作為一名教職工,總歸要編寫教案,教案是教學(xué)藍圖,可以有效提高教學(xué)效率。教案書寫有哪些要求呢?我們怎樣才能寫好一篇教案呢?下面我?guī)痛蠹艺覍げ⒄砹艘恍﹥?yōu)秀的教案范文,我們一起來了解一下吧。
人教版初中數(shù)學(xué)優(yōu)質(zhì)課教案篇1
一元一次不等式組:關(guān)于同一個未知數(shù)的幾個一元一次不等式合在一起,就組成了一元一次不等式組。一元一次不等式組的概念可以從以下幾個方面理解:
(1)組成不等式組的不等式必須是一元一次不等式;
(2)從數(shù)量上看,不等式的個數(shù)必須是兩個或兩個以上;
(3)每個不等式在不等式組中的位置并不固定,它們是并列的。
二。一元一次不等式組的解集及解不等式組:在一元一次不等式組中,各個不等式的解集的公共部分就叫做這個一元一次不等式組的解集。求這個不等式組解集的過程就叫解不等式組。解一元一次不等式組的步驟:
(1)先分別求出不等式組中各個不等式的解集;
(2)利用數(shù)軸或口訣求出這些解集的公共部分,也就是得到了不等式組的解集。
三。不等式(組)的解集的數(shù)軸表示:
一元一次不等式組知識點
1、用數(shù)軸表示不等式的解集,應(yīng)記住下面的規(guī)律:大于向右畫,小于向左畫,有等號的畫實心原點,無等號的畫空心圓圈;
2、不等式組的解集,可以在數(shù)軸上先畫同各個不等式的解集,找出公共部分即為不等式的解集。公共部分也就各不等式解集在數(shù)軸上的重合部分;
3、。我們根據(jù)一元一次不等式組,化簡成最簡不等式組后進行分類,通常就能把一元一次不等式組分成如上四類。
說明:當(dāng)不等式組中,含有“≤”或“≥”時,在解題時,我們可以不關(guān)注這個等號,這樣就這類不等式組化歸為上述四種基本不等式組中的某一種類型。但是,在解題的過程中,這個等號要與不等號相連,不能分開。
四。求一些特解:求不等式(組)的正整數(shù)解,整數(shù)解等特解(這些特解往往是有限個),解這類問題的步驟:先求出這個不等式的解集,然后借助于數(shù)軸,找出所需特解。
【一元一次不等式組考點分析】
(1)考查不等式組的概念;
(2)考查一元一次不等式組的解集,以及在數(shù)軸上的表示;
(3)考查不等式組的特解問題;
(4)確定字母的取值。
【一元一次不等式組知識點誤區(qū)】
(1)思維誤區(qū),不等式與等式混淆;
(2)不能正確地確定出不等式組解集的公共部分;
(3)在數(shù)軸上表示不等式組解集時,混淆界點的表示方法;
(4)考慮不周,漏掉隱含條件;
(5)當(dāng)有多個限制條件時,對不等式關(guān)系的發(fā)掘不全面,導(dǎo)致未知數(shù)范圍擴大;
(6)對含字母的不等式,沒有對字母取值進行分類討論。
人教版初中數(shù)學(xué)優(yōu)質(zhì)課教案篇2
1、掌握一元二次方程的根與系數(shù)的關(guān)系并會初步應(yīng)用。
2、培養(yǎng)學(xué)生分析、觀察、歸納的能力和推理論證的能力。
3、滲透由特殊到一般,再由一般到特殊的認識事物的規(guī)律。
4、培養(yǎng)學(xué)生去發(fā)現(xiàn)規(guī)律的積極性及勇于探索的精神。
重點
根與系數(shù)的關(guān)系及其推導(dǎo)
難點
正確理解根與系數(shù)的關(guān)系。一元二次方程根與系數(shù)的關(guān)系是指一元二次方程兩根的和、兩根的積與系數(shù)的關(guān)系。
一、復(fù)習(xí)引入
1、已知方程x2-ax-3a=0的一個根是6,則求a及另一個根的值。
2、由上題可知一元二次方程的系數(shù)與根有著密切的關(guān)系。其實我們已學(xué)過的求根公式也反映了根與系數(shù)的關(guān)系,這種關(guān)系比較復(fù)雜,是否有更簡潔的關(guān)系?
