教案的好壞直接影響教學(xué)效果和學(xué)生學(xué)習(xí)質(zhì)量,是教師教學(xué)工作的重要組成部分。如何編寫一份高質(zhì)量的教案是每個教師都需要面對的問題。以下是一些教師編寫教案的思路和方法,供大家參考。
同角三角函數(shù)教案篇一
2結(jié)合的圖象及函數(shù)周期性的定義了解三角函數(shù)的周期性,及最小正周期。
3會用代數(shù)方法求等函數(shù)的周期。
4理解周期性的幾何意義。
周期函數(shù)的概念,周期的`求解。
1、是周期函數(shù)是指對定義域中所有都有。
即應(yīng)是恒等式。
2、周期函數(shù)一定會有周期,但不一定存在最小正周期。
例1、若鐘擺的高度與時間之間的函數(shù)關(guān)系如圖所示。
(2)求時鐘擺的高度。
(1)(2)。
總結(jié):(1)函數(shù)(其中均為常數(shù),且。
的周期t=。
(2)函數(shù)(其中均為常數(shù),且。
的周期t=。
例3、求證:的周期為。
例4、(1)研究和函數(shù)的圖象,分析其周期性。
(2)求證:的周期為(其中均為常數(shù),
且
總結(jié):函數(shù)(其中均為常數(shù),且。
的周期t=。
例5、(1)求的周期。
(2)已知滿足,求證:是周期函數(shù)。
課后思考:能否利用單位圓作函數(shù)的圖象。
六、作業(yè):
七、自主體驗與運用。
a、b、c、d、
a、b、c、d、
a、b、c、d、
a、b、c、d、
5、設(shè)是定義域為r,最小正周期為的函數(shù),
若,則的值等于()。
a、1b、c、0d、
7、已知函數(shù)的最小正周期不大于2,則正整數(shù)。
的最小值是。
8、求函數(shù)的最小正周期為t,且,則正整數(shù)。
的最大值是。
9、已知函數(shù)是周期為6的奇函數(shù),且則。
10、若函數(shù),則。
11、用周期的定義分析的周期。
12、已知函數(shù),如果使的周期在內(nèi),求。
正整數(shù)的值。
13、一機械振動中,某質(zhì)子離開平衡位置的位移與時間之間的。
函數(shù)關(guān)系如圖所示:
(2)求時,該質(zhì)點離開平衡位置的位移。
14、已知是定義在r上的函數(shù),且對任意有。
成立,
(1)證明:是周期函數(shù);。
(2)若求的值。
同角三角函數(shù)教案篇二
本節(jié)課是銳角三角形這章的第一節(jié)課,是學(xué)生在學(xué)了直角三角形及勾股定理基礎(chǔ)上再來研究直角三角形邊與角的關(guān)系的內(nèi)容,本章的知識通過解直角三角形與實際問題中的坡度、方向角方位角建立聯(lián)系,解決問題。本章是中考必考的知識點,特別是特殊角的三角函數(shù)值,一定要熟記。本節(jié)課雖考慮到本班學(xué)生自從分班以后,學(xué)習(xí)氛圍不濃,而基礎(chǔ)又較差,因而必須將難度降低想辦法調(diào)動學(xué)生的學(xué)習(xí)積極性;但在引入時,既用了直角三角形在數(shù)學(xué)中的重要地位,用:“黑夜給了我一個黑色的眼睛,我用它來尋找光明”類比數(shù)學(xué)中的“上帝給了我一雙黑色的眼睛,我用它來尋找直角三角形”說明尋找直角三角形對解決數(shù)學(xué)問題的重要性;然后又引入用學(xué)生最近反應(yīng)學(xué)習(xí)苦,學(xué)習(xí)累和不愛護公共財物的情況,從引入課桌要到了到其他貧困地區(qū)孩子午休誰桌子下的情況引入愛護公共財物,今兒從而引出本節(jié)課相關(guān)的知識。雖然大家都在說這節(jié)課的亮點就是將德育與數(shù)學(xué)知識結(jié)合起來,注重學(xué)科之間的聯(lián)系。但我始終覺得這樣的結(jié)合不免顯得優(yōu)點牽強,下來我將在思考如何讓本節(jié)課的引入與內(nèi)容結(jié)合得更好。
還有一個問題就是我在設(shè)計教學(xué)時,想到學(xué)生函數(shù)的基礎(chǔ)不好,很怕函數(shù),沒有考慮到和函數(shù)的定義聯(lián)系起來,而學(xué)生雖然會計算一個銳角的三角函數(shù)了,但對為什么把這些值成為這個銳角的三角函數(shù)并不清楚,在教學(xué)中我忽視了這一細節(jié),也沒有一個學(xué)生提出疑問,這說明學(xué)生只停留在定義的表面,并沒有深入思考。因此,在下次教學(xué)時,我要設(shè)計這么一個問題:“為什么把它們成為函數(shù)值?”來啟發(fā)學(xué)生。
同角三角函數(shù)教案篇三
角三角函數(shù)是定義在直角三角形中的研究邊角之間的關(guān)系,而銳角三角函數(shù)值實質(zhì)上就是邊與邊之間的一種比值,它能溝通了邊與角之間的聯(lián)系,為解直角三角形提供了角邊關(guān)系的根據(jù)。
