()=();

正方形r的面積=()=()。

(2)直角三角形面積之間的關(guān)系是:,這個(gè)關(guān)系也可表示為()+()=()。

(3)觀察思考上面的式子,你能發(fā)現(xiàn)直角三角形三邊之間的關(guān)系嗎?請寫下來。

所以,這是我的第一個(gè)建議:部分設(shè)計(jì)要調(diào)低難度,搭設(shè)橋梁。要針對學(xué)情。

建議二:解題過程的書寫教學(xué)重視得不夠。我觀察有部分好的學(xué)生會(huì)做,但都直接寫在圖上,解題過程不知怎么下筆。解題過程的書寫直接影響中考成績,所以我建議從初一年級(jí)起,要手把手教,要帶著學(xué)生寫解題過程。并且嚴(yán)格要求,每天的學(xué)案收上來,檢查,督促學(xué)生寫好。不積細(xì)流,無以成江河。

建議三:小細(xì)節(jié)的處理上,還可以再精益求精。3個(gè)練習(xí)題,我感覺第1題要構(gòu)造三個(gè)直角三角形,求三段斜邊的和,難度比2、3題要大一些,如調(diào)整一下順序,把第1題放在第3題的位置,可能層次性會(huì)更突出。板書方面,建議:勾股定理一定要板書在黑板上。學(xué)生用割的方法分那個(gè)面積是25的三角形時(shí),由于三角形的底色紅色太突出,顯眼。導(dǎo)致分割線不明顯,影響學(xué)生的理解掌握。

總之,我認(rèn)為這堂課設(shè)計(jì)凸顯智慧,教師在隨意中透著嚴(yán)謹(jǐn),在細(xì)節(jié)中彰顯功底,是一節(jié)值得肯定、值得我學(xué)習(xí)、借鑒的好課。感謝何老師。

勾股定理的說課篇二十一

“勾股定理的逆定理”一節(jié),是在上節(jié)“勾股定理”之后,繼續(xù)學(xué)習(xí)的一個(gè)直角三角形的判斷定理,它是前面知識(shí)的繼續(xù)和深化,勾股定理的逆定理是初中幾何學(xué)習(xí)中的重要內(nèi)容之一,是今后判斷某三角形是直角三角形的重要方法之一,在以后的解題中,將有十分廣泛的應(yīng)用,同時(shí)在應(yīng)用中滲透了利用代數(shù)計(jì)算的方法證明幾何問題的思想,為將來學(xué)習(xí)解析幾何埋下了伏筆,所以本節(jié)也是本章的重要內(nèi)容之一。課標(biāo)要求學(xué)生必須掌握。

(二)、教學(xué)目標(biāo)。

1、知識(shí)技能:1理解并會(huì)證明勾股定理的逆定理;

2會(huì)應(yīng)用勾股定理的逆定理判定一個(gè)三角形是否為直角三角形;3知道什么叫勾股數(shù),記住一些覺見的勾股數(shù).

2、過程與方法:通過對勾股定理的逆定理的探索和證明,經(jīng)歷知識(shí)的發(fā)生,發(fā)展與形成的過程,體驗(yàn)“數(shù)形結(jié)合”方法的應(yīng)用。

3、情感、態(tài)度價(jià)值觀培養(yǎng)數(shù)學(xué)思維以及合情推理意識(shí),感悟勾股定理和逆定理的應(yīng)用價(jià)值。滲透與他人交流、合作的意識(shí)和探究精神,體驗(yàn)數(shù)與形的內(nèi)在聯(lián)系,感受定理與逆定理之間的和諧及辯證統(tǒng)一的關(guān)系。

(三)、學(xué)情分析:

本節(jié)課的設(shè)計(jì)原則是:使學(xué)生在動(dòng)手操作的基礎(chǔ)上和合作交流的良好氛圍中,通過巧妙而自然地在學(xué)生的認(rèn)識(shí)結(jié)構(gòu)與幾何知識(shí)結(jié)構(gòu)之間筑了一個(gè)信息流通渠道,進(jìn)而達(dá)到完善學(xué)生的數(shù)學(xué)認(rèn)識(shí)結(jié)構(gòu)的目的。