3、由求根公式可知,一元二次方程ax2+bx+c=0(a≠0)的兩根為x1=-b+b2-4ac2a,x2=-b-b2-4ac2a.觀察兩式右邊,分母相同,分子是-b+b2-4ac與-b-b2-4ac.兩根之間通過什么計算才能得到更簡潔的關(guān)系?
二、探索新知
解下列方程,并填寫表格:
方程 x1 x2 x1+x2 x1?x2
x2-2x=0
x2+3x-4=0
x2-5x+6=0
觀察上面的表格,你能得到什么結(jié)論?
(1)關(guān)于x的方程x2+px+q=0(p,q為常數(shù),p2-4q≥0)的兩根x1,x2與系數(shù)p,q之間有什么關(guān)系?
(2)關(guān)于x的方程ax2+bx+c=0(a≠0)的兩根x1,x2與系數(shù)a,b,c之間又有何關(guān)系呢?你能證明你的猜想嗎?
解下列方程,并填寫表格:
方程 x1 x2 x1+x2 x1?x2
2x2-7x-4=0
3x2+2x-5=0
5x2-17x+6=0
小結(jié):根與系數(shù)關(guān)系:
(1)關(guān)于x的方程x2+px+q=0(p,q為常數(shù),p2-4q≥0)的兩根x1,x2與系數(shù)p,q的關(guān)系是:x1+x2=-p,x1?x2=q(注意:根與系數(shù)關(guān)系的前提條件是根的判別式必須大于或等于零。)
(2)形如ax2+bx+c=0(a≠0)的方程,可以先將二次項系數(shù)化為1,再利用上面的結(jié)論。
即:對于方程 ax2+bx+c=0(a≠0)
∵a≠0,∴x2+bax+ca=0
∴x1+x2=-ba,x1?x2=ca
(可以利用求根公式給出證明)
例1 不解方程,寫出下列方程的兩根和與兩根積:
(1)x2-3x-1=0 (2)2x2+3x-5=0
(3)13x2-2x=0 (4)2x2+6x=3
(5)x2-1=0 (6)x2-2x+1=0
例2 不解方程,檢驗下列方程的解是否正確?
(1)x2-22x+1=0 (x1=2+1,x2=2-1)
(2)2x2-3x-8=0 (x1=7+734,x2=5-734)
例3 已知一元二次方程的兩個根是-1和2,請你寫出一個符合條件的方程。(你有幾種方法?)
例4 已知方程2x2+kx-9=0的一個根是-3,求另一根及k的值。
變式一:已知方程x2-2kx-9=0的兩根互為相反數(shù),求k;
變式二:已知方程2x2-5x+k=0的兩根互為倒數(shù),求k.
三、課堂小結(jié)
1、根與系數(shù)的關(guān)系。
2、根與系數(shù)關(guān)系使用的前提是:(1)是一元二次方程;(2)判別式大于等于零。
四、作業(yè)布置
1、不解方程,寫出下列方程的兩根和與兩根積。
(1)x2-5x-3=0 (2)9x+2=x2 (3)6x2-3x+2=0
(4)3x2+x+1=0
2、已知方程x2-3x+m=0的一個根為1,求另一根及m的值。
3、已知方程x2+bx+6=0的一個根為-2,求另一根及b的值
人教版初中數(shù)學(xué)優(yōu)質(zhì)課教案篇3
應(yīng)用二元一次方程組——雞兔同籠
教學(xué)目標:
知識與技能目標:
通過對實際問題的分析,使學(xué)生進一步體會方程組是刻畫現(xiàn)實世界的有效數(shù)學(xué)模型,初步掌握列二元一次方程組解應(yīng)用題。初步體會解二元一次方程組的基本思想“消元”。
培養(yǎng)學(xué)生列方程組解決實際問題的意識,增強學(xué)生的數(shù)學(xué)應(yīng)用能力。
過程與方法目標:
經(jīng)歷和體驗列方程組解決實際問題的過程,進一步體會方程(組)是刻畫現(xiàn)實世界的有效數(shù)學(xué)模型。
情感態(tài)度與價值觀目標:
1、進一步豐富學(xué)生數(shù)學(xué)學(xué)習(xí)的成功體驗,激發(fā)學(xué)生對數(shù)學(xué)學(xué)習(xí)的好奇心,進一步形成積極參與數(shù)學(xué)活動、主動與他人合作交流的意識。
2、通過"雞兔同籠",把同學(xué)們帶入古代的數(shù)學(xué)問題情景,學(xué)生體會到數(shù)學(xué)中的"趣";進一步強調(diào)課堂與生活的聯(lián)系,突出顯示數(shù)學(xué)教學(xué)的實際價值,培養(yǎng)學(xué)生的人文精神。重點:
經(jīng)歷和體驗列方程組解決實際問題的過程;增強學(xué)生的數(shù)學(xué)應(yīng)用能力。
難點:
確立等量關(guān)系,列出正確的二元一次方程組。
教學(xué)流程:
課前回顧
復(fù)習(xí):列一元一次方程解應(yīng)用題的一般步驟
情境引入
探究1:今有雞兔同籠,
上有三十五頭,
下有九十四足,
問雞兔各幾何?