本節(jié)課重難點就是對比值的理解,可以從以下幾方面著手研究:
(1)討論角的任意性(從特殊到一般)(2)運用相似三角形性質(zhì),讓學(xué)生領(lǐng)悟到:在直角三角形中,對于固定角,無論直角三角形大小怎么樣改變,都影響不到其對邊與斜邊的比值。
采用激趣設(shè)疑方法,從修建揚水站鋪設(shè)水管問題入手,讓學(xué)生參與問題討論,喚起學(xué)生學(xué)習(xí)興趣和求知欲。再根據(jù)從特殊到一般的學(xué)習(xí)方法,利用特殊角來探究銳角的三角函數(shù),通畫圖,找出邊的長度、角的度數(shù),計算相關(guān)方面進行探究,學(xué)生發(fā)現(xiàn):特殊角的三角函數(shù)值可以用勾股定理求出相關(guān)邊的長度,然后就問:三角函數(shù)與直角三角形的邊、角有什么關(guān)系,三角函數(shù)與三角形的形狀大小有關(guān)系嗎?整堂課都在愉快的氛圍中進行。多數(shù)學(xué)生都能積極動腦積極參與思考。教學(xué)中,要關(guān)注學(xué)生的情感態(tài)度,對那些積極動腦,熱情參與的同學(xué),都給予了鼓勵和表揚,促使學(xué)生的情感和興趣始終保持最佳狀態(tài),從而保證施教活動的有效性。
在以后教學(xué)中,還要多注意以下兩點:
(1)要多花點時間來研究如何調(diào)控課堂氣氛。學(xué)生的注意力是比較容易分散的,興趣也比較容易轉(zhuǎn)移,因此,越是生動形象的語言,越是寬松活潑的氣氛,越容易被他們接受。要不斷摸索,不斷實踐找到合適的教學(xué)風(fēng)格,每一種個性教學(xué)都是教學(xué)魅力和人格魅力的展現(xiàn)。
(2)要學(xué)會換位思考,站在學(xué)生的'角度上思考問題,設(shè)計好教學(xué)的每一個細節(jié),上課前多揣摩。讓學(xué)生更多地參與到課堂的教學(xué)過程中,讓學(xué)生體驗思考的過程,體驗成功的喜悅和失敗的挫折,學(xué)會真正把課堂還給學(xué)生,讓學(xué)生來做課堂的主角。
(3)下課后多反思,做好反饋工作,不斷總結(jié)得失,不斷進步。只有這樣,才能真正提高課堂教學(xué)效率。
同角三角函數(shù)教案篇四
1、下列命題中正確的是()。
a、第一象限角一定不是負角b、負角是第四象限角。
c、鈍角一定是第二象限角d、第二象限角一定是鈍角。
e、銳角是小于的角f、第一象限角一定是銳角。
g、第二象限角比第一象限角大h、終邊相同的角一定相等。
2、集合的關(guān)系是()。
a、b、c、d、以上都不對。
3、若三角形的兩內(nèi)角、滿足,則此三角形形狀是()。
a、銳角三角形b、鈍角三角形c、直角三角形d、不能確定。
4、若,且,則為第_______象限角。
5、已知角終邊經(jīng)過點,且=,則=_________。
6、化簡:(1)(2)。
例1、已知與角的終邊相同,判斷和是第幾象限角。
變:已知是第三象限角,判斷和是第幾象限角。
例2、已知扇形的周長為,圓心角為,則扇形的弧長和面積為多少?
例3、已知,求,的值。
例4、已知2,求下列各式的值:
(1)(2)。
例5、已知點在角的終邊上,且,求的值。
例6、已知sin=,求的值。
班級:高一()班姓名__________。
1、若角與角的`終邊相同,則。
2、若是第二象限角,則是第象限角,是第象限角。
3、在半徑為的輪子上有一點,輪子按順時針方向旋轉(zhuǎn)二周半,則圓心與點的連線所轉(zhuǎn)過的角的弧度數(shù)為_________,點經(jīng)過的路程為_________。
4、若,則______________。
5、若,則_________________。
6、已知2,求下列各式的值:
(1)(2)。
7、已知,求下列各式的值:
(1)(2)(3)。
8、已知,且,求的值。
9、化簡:(3)(4)。
10、設(shè),求的值。
同角三角函數(shù)教案篇五
一、弄清對鄰斜。
銳角三角函數(shù)是定義在直角三角形中的研究邊角之間的關(guān)系。而銳角三角函數(shù)值實質(zhì)上就是邊與邊之間的'一種比值,它能溝通了邊與角之間的聯(lián)系,為解直角三角形提供了角邊關(guān)系的根據(jù)。不管角怎樣變,斜邊是固定的,直角邊或是某一銳角的對邊或是某一銳角的鄰邊。不要死記硬背a,b,c的比值。記清對鄰斜兩者之比。
三、應(yīng)用公式變形解決實際問題。
同角三角函數(shù)教案篇六
2.借助單位圓理解任意角三角函數(shù)(正弦、余弦、正切)的定義;。
3.能利用三角函數(shù)線解決一些簡單的三角函數(shù)問題。
2.讓學(xué)生從所學(xué)知識基礎(chǔ)上發(fā)現(xiàn)新問題,并加以解決,提高學(xué)生抽象概括、分析歸納、數(shù)學(xué)表述等基本數(shù)學(xué)思維能力.