(一)復(fù)習(xí)回顧。

復(fù)習(xí)回顧與直角三角形、勾股定理有關(guān)的內(nèi)容,建立新舊知識(shí)之間的聯(lián)系。

(二)創(chuàng)設(shè)問題情境。

造了我要學(xué)的氣氛,同時(shí)也說明了幾何知識(shí)來源于實(shí)踐,不失時(shí)機(jī)地讓學(xué)生感到數(shù)學(xué)就在身邊。

(三)學(xué)生在教師的指導(dǎo)下嘗試解決問題,總結(jié)規(guī)律(包括難點(diǎn)突破)。

因?yàn)閹缀蝸碓从诂F(xiàn)實(shí)生活,對初二學(xué)生來說選擇適當(dāng)?shù)臅r(shí)機(jī),讓他們從個(gè)體實(shí)踐經(jīng)驗(yàn)中開始學(xué)習(xí),可以提高學(xué)習(xí)的主動(dòng)性和參與意識(shí),所以勾股定理的逆定理不是由教師直接給出的,而是讓學(xué)生通過動(dòng)手畫圖在具體的實(shí)踐中觀察滿足條件的三角形直觀感覺上是什么三角形,再用直角三角形插入去驗(yàn)證猜想。

這樣設(shè)計(jì)是因?yàn)楣垂啥ɡ砟娑ɡ淼淖C明方法是學(xué)生第一次見到,它要求按照已知條件作一個(gè)直角三角形,根據(jù)學(xué)生的智能狀況學(xué)生是不容易想到的.,為了突破這個(gè)難點(diǎn),我讓學(xué)生動(dòng)手畫出了一個(gè)兩直角邊與所給三角形兩條較小邊相等的直角三角形,通過操作驗(yàn)證兩三角形全等,從而不僅顯示了符合條件的三角形是直角三角形,還孕育了輔助線的添法,為后面進(jìn)行邏輯推理論證提供了直觀的數(shù)學(xué)模型。

接下來就是利用這個(gè)數(shù)學(xué)模型,從理論上證明這個(gè)定理。從動(dòng)手操作到證明,學(xué)生自然地聯(lián)想到了全等三角形的性質(zhì),證明它與一個(gè)直角三角形全等,順利作出了輔助直角三角形,整個(gè)證明過程自然、無神秘感,實(shí)現(xiàn)了從生動(dòng)直觀向抽象思維的轉(zhuǎn)化,同時(shí)學(xué)生親身體會(huì)了動(dòng)手操作——觀察——猜測——探索——論證的全過程,這樣學(xué)生不是被動(dòng)接受勾股定理的逆定理,因而使學(xué)生感到自然、親切,學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)積極性有所提高。使學(xué)生確實(shí)在學(xué)習(xí)過程中享受到自我創(chuàng)造的快樂。

在同學(xué)們完成證明之后,同時(shí)讓學(xué)生總結(jié)互逆命題、互逆定理的關(guān)系,并舉例指出哪些為互逆定理。然后讓他們對照課本把證明過程嚴(yán)格的閱讀一遍,充分發(fā)揮教課書的作用,養(yǎng)成學(xué)生看書的習(xí)慣,這也是在培養(yǎng)學(xué)生的自學(xué)能力。

(四)組織變式訓(xùn)練。

本著由淺入深的原則,安排了兩個(gè)例題。(演示)第一題比較簡單,讓學(xué)生口答,讓所有的學(xué)生都能完成。第二題則進(jìn)了一層,不僅判斷是否為直接三角形,還繞了一個(gè)彎,指出哪一個(gè)角是直角。這樣既可以檢查本課知識(shí),又可以提高靈活運(yùn)用以往知識(shí)的能力。例題講解后安排了三個(gè)練習(xí),循序漸進(jìn),由淺入深。培養(yǎng)了學(xué)生靈活轉(zhuǎn)換、舉一反三的能力,發(fā)展了學(xué)生的思維,提高了課堂教學(xué)的效果和利用率。讓學(xué)生知道勾股逆定理的用途,激發(fā)學(xué)生的學(xué)習(xí)興趣。我還采用講、說、練結(jié)合的方法,教師通過觀察、提問、巡視、談話等活動(dòng)、及時(shí)了解學(xué)生的學(xué)習(xí)過程,隨時(shí)反饋,調(diào)節(jié)教法,同時(shí)注意加強(qiáng)有針對性的個(gè)別指導(dǎo),把發(fā)展學(xué)生的思維和隨時(shí)把握學(xué)生的學(xué)習(xí)效果結(jié)合起來。