“雉兔同籠”題:今有雉(雞)兔同籠,上有35頭,下有94足,問雉兔各幾何?
(1)畫圖法
用表示頭,先畫35個頭
將所有頭都看作雞的,用表示腿,畫出了70只腿
還剩24只腿,在每個頭上在加兩只腿,共12個頭加了兩只腿
四條腿的是兔子(12只),兩條腿的是雞(23只)
(2)一元一次方程法:
雞頭+兔頭=35
雞腳+兔腳=94
設(shè)雞有x只,則兔有(35-x)只,據(jù)題意得:
2x+4(35-x)=94
比算術(shù)法容易理解
想一想:那我們能不能用更簡單的方法來解決這些問題呢?
回顧上節(jié)課學(xué)習(xí)過的二元一次方程,能不能解決這一問題?
(3)二元一次方程法
今有雞兔同籠,上有三十五頭,下有九十四足,問雞兔各幾何?
(1)上有三十五頭的意思是雞、兔共有頭35個,
下有九十四足的意思是雞、兔共有腳94只。
(2)如設(shè)雞有x只,兔有y只,那么雞兔共有(x+y)只;
雞足有2x只;兔足有4y只。
解:設(shè)籠中有雞x只,有兔y只,由題意可得:
雞兔合計頭xy35足2x4y94
解此方程組得:
練習(xí)1:
1、設(shè)甲數(shù)為x,乙數(shù)為y,則“甲數(shù)的二倍與乙數(shù)的一半的和是15”,列出方程為_2x+05y=15
2、小剛有5角硬幣和1元硬幣各若干枚,幣值共有六元五角,設(shè)5角有x枚,1元有y枚,列出方程為05x+y=65.
三、合作探究
探究2:以繩測井。若將繩三折測之,繩多五尺;若將繩四折測之,繩多一尺。繩長、井深各幾何?
題目大意:用繩子測水井深度,如果將繩子折成三等份,一份繩長比井深多5尺;如果將繩子折成四等份,一份繩長比井深多1尺。問繩長、井深各是多少尺?
找出等量關(guān)系:
解:設(shè)繩長x尺,井深y尺,則由題意得
x=48
將x=48y=11。
所以繩長4811尺。
想一想:找出一種更簡單的創(chuàng)新解法嗎?
引導(dǎo)學(xué)生逐步得出更簡單的方法:
找出等量關(guān)系:
(井深+5)×3=繩長
(井深+1
解:設(shè)繩長x尺,井深y尺,則由題意得
3(y+5)=x
4(y+1)=x
x=48
y=11
所以繩長48尺,井深11尺。
練習(xí)2:甲、乙兩人賽跑,若乙先跑10米,甲跑5秒即可追上乙;若乙先跑2秒,則甲跑4秒就可追上乙。設(shè)甲速為x米/秒,乙速為y米/秒,則可列方程組為(B)。
歸納:
列二元一次方程解決實際問題的一般步驟:
審:審清題目中的等量關(guān)系。
設(shè):設(shè)未知數(shù)。
列:根據(jù)等量關(guān)系,列出方程組。
解:解方程組,求出未知數(shù)。
答:檢驗所求出未知數(shù)是否符合題意,寫出答案。
四、自主思考
探究3:用長方形和正方形紙板作側(cè)面和底面,做成如圖中豎式和橫式的兩種無蓋紙盒?,F(xiàn)在倉庫里有1000張正方形紙板和2000張長方形紙板,問兩種紙盒各做多少只,恰好使庫存的紙板用完?