1.通過學(xué)生之間、師生之間的交流合作,實現(xiàn)共同探究獲取知識.
教學(xué)難點:利用與單位圓有關(guān)的有向線段,將任意角的正弦、余弦、正切函數(shù)值分別用它們的幾何形式表示出來.
同角三角函數(shù)教案篇七
這是一節(jié)初三的復(fù)習(xí)課,王老師在教案中講到在近幾年中考數(shù)學(xué)試題中,在銳角三角函數(shù)這節(jié)命題多以填空題,選擇題的形式出現(xiàn),主要考察三角函數(shù)的計算,三角函數(shù)的定義,三角函數(shù)的增減性,同角三角函數(shù)關(guān)系,互余三角函數(shù)關(guān)系。圍繞著這個目標(biāo),王老師先讓學(xué)生明白他們應(yīng)該掌握什么,必須掌握什么,并精心設(shè)計了很多練習(xí),從學(xué)生的反映中來看,大多數(shù)同學(xué)都掌握的比較好,基本達到了黃老師事先所制定的教學(xué)目標(biāo)。
王老師教學(xué)基本功比較扎實,板書非常清晰,教態(tài)和語言有一定的號召力。對教學(xué)內(nèi)容非常熟悉。我想如果把這節(jié)課分為兩節(jié)課,那效果會更加好。
同角三角函數(shù)教案篇八
這是一節(jié)初三總復(fù)習(xí)課,內(nèi)容是銳角三角函數(shù)。王老師以基礎(chǔ)知識的復(fù)習(xí)、基本技能的訓(xùn)練為主,緊跟教學(xué)大綱,選擇了幾個典型例題,開拓了學(xué)生的知識面,豐富了學(xué)生的題型結(jié)構(gòu)。同時向?qū)W生進行了一題多種解法思想的滲透,這樣活躍了學(xué)生的思維,豐富了學(xué)生的知識內(nèi)涵。老師對教材,教學(xué)大綱理解得非常透徹,對課堂把握能力強,反應(yīng)很快,能積極跟上學(xué)生的思維,因時制宜的調(diào)整教學(xué)節(jié)奏,語速快而清晰,教態(tài)、板書也能給學(xué)生有積極的影響,富有感染力。例題的選擇合理、新穎且有難度,即有常見的基本計算與證明,也有一定難度的探索型、操作型問題,更有對于知識點綜合應(yīng)用的綜合題,層次鮮明,滿足了不同奮斗目標(biāo)學(xué)生的不同要求。教學(xué)上多媒體的運用,較直觀地了解題意,提高解答的準(zhǔn)確率,課堂上充分發(fā)揮了學(xué)生的主體性,以學(xué)生的發(fā)展為本,通過小組合作,增強了學(xué)生的合作意識,又取長補短,互相競爭,營造了良好的教學(xué)氛圍,而教師知識組織者,只是參與、啟發(fā)、點撥、糾偏,培養(yǎng)了學(xué)生的創(chuàng)造能力和發(fā)散思維能力。
同角三角函數(shù)教案篇九
教學(xué)反思:
銳角三角函數(shù)在解決現(xiàn)實問題中有著重要的作用,但是銳角三角函數(shù)首先是放在直角三角形中研究的,顯示的是邊角之間的關(guān)系。銳角三角函數(shù)值是邊與邊之間的比值,銳角三角函數(shù)溝通了邊與角之間的聯(lián)系,它是解直角三角形最有力的工具之一。
在今后教學(xué)過程中,自己還要多注意以下兩點:
(1)還要多下點工夫在如何調(diào)動課堂氣氛,使語言和教態(tài)更加生動上。初中學(xué)生的.注意力還是比較容易分散的,興趣也比較容易轉(zhuǎn)移,因此,越是生動形象的語言,越是寬松活潑的氣氛,越容易被他們接受。如何找到適合自己適合學(xué)生的教學(xué)風(fēng)格?或嚴(yán)謹有序,或生動活潑,或詼諧幽默,或詩情畫意,或春風(fēng)細雨潤物細無聲,或激情飛揚,每一種都是教學(xué)魅力和人格魅力的展現(xiàn)。我將不斷摸索,不斷實踐。
(2)我將盡我可能站在學(xué)生的角度上思考問題,設(shè)計好教學(xué)的每一個細節(jié),上課前多揣摩。讓學(xué)生更多地參與到課堂的教學(xué)過程中,讓學(xué)生體驗思考的過程,體驗成功的喜悅和失敗的挫折,舍得把課堂讓給學(xué)生,讓學(xué)生做課堂這個小小舞臺的主角。而我將盡我最大可能在課堂上投入更多的情感因素,豐富課堂語言,使課堂更加鮮活,充滿人性魅力,下課后多反思,做好反饋工作,不斷總結(jié)得失,不斷進步。只有這樣,才能真正提高課堂教學(xué)效率。