(五)歸納小結(jié),納入知識(shí)體系。

告訴同學(xué)今天的勾股定理逆定理是同學(xué)們通過自己親手實(shí)踐發(fā)現(xiàn)并證明的,這種討論問題的方法是培養(yǎng)我們發(fā)現(xiàn)問題認(rèn)識(shí)問題的好方法,希望同學(xué)在課外練習(xí)時(shí)注意用這種方法,這都是教給學(xué)習(xí)方法。

(六)作業(yè)布置。

由于學(xué)生的思維素質(zhì)存在一定的差異,教學(xué)要貫徹“因材施教”的原則,為此我安排了兩題作業(yè)。第一題是基本的思維訓(xùn)練項(xiàng)目,全體都要做,這樣有利于學(xué)生學(xué)習(xí)習(xí)慣的培養(yǎng),以及提高他們學(xué)好數(shù)學(xué)的信心。第二題適當(dāng)加大難度,拓寬知識(shí),供有能力又有興趣的學(xué)生做,日積月累,對訓(xùn)練和培養(yǎng)他們的思維素質(zhì),發(fā)展學(xué)生的個(gè)性有積極作用。

為貫徹實(shí)施素質(zhì)教育提出的面向全體學(xué)生,使學(xué)生全面發(fā)展主動(dòng)發(fā)展的精神和培養(yǎng)創(chuàng)新活動(dòng)的要求,根據(jù)本節(jié)課的教學(xué)內(nèi)容、教學(xué)要求以及初二學(xué)生的年齡和心理特征以及學(xué)生的認(rèn)知規(guī)律和認(rèn)知水平,本節(jié)課我主要采用了以學(xué)生為主體,引導(dǎo)發(fā)現(xiàn)、操作探究的教學(xué)方法,即不違反科學(xué)性又符合可接受性原則,這樣有利于培養(yǎng)學(xué)生的學(xué)習(xí)興趣,調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性,發(fā)展學(xué)生的思維;有利于培養(yǎng)學(xué)生動(dòng)手、觀察、分析、猜想、驗(yàn)證、推理能力和創(chuàng)新能力;有利于學(xué)生從感性認(rèn)識(shí)上升到理性認(rèn)識(shí),加深對所學(xué)知識(shí)的理解和掌握;有利于突破難點(diǎn)和突出重點(diǎn)。

此外,本節(jié)課我還采用了理論聯(lián)系實(shí)際的教學(xué)原則,以教師為主導(dǎo)、學(xué)生為主體的教學(xué)原則,通過聯(lián)系學(xué)生現(xiàn)有的經(jīng)驗(yàn)和感性認(rèn)識(shí),由最鄰近的知識(shí)去向本節(jié)課遷移,通過動(dòng)手操作讓學(xué)生獨(dú)立探討、主動(dòng)獲取知識(shí)。

總之,本節(jié)課遵循從生動(dòng)直觀到抽象思維的認(rèn)識(shí)規(guī)律,力爭最大限度地調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性;力爭把教師教的過程轉(zhuǎn)化為學(xué)生親自探索、發(fā)現(xiàn)知識(shí)的過程;力爭使學(xué)生在獲得知識(shí)的過程中得到能力的培養(yǎng)。

將本文的word文檔下載到電腦,方便收藏和打印。

【本文地址:http://www.aiweibaby.com/zuowen/11399729.html】

全文閱讀已結(jié)束,如果需要下載本文請點(diǎn)擊

下載此文檔