解:設(shè)做豎式紙盒X個,橫式紙盒y個。根據(jù)題意,得
x+2y=1000
4x+3y=2000
解這個方程組得x=200
y=400
答:設(shè)做豎式紙盒200個,橫式紙盒400個,恰好使庫存的紙板用完。
練習(xí)3:上題中如果改為庫存正方形紙板500,長方形紙板1001張,那么,能否做成若干只豎式紙盒和若干只橫式紙盒后,恰好把庫存紙板用完?
解:設(shè)做豎式紙盒x個,做橫式紙盒y個,根據(jù)題意
y不是自然數(shù),不合題意,所以不可能做成若干個紙盒,恰好不庫存的紙板用完。
歸納:
五、達標測評
1、解下列應(yīng)用題
(1)買一些4分和8分的郵票,共花6元8角,已知8分的郵票比4分的郵票多40張,那么兩種郵票各買了多少張?
解:設(shè)4分郵票x張,8分郵票y張,由題意得:
4x+8y=6800①
y-x=40②
所以,4分郵票540張,8分郵票580張
(2)一項工程,如果全是晴天,15天可以完成,倘若下雨,雨天一天只能完成晴天
的工作量?,F(xiàn)在知道在施工期間雨天比晴天多3天。問這項工程要多少天才能完成
分析:由于工作總量未知,我們將其設(shè)為單位1
晴天一天可完成
雨天一天可完成
解:設(shè)晴天x天,雨天y天,工作總量為單位1,由題意得:
總天數(shù):7+10=17
所以,共17天可完成任務(wù)
六、應(yīng)用提高
學(xué)校買鉛筆、圓珠筆和鋼筆共232支,共花了300元。其中鉛筆數(shù)量是圓珠筆的4倍。已知鉛筆每支0.60元,圓珠筆每支2.7元,鋼筆每支6.3元。問三種筆各有多少支?
分析:鉛筆數(shù)量+圓珠筆數(shù)量+鋼筆數(shù)量=232
鉛筆數(shù)量=圓珠筆數(shù)量×4
鉛筆價格+圓珠筆價格+鋼筆價格=300
解:設(shè)鉛筆x支,圓珠筆y支,鋼筆z支,根據(jù)題意,可得三元一次方程組:
將②代入①和③中,得二元一次方程組
4y+y+z=232④
0.6×4y+2.7x+6.3z=300⑤
解得
所以,鉛筆175支,圓珠筆44支,鋼筆12支
七、體驗收獲
1、解決雞兔同籠問題
2、解決以繩測井問題
3、解應(yīng)用題的一般步驟
七、布置作業(yè)
教材116頁習(xí)題第2、3題。
x+y=35
2x+4y=94
x=23
y=12
繩長的三分之一-井深=5
繩長的四分之一-井深=1
-y=5①
①-②,得
-y=1②
-y=5①
-y=5①
-y=5①
X=540
Y=580
y-x=3②
x=7
y=10
x+y+z=232①
x=4y②
0.6x+2.7y+6.3z=300③
X=176
Y=44
Z=12
人教版初中數(shù)學(xué)優(yōu)質(zhì)課教案篇4
一
、教學(xué)目標1、了解推理、證明的格式,理解判定定理的證法。
2、掌握平行線的第二個判定定理,會用判定公理及定理進行簡單的推理論證。
3、通過第二個判定定理的推導(dǎo),培養(yǎng)學(xué)生分析問題、進行推理的能力。
4、使學(xué)生了解知識來源于實踐,又服務(wù)于實踐,只有學(xué)好文化知識,才有解決實際問題的本領(lǐng),從而對學(xué)生進行學(xué)習(xí)目的的教育。
二、學(xué)法引導(dǎo)
1、教師教法:啟發(fā)式引導(dǎo)發(fā)現(xiàn)法。
2、學(xué)生學(xué)法:積極參與、主動發(fā)現(xiàn)、發(fā)展思維。
三、重點?難點及解決辦法
(一)重點
判定定理的推導(dǎo)和例題的解答。
(二)難點