同角三角函數(shù)教案篇十
數(shù)學(xué)是一門培養(yǎng)人的思維,發(fā)展人的思維的重要學(xué)科。因此,在教學(xué)中,不僅要使學(xué)生“知其然”而且要使學(xué)生“知其所以然”。所以在學(xué)生為主體,教師為主導(dǎo)的原則下,要充分揭示獲取知識和方法的思維過程。因此本節(jié)課我以建構(gòu)主義的“創(chuàng)設(shè)問題情境——提出數(shù)學(xué)問題——嘗試解決問題——驗證解決方法”為主,主要采用觀察、啟發(fā)、類比、引導(dǎo)、探索相結(jié)合的教學(xué)方法。在教學(xué)手段上,則采用多媒體輔助教學(xué),將抽象問題形象化,使教學(xué)目標(biāo)體現(xiàn)的更加完美。
三角函數(shù)的誘導(dǎo)公式是普通高中課程標(biāo)準(zhǔn)實驗教科書(人教a版)數(shù)學(xué)必修四,第一章第三節(jié)的內(nèi)容,其主要內(nèi)容是三角函數(shù)誘導(dǎo)公式中的公式(二)至公式(六).本節(jié)是第一課時,教學(xué)內(nèi)容為公式(二)、(三)、(四).教材要求通過學(xué)生在已經(jīng)掌握的任意角的三角函數(shù)的定義和誘導(dǎo)公式(一)的基礎(chǔ)上,利用對稱思想發(fā)現(xiàn)任意角與終邊的對稱關(guān)系,發(fā)現(xiàn)他們與單位圓的交點坐標(biāo)之間關(guān)系,進而發(fā)現(xiàn)他們的三角函數(shù)值的關(guān)系,即發(fā)現(xiàn)、掌握、應(yīng)用三角函數(shù)的誘導(dǎo)公式公式(二)、(三)、(四).同時教材滲透了轉(zhuǎn)化與化歸等數(shù)學(xué)思想方法,為培養(yǎng)學(xué)生養(yǎng)成良好的學(xué)習(xí)習(xí)慣提出了要求.為此本節(jié)內(nèi)容在三角函數(shù)中占有非常重要的地位.
本節(jié)課的授課對象是本校高一(1)班全體同學(xué),本班學(xué)生水平處于中等偏下,但本班學(xué)生具有善于動手的良好學(xué)習(xí)習(xí)慣,所以采用發(fā)現(xiàn)的教學(xué)方法應(yīng)該能輕松的完成本節(jié)課的教學(xué)內(nèi)容.
(1).基礎(chǔ)知識目標(biāo):理解誘導(dǎo)公式的發(fā)現(xiàn)過程,掌握正弦、余弦、正切的誘導(dǎo)公式;。
(4).個性品質(zhì)目標(biāo):通過誘導(dǎo)公式的學(xué)習(xí)和應(yīng)用,感受事物之間的普通聯(lián)系規(guī)律,運用化歸等數(shù)學(xué)思想方法,揭示事物的本質(zhì)屬性,培養(yǎng)學(xué)生的唯物史觀.
1.教學(xué)重點。
理解并掌握誘導(dǎo)公式.
2.教學(xué)難點。
正確運用誘導(dǎo)公式,求三角函數(shù)值,化簡三角函數(shù)式.
“授人以魚不如授之以魚”,作為一名老師,我們不僅要傳授給學(xué)生數(shù)學(xué)知識,更重要的是傳授給學(xué)生數(shù)學(xué)思想方法,如何實現(xiàn)這一目的,要求我們每一位教者苦心鉆研、認真探究.下面我從教法、學(xué)法、預(yù)期效果等三個方面做如下分析.
1.教法。
數(shù)學(xué)教學(xué)是數(shù)學(xué)思維活動的教學(xué),而不僅僅是數(shù)學(xué)活動的結(jié)果,數(shù)學(xué)學(xué)習(xí)的目的不僅僅是為了獲得數(shù)學(xué)知識,更主要作用是為了訓(xùn)練人的思維技能,提高人的思維品質(zhì).
在本節(jié)課的教學(xué)過程中,本人以學(xué)生為主題,以發(fā)現(xiàn)為主線,盡力滲透類比、化歸、數(shù)形結(jié)合等數(shù)學(xué)思想方法,采用提出問題、啟發(fā)引導(dǎo)、共同探究、綜合應(yīng)用等教學(xué)模式,還給學(xué)生“時間”、“空間”,由易到難,由特殊到一般,盡力營造輕松的學(xué)習(xí)環(huán)境,讓學(xué)生體味學(xué)習(xí)的快樂和成功的喜悅.