使用符號語言進行推理。
(三)解決辦法
1、通過教師正確引導(dǎo),學(xué)生積極思維,發(fā)現(xiàn)定理,解決重點。
2、通過教師指導(dǎo),學(xué)生自行完成推理過程,解決難點及疑點。
四、課時安排
1課時
五、教具學(xué)具準備
三角板、投影儀、自制膠片。
六、師生互動活動設(shè)計
1、通過設(shè)計練習(xí),復(fù)習(xí)基礎(chǔ),創(chuàng)造情境,引入新課。
2、通過教師指導(dǎo),學(xué)生探索新知,練習(xí)鞏固,完成新授。
3、通過學(xué)生自己總結(jié)完成小結(jié)。
七、教學(xué)步驟
(一)明確目標
掌握平行線的第二個定理的推理,并能運用其進行簡單的證明,培養(yǎng)學(xué)生的邏輯思維能力。
(二)整體感知
以情境創(chuàng)設(shè),設(shè)計懸念,引出課題,以引導(dǎo)學(xué)生的思維,發(fā)現(xiàn)新知,以變式訓(xùn)練鞏固新知。
(三)教學(xué)過程
創(chuàng)設(shè)情境,復(fù)習(xí)引入
師:上節(jié)課我們學(xué)習(xí)了平行線的判定公理和一種判定方法,根據(jù)所學(xué)看下面的問題(出示投影)。
學(xué)生活動:學(xué)生口答第1、2題。
師:你能說出有什么條件,就可以判定兩條直線平行呢?
學(xué)生活動:由第l、2題,學(xué)生思考分析,只要有同位角相等或內(nèi)錯角相等,就可以判定兩條直線平行。
教師將第3題圖形畫在黑板上。
學(xué)生活動:學(xué)生口答理由,同角的補角相等。
師:要求學(xué)生寫出符號推理過程,并板書。
【教法說明】本節(jié)課是前一節(jié)課的繼續(xù),是在前一節(jié)課的基礎(chǔ)上進行學(xué)習(xí)的,所以通過第1、2兩題復(fù)習(xí)上節(jié)課所學(xué)平行線判定的兩個方法,使學(xué)生明確,只要有同位角相等或內(nèi)錯角相等,就可以判定兩條直線平行。第3題是為推導(dǎo)本節(jié)到定定理做鋪墊,即如果同旁內(nèi)角互補,則可以推出同位角相等,也可以推出內(nèi)錯角相等,為定理的推理論證,分散了難點。
師:第4題是一個實際問題,題目中已知的兩個角是什么位置關(guān)系角?
學(xué)生活動:同分內(nèi)角。
師:它們有什么關(guān)系。
學(xué)生活動:互補。
師:這個問題就是知道同分內(nèi)角互補了,那么兩條直線是不是平行的呢?這就是這節(jié)課我們要研究的問題。
人教版初中數(shù)學(xué)優(yōu)質(zhì)課教案篇5
教學(xué)內(nèi)容:人教版七年級數(shù)學(xué)下冊第八章二元一次方程組第2節(jié)P96頁
教學(xué)目標
(1)基礎(chǔ)知識與技能目標:會用代入消元法解簡單的二元一次方程組。
(2)過程與方法目標:經(jīng)歷探索代入消元法解二元一次方程的過程,理解代入消元法的基本思想所體現(xiàn)的化歸思想方法。
(3)情感、態(tài)度與價值觀目標:通過提供適當(dāng)?shù)那榫迟Y料,吸引學(xué)生的注意力,激發(fā)學(xué)生的學(xué)習(xí)興趣;在合作討論中學(xué)會交流與合作,培養(yǎng)良好的數(shù)學(xué)思想,逐步滲透類比、化歸的意識。
教學(xué)重、難點關(guān)鍵
教學(xué)重點:用代入消元法解二元一次方程組
教學(xué)難點:探索如何用代入消元法解二元一次方程組,感受“消元”思想。
教學(xué)關(guān)鍵:把方程組中的某個方程變形,而后代入另一個方程中去,消去一個未知數(shù),轉(zhuǎn)化成一元一次方程。學(xué)生分析授課對象為少數(shù)民族地區(qū)的七年級學(xué)生,基礎(chǔ)知識薄弱,特別是對一元一次方程內(nèi)容掌握的不夠透徹,再加上厭學(xué)現(xiàn)象嚴峻,團結(jié)協(xié)作的能力差,本節(jié)課設(shè)計了他們感興趣的籃球比賽和常用的消毒液作為題材來研究二元一次方程組,既能調(diào)動他們的學(xué)習(xí)興趣,又能解決本節(jié)課所涉及到的問題,為以后的進一步學(xué)習(xí)二元一次方程組做好鋪墊。
教學(xué)內(nèi)容分析:本節(jié)主要內(nèi)容是在上節(jié)已認識二元一次方程(組)和二元一次方程(組)的解等概念的基礎(chǔ)上,來學(xué)習(xí)解方程組的第一種方法——代入消元法。并初步體會解二元一次方程組的基本思想“消元”。二元一次方程組的求解,不但用到了前面學(xué)過的一元一次方程的解法,是對過去所學(xué)知識的一個回顧和提高,同時,也為后面的利用方程組來解決實際問題打下了基礎(chǔ)。通過實際問題中二元一次方程組的應(yīng)用,進一步增強學(xué)生學(xué)習(xí)數(shù)學(xué)、用數(shù)學(xué)的意識,體會學(xué)數(shù)學(xué)的價值和意義。初中階段要掌握的二元一次方程組的消元解法有代入消元法和加減消元法兩種,教材都是按先求解后應(yīng)用的順序安排,這樣安排既可以在前一小節(jié)中有針對性的學(xué)習(xí)解法,又可在后一小節(jié)的應(yīng)用中鞏固前面的知識,但教材相對應(yīng)的練習(xí)安排較少,不過這樣也給了學(xué)生一較大的發(fā)揮空間。
教具準備教師準備:ppt多媒體課件投影儀
教學(xué)方法本節(jié)課采用“問題引入——探究解法——歸納反思”的教學(xué)方法,堅持啟發(fā)式教學(xué)。
教學(xué)過程
(一)創(chuàng)設(shè)情境,導(dǎo)入新課籃球聯(lián)賽中,每場比賽都要分出勝負,每隊勝一場得2分,負一場得1分,保安族中學(xué)校隊為了爭取較好的名次,想在全部22場比賽中得到40分,那么這個隊勝負場數(shù)分別是多少?
(二)合作交流,探究新知第一步,初步了解代入法1、在上述問題中,除了用一元一次方程解答外,我們還可以設(shè)出兩個未知數(shù),列出二元一次方程組學(xué)生活動:分別列出一元一次方程和二元一次方程組,兩個學(xué)生板演①設(shè)勝的場數(shù)是x,負的場數(shù)是y
x+y=22
2x+y=40
②設(shè)勝的場數(shù)是x,則負的場數(shù)為22-x
2x+(22-x)=40
2、自主探究,小組討論那么怎樣求解二元一次方程組呢?上面的二元一次方程組和一元一次方程有什么關(guān)系?
3、學(xué)生歸納,教師作補充上面的解法,第一步是由二元一次方程組中一個方程,將一個未知數(shù)用含另一未知數(shù)的式子表示出來,再代入另一方程,實現(xiàn)消元,進而求得這個二元一次方程組的解。這種方法叫做代入消元法,簡稱代入法。
第二步,用代入法解方程組把下列方程寫成用含x的式子表示y的形式(1)2x-y=5(2)4x+3y-1=0學(xué)生活動:嘗試自主完成,教師糾正思考:能否用含y的式子來表示x呢?