2.學(xué)法。
“現(xiàn)代的文盲不是不識字的人,而是沒有掌握學(xué)習(xí)方法的人”,很多課堂教學(xué)常常以高起點、大容量、快推進的做法,以便教給學(xué)生更多的知識點,卻忽略了學(xué)生接受知識需要時間消化,進而泯滅了學(xué)生學(xué)習(xí)的興趣與熱情.如何能讓學(xué)生最大程度的消化知識,提高學(xué)習(xí)熱情是教者必須思考的問題.
在本節(jié)課的教學(xué)過程中,本人引導(dǎo)學(xué)生的學(xué)法為思考問題共同探討解決問題簡單應(yīng)用重現(xiàn)探索過程練習(xí)鞏固.讓學(xué)生參與探索的全部過程,讓學(xué)生在獲取新知識及解決問題的方法后,合作交流、共同探索,使之由被動學(xué)習(xí)轉(zhuǎn)化為主動的自主學(xué)習(xí).
3.預(yù)期效果。
本節(jié)課預(yù)期讓學(xué)生能正確理解誘導(dǎo)公式的發(fā)現(xiàn)、證明過程,掌握誘導(dǎo)公式,并能熟練應(yīng)用誘導(dǎo)公式了解一些簡單的化簡問題.
(一)創(chuàng)設(shè)情景。
1.復(fù)習(xí)銳角300,450,600的三角函數(shù)值;。
3.問題:由,你能否知道sin2100的值嗎?引如新課.
設(shè)計意圖。
自信的鼓勵是增強學(xué)生學(xué)習(xí)數(shù)學(xué)的自信,簡單易做的題加強了每個學(xué)生學(xué)習(xí)的熱情,具體數(shù)據(jù)問題的出現(xiàn),讓學(xué)生既有好像會做的心理但又有迷惑的茫然,去發(fā)掘潛力期待尋找機會證明我能行,從而思考解決的辦法.
(二)新知探究。
1.讓學(xué)生發(fā)現(xiàn)300角的終邊與2100角的終邊之間有什么關(guān)系;。
2100與sin300之間有什么關(guān)系.
設(shè)計意圖。
由特殊問題的引入,使學(xué)生容易了解,實現(xiàn)教學(xué)過程的平淡過度,為同學(xué)們探究發(fā)現(xiàn)任意角與的'三角函數(shù)值的關(guān)系做好鋪墊.
(三)問題一般化。
探究一。
1.探究發(fā)現(xiàn)任意角的終邊與的終邊關(guān)于原點對稱;。
2.探究發(fā)現(xiàn)任意角的終邊和角的終邊與單位圓的交點坐標(biāo)關(guān)于原點對稱;。
3.探究發(fā)現(xiàn)任意角與的三角函數(shù)值的關(guān)系.
設(shè)計意圖。
(四)練習(xí)。
利用誘導(dǎo)公式(二),口答下列三角函數(shù)值.
(1).;(2).;(3)..
喜悅之后讓我們重新啟航,接受新的挑戰(zhàn),引入新的問題.
(五)問題變形。
由sin300=出發(fā),用三角的定義引導(dǎo)學(xué)生求出sin(-300),sin1500值,讓學(xué)生聯(lián)想若已知sin=,能否求出sin(),sin()的值.
學(xué)生自主探究。
1.探究任意角與的三角函數(shù)又有什么關(guān)系;。
2.探究任意角與的三角函數(shù)之間又有什么關(guān)系.
設(shè)計意圖。
遺忘的規(guī)律是先快后慢,過程的再現(xiàn)是深刻記憶的重要途徑,在經(jīng)歷思考問題-觀察發(fā)現(xiàn)-到一般化結(jié)論的探索過程,從特殊到一般,數(shù)形結(jié)合,學(xué)生對知識的理解與掌握以深入腦中,此時以類同問題的提出,大膽的放手讓學(xué)生分組討論,重現(xiàn)了探索的整個過程,加深了知識的深刻記憶,對學(xué)生無形中鼓舞了氣勢,增強了自信,加大了挑戰(zhàn).而新知識點的自主探討,對教師駕馭課堂的能力也充滿了極大的挑戰(zhàn).彼此相信,彼此信任,產(chǎn)生了師生的默契,師生共同進步.
展示學(xué)生自主探究的結(jié)果。
給出本節(jié)課的課題。
設(shè)計意圖。
標(biāo)題的后出,讓學(xué)生在經(jīng)歷整個探索過程后,還回味在探索,發(fā)現(xiàn)的成功喜悅中,猛然回頭,哦,原來知識點已經(jīng)輕松掌握,同時也是對本節(jié)課內(nèi)容的小結(jié).
(六)概括升華。
的三角函數(shù)值,等于的同名函數(shù)值,前面加上一個把看成銳角時原函數(shù)值的符合.(即:函數(shù)名不變,符號看象限.)。
設(shè)計意圖。
簡便記憶公式.
(七)練習(xí)強化。
求下列三角函數(shù)的值:(1).sin();(2).co.
設(shè)計意圖。
學(xué)生練習(xí)。
化簡:.
設(shè)計意圖。
重點加強對三角函數(shù)的誘導(dǎo)公式的綜合應(yīng)用.
(八)小結(jié)。
1.小結(jié)使用誘導(dǎo)公式化簡任意角的三角函數(shù)為銳角的步驟.
2.體會數(shù)形結(jié)合、對稱、化歸的思想.
3.“學(xué)會”學(xué)習(xí)的習(xí)慣.
(九)作業(yè)。
1.課本p-27,第1,2,3小題;。
2.附加課外題略.
設(shè)計意圖。
加強學(xué)生對三角函數(shù)的誘導(dǎo)公式的記憶及靈活應(yīng)用,附加題的設(shè)置有利于有能力的同學(xué)“更上一樓”.
(十)板書設(shè)計:(略)。
同角三角函數(shù)教案篇十一
1、銳角三角形中,任意兩個內(nèi)角的和都屬于區(qū)間,且滿足不等式:。
即:一角的正弦大于另一個角的余弦。
2、若,則,。
3、的圖象的對稱中心為(),對稱軸方程為。
4、的圖象的對稱中心為(),對稱軸方程為。
5、及的圖象的對稱中心為()。
6、常用三角公式:。
有理公式:;。
降次公式:,;。
萬能公式:,,(其中)。
7、輔助角公式:,其中。輔助角的位置由坐標(biāo)決定,即角的終邊過點。
8、時,。
9、。
其中為內(nèi)切圓半徑,為外接圓半徑。
特別地:直角中,設(shè)c為斜邊,則內(nèi)切圓半徑,外接圓半徑。
10、的圖象的圖象(時,向左平移個單位,時,向右平移個單位)。
11、解題時,條件中若有出現(xiàn),則可設(shè),。
則。
12、等腰三角形中,若且,則。
13、若等邊三角形的邊長為,則其中線長為,面積為。
14、;。
同角三角函數(shù)教案篇十二
1.近幾年高考對三角變換的考查要求有所降低,而對本章的內(nèi)容的考查有逐步加強的趨勢,主要表現(xiàn)在對三角函數(shù)的圖象與性質(zhì)的考查上有所加強。
(3)應(yīng)用同角變換和誘導(dǎo)公式,求三角函數(shù)值及化簡和等式證明的問題;
(4)與周期有關(guān)的問題。
3.基本的解題規(guī)律為:觀察差異(或角,或函數(shù),或運算),尋找聯(lián)系(借助于熟知的公式、方法或技巧),分析綜合(由因?qū)Ч驁?zhí)果索因),實現(xiàn)轉(zhuǎn)化。解題規(guī)律:在三角函數(shù)求值問題中的解題思路,一般是運用基本公式,將未知角變換為已知角求解;在最值問題和周期問題中,解題思路是合理運用基本公式將表達式轉(zhuǎn)化為由一個三角函數(shù)表達的形式求解。
4.立足課本、抓好基礎(chǔ)。從前面敘述可知,我們已經(jīng)看到近幾年高考已逐步拋棄了對復(fù)雜三角變換和特殊技巧的考查,而重點轉(zhuǎn)移到對三角函數(shù)的圖象與性質(zhì)的考查,對基礎(chǔ)知識和基本技能的考查上來,所以在復(fù)習(xí)中首先要打好基礎(chǔ)。在考查利用三角公式進行恒等變形的同時,也直接考查了三角函數(shù)的性質(zhì)及圖象的變換,可見高考在降低對三角函數(shù)恒等變形的要求下,加強了對三角函數(shù)性質(zhì)和圖象的考查力度。
同角三角函數(shù)教案篇十三
1、教材的地位與作用:《同角三角函數(shù)的基本關(guān)系》是學(xué)習(xí)三角函數(shù)定義后安排的一節(jié)繼續(xù)深入學(xué)習(xí)的內(nèi)容,是求三角函數(shù)值,化簡三角函數(shù)式,證明三角恒等式的基本工具,是整個三角函數(shù)的基礎(chǔ),起承上啟下的作用,同時,它體現(xiàn)的數(shù)學(xué)思想方法在整個中學(xué)學(xué)習(xí)中起重要作用。
2、教學(xué)目標(biāo)的確定及依據(jù)。
a、知識與技能目標(biāo):通過觀察猜想出兩個公式,運用數(shù)形結(jié)合的思想讓學(xué)生掌握公式的推導(dǎo)過程,理解同角三角函數(shù)的基本關(guān)系式,掌握基本關(guān)系式在兩個方面的應(yīng)用:1)已知一個角的一個三角函數(shù)值能求這個角的其他三角函數(shù)值;2)證明簡單的三角恒等式。
b、過程與方法:培養(yǎng)學(xué)生觀察——猜想——證明的科學(xué)思維方式;通過公式的推導(dǎo)過程培養(yǎng)學(xué)生用舊知識解決新問題的思想;通過求值、證明來培養(yǎng)學(xué)生邏輯推理能力;通過例題與練習(xí)提高學(xué)生動手能力、分析問題解決問題的能力以及其知識遷移能力。