例1用代入法解方程組x-y=3①3x-8y=14②
思路點撥:先觀察這個方程組中哪一項系數(shù)較小,發(fā)現(xiàn)①中x的系數(shù)為1,這樣可以確定消x較簡單,首先用含y的代數(shù)式表示x,而后再代入②消元。
解:由①變形得X=y+3③
把③代入②,得3(y+3)-8y=14
解這個方程,得y=-1
把y=-1代入③,得X=2
所以這個方程組的解是X=2y=-1
如何檢驗得到的結(jié)果是否正確?學(xué)生活動:口答檢驗。
第三步,在實際生活中應(yīng)用代入法解方程組
例2根據(jù)市場調(diào)查,某種消毒液的大瓶裝(500g)和小瓶裝(250g)兩種產(chǎn)品的銷售數(shù)量(按瓶計算)比為2:5.某廠每天生產(chǎn)這種消毒液22.5噸,這些消毒液應(yīng)該分裝大、小瓶裝兩種產(chǎn)品各多少瓶?思路點撥:本題是實際應(yīng)用問題,可采用二元一次方程組為工具求解,這就需要構(gòu)建模型,尋找兩個等量關(guān)系,從題意可知:大瓶數(shù):小瓶數(shù)=2:5;大瓶所裝消毒液+小瓶所裝消毒液=總生產(chǎn)量(解題過程略)教師活動:啟發(fā)引導(dǎo)學(xué)生構(gòu)建二元一次方程組的模型。學(xué)生活動:嘗試設(shè)出:這些消毒液應(yīng)該分裝x個大瓶和y個小瓶,得到5x=2y500x+250y=22500000并解出x=20000y=50000
第四步,小組討論,得出步驟學(xué)生活動:根據(jù)例1、例2的解題過程,你們能不能歸納一下用代入法解二元一次方程組的步驟呢?小組討論一下。學(xué)生歸納,教師補充,總結(jié)出代入法解二元一次方程組的步驟:①選取一個系數(shù)較簡單的二元一次方程變形,用含有一個未知數(shù)的代數(shù)式表示另一個未知數(shù);②將變形后的方程代入另一個方程中,消去一個未知數(shù),得到一個一元一次方程(在代入時,要注意不能代入原方程,只能代入另一個沒有變形的方程中,以達到消元的目的。);③解這個一元一次方程,求出未知數(shù)的值;④將求得的未知數(shù)的值代入①中變形后的方程中,求出另一個未知數(shù)的值;⑤用“{”聯(lián)立兩個未知數(shù)的值,就是方程組的解;⑥最后檢驗求得的結(jié)果是否正確(代入原方程組中進行檢驗,方程是否滿足左邊=右邊)。
(三)分組比賽,鞏固新知為了激發(fā)學(xué)生的興趣,鞏固所學(xué)的知識,我把全班分成4個小組,把書本P98頁練習(xí)設(shè)計成必答題、搶答題和風(fēng)險題幾個集知識性、趣味性于一體的獨立版塊,練習(xí)是由易到難、由淺到深,以小組比賽的形式呈現(xiàn)出來,這樣既提高了學(xué)生的積極性,培養(yǎng)了團隊精神,也使各類學(xué)生的能力都得到不同的發(fā)展。
(四)歸納總結(jié),知識回顧1、通過這節(jié)課的學(xué)習(xí)活動,你有什么收獲?2、你認為在運用代入法解二元一次方程組時,應(yīng)注意什么問題?
(五)布置作業(yè)1、作業(yè):P103頁第1、2、4題2、思考:提出在日常生活中可以利用二元一次方程組來解決的實際問題。設(shè)計說明代入消元法體現(xiàn)了數(shù)學(xué)學(xué)習(xí)中“化未知為已知”的化歸思想方法,化歸的原則就是將不熟悉的問題化歸為比較熟悉的問題,用于解決新問題?;谶@點認識,本課按照“身邊的數(shù)學(xué)問題引入—尋求一元一次方程的解法—探索二元一次方程組的代入消元法—典型例題—歸納代入法的一般步驟”的思路進行設(shè)計。在教學(xué)過程中,充分調(diào)動學(xué)生的主觀能動性和發(fā)揮教師的主導(dǎo)作用,堅持啟發(fā)式教學(xué)。教師創(chuàng)設(shè)有趣的情境,引發(fā)學(xué)生自覺參與學(xué)習(xí)活動的積極性,使知識發(fā)現(xiàn)過程融于有趣的活動中。重視知識的發(fā)生過程。將設(shè)未知數(shù)列一元一次方程的求解過程與二元一次方程組相比較,從而得到二元一次方程組的代入(消元)解法,這種比較,可使學(xué)生在復(fù)習(xí)舊知識的同時,使新知識得以掌握,這對于學(xué)生體會新知識的產(chǎn)生和形成過程是十分重要的。
【本文地址:http://www.aiweibaby.com/zuowen/118137.html】