c、情感、態(tài)度與價值觀:經(jīng)歷數(shù)學(xué)研究的過程,體驗探索的樂趣,增強學(xué)習(xí)數(shù)學(xué)的興趣。
3、教學(xué)重點和難點。
同角三角函數(shù)教案篇十四
3、問題:由,你能否知道sin2100的值嗎?引如新課。
設(shè)計意圖。
自信的鼓勵是增強學(xué)生學(xué)習(xí)數(shù)學(xué)的自信,簡單易做的題加強了每個學(xué)生學(xué)習(xí)的熱情,具體數(shù)據(jù)問題的出現(xiàn),讓學(xué)生既有好像會做的心理但又有迷惑的茫然,去發(fā)掘潛力期待尋找機會證明我能行,從而思考解決的辦法。
(二)新知探究。
1、讓學(xué)生發(fā)現(xiàn)300角的終邊與2100角的終邊之間有什么關(guān)系;
3、sin2100與sin300之間有什么關(guān)系。
設(shè)計意圖。
由特殊問題的引入,使學(xué)生容易了解,實現(xiàn)教學(xué)過程的平淡過度,為同學(xué)們探究發(fā)現(xiàn)任意角與的三角函數(shù)值的關(guān)系做好鋪墊。
(三)問題一般化。
同角三角函數(shù)教案篇十五
數(shù)學(xué)的大題是由小題堆積起來的,只是增加了邏輯過程;難題是由易題延伸出來的,只是將定義與概念以及原理隱藏的更深而已。所以,三角函數(shù)的學(xué)習(xí),更加注重對定義域概念的學(xué)習(xí)和深刻的理解。在平時的學(xué)習(xí)中,更應(yīng)立足教材,學(xué)好用好教材,深入地鉆研定義與概念,切忌眼高手低,偏重難題,搞題海戰(zhàn)術(shù)!比如,弧度制下角的概念,六種三角函數(shù)的定義,所有的公式來源,三角函數(shù)圖像的平移與放縮,等等。說句狠話:弄不懂概念,你就別做題!你做了題,就要弄明白你是在使用什么概念什么定義什么公式!不要追求方法與技巧,因為方法與技巧來源于概念與定義。
2、記住公式不是靠背。
任何一種學(xué)習(xí)活動,都是先有理解,再有記憶,而后是靈變與應(yīng)用。面對眾多的三角公式,很多同學(xué)采用錯誤的做法:死記硬背!其結(jié)果是仍然會用錯,仍然記不住。與其花費大量的時間稀里糊涂做題,不如花點時間先從最原始的定義與概念推到公式!我曾經(jīng)有過一種比較極端然而卻非常有效的做法,讓一位一想到三角函數(shù)公式就暈就錯的學(xué)生先不做題,先整理理論,用定義與概念相互說明,用公式與公式相互推導(dǎo)。理論系統(tǒng)明白了,解題的思路和方法技巧也就順理成章了。
3、學(xué)會反思與整合。
建構(gòu)主義學(xué)習(xí)觀認為知識并不是簡單的由教師或者其他人傳授給學(xué)生的,而只能由學(xué)生依據(jù)自身已有的知識、經(jīng)驗,主動地加以建構(gòu)。建構(gòu)一詞包含有兩重含義,一是悟,二是創(chuàng)造。一個批判、選擇、和存疑的過程,一個充滿想象、探索和體驗的過程。你不想學(xué),老師強行的逼迫是不容易的或者說是作用不大,俗話說“強扭的瓜不甜”嘛!數(shù)學(xué)學(xué)習(xí)不但要對概念、結(jié)論和技能進行記憶,積累和模仿,而且還要動手實踐,自主探索,并且在獲得知識的基礎(chǔ)上進行反思與整合。所以我們在平時學(xué)習(xí)中要注意反思,只有這樣才能使內(nèi)容得到鞏固,知識的得到拓展,能力得到提高,思維得到優(yōu)化,創(chuàng)新能力得到真正的發(fā)展,希望大能夠讓數(shù)學(xué)反思與整合成為我們的自然的習(xí)慣!
同角三角函數(shù)教案篇十六
本主題單元共分3部分,第一部分復(fù)習(xí)三角公式,第二部分復(fù)習(xí)三角函數(shù)圖象與性質(zhì),第三部分復(fù)習(xí)正余弦定理,本節(jié)課是第二部分“收官”課,期待學(xué)生在知識和能力上得到螺旋上升的發(fā)展.因此,本節(jié)課的重點是三角函數(shù)的圖象和性質(zhì)的完美結(jié)合與靈活運用.難點則體現(xiàn)在知識轉(zhuǎn)化和變通過程中,學(xué)生綜合運用知識解決問題能力的提升上.
二、命題走向。
近幾年高考降低了對三角變換的考查要求,而加強了對三角函數(shù)的圖象與性質(zhì)的考查,因為函數(shù)的性質(zhì)是研究函數(shù)的一個重要內(nèi)容,是學(xué)習(xí)高等數(shù)學(xué)和應(yīng)用技術(shù)學(xué)科的基礎(chǔ),又是解決生產(chǎn)實際問題的工具,因此三角函數(shù)的性質(zhì)是本單元復(fù)習(xí)的重點.在復(fù)習(xí)時要充分運用數(shù)形結(jié)合的思想,把圖象與性質(zhì)結(jié)合起來,利用圖象的直觀性得出函數(shù)的性質(zhì),同時也要能利用函數(shù)的性質(zhì)來描繪函數(shù)的圖象,這樣既有利于掌握函數(shù)的圖象與性質(zhì),又能熟練地運用數(shù)形結(jié)合的思想方法.
三、設(shè)計理念與思想。
翻轉(zhuǎn)課堂的核心理念是使“知識傳遞發(fā)生在課外,知識內(nèi)化發(fā)生在課堂”.所以我們需要重新建構(gòu)學(xué)習(xí)流程,“信息傳遞”是學(xué)生在課前進行的,老師不僅提供了視頻,還可以提供在線的輔導(dǎo);“吸收內(nèi)化”是在課堂上通過互動來完成的,教師能夠提前了解學(xué)生的學(xué)習(xí)困難,在課堂上給予有效的輔導(dǎo),同學(xué)之間的相互交流更有助于促進學(xué)生知識的吸收內(nèi)化過程.與傳統(tǒng)理念相比,課堂和老師的角色都發(fā)生了變化.老師更多的責(zé)任是理解學(xué)生的問題和引導(dǎo)學(xué)生運用知識,發(fā)揮組織者、引導(dǎo)者、合作者的作用,引導(dǎo)學(xué)生主體參與、揭示本質(zhì)、經(jīng)歷過程.
四、學(xué)生學(xué)習(xí)情況分析。
青島2中分校近年來錄取分數(shù)線有了明顯提高,在孫先亮校長“辦學(xué)生發(fā)展需要的學(xué)?!?,“每個學(xué)生都是好學(xué)生”等先進教育理念的引領(lǐng)下,學(xué)生的綜合能力得到不斷提升.本屆學(xué)生是2中分校成立以來即將畢業(yè)的第二屆,高三.2班是本人高二分班后新接任的班級,班級整體水平提升較快.
五、教學(xué)目標(biāo)。
1.通過課前視頻,自主梳理正弦、余弦、正切函數(shù)的圖象和性質(zhì).
2.能靈活運用三角函數(shù)的圖象與性質(zhì)設(shè)計并解決問題,進一步領(lǐng)會數(shù)形結(jié)合的思想,提高學(xué)生思維的變通性.
3.通過獨立思考和小講師的分析,提高學(xué)生學(xué)習(xí)的主動性、參與度,提升合作探究的能力.
六、教學(xué)過程。
課前視頻:
[設(shè)計意圖]用熟悉的流行歌曲調(diào)動學(xué)生的學(xué)習(xí)積極性。
2.【自主梳理】三角函數(shù)的圖象和性質(zhì)。
函數(shù)y=sinxy=cosxy=tanx。
一個周期內(nèi)的圖象。
定義域。
值域。
奇偶性。
周期性。
對稱性對稱中心:
對稱軸:對稱中心:
對稱軸:對稱中心:
對稱軸:
單調(diào)性在___________________上增,在____________________上減在___________________上增,在___________________上減_____________________上是增函數(shù)最值x=___________________時,y取最大值1;x=___________________時,y取最小值-1.x=___________________時,y取最大值1;x=___________________時,y取最小值-1.
[設(shè)計意圖]通過表格的形式使學(xué)生自主鞏固三個基本初等函數(shù)的基本知識,為課堂小講師搭建表現(xiàn)平臺,也為本節(jié)課的目標(biāo)2的達成奠定堅實的基礎(chǔ).
(3)函數(shù)的對稱中心是.
(4)將函數(shù)的圖象向左平移個單位,再將所得圖象上各點的橫坐標(biāo)縮短為原來的倍,縱坐標(biāo)不變,得到函數(shù)的圖象,則函數(shù)單調(diào)增區(qū)間是.
[設(shè)計意圖]研究三角函數(shù)的性質(zhì)問題,常常先把函數(shù)解析式化簡為正弦型或余弦型函數(shù),通過正弦型或余弦型函數(shù)來解決問題.正弦型或余弦型函數(shù)一般都是由幾個簡單基本初等函數(shù)復(fù)合而成,這里讓學(xué)生體會如何由一個題目完成幾個知識點的考查,引起學(xué)生的探究興趣,激發(fā)求知欲望.
同角三角函數(shù)教案篇十七
1、先做簡單題,后做難題。
2、遇到較難的大題,把所有跟該題有關(guān)的知識點都寫出來,要知道數(shù)學(xué)講究步驟分。
3、若是證明題,萬一不會,可以先寫出已知條件,再寫出要證明的最后一步,再一步一步往上推,中間步驟隨便寫點。(使用于粗心的教師,但我們不提倡,重點是要平時學(xué)好)。
一、整體把握、抓大放小。
拿到試卷后可以先快速瀏覽一下所有題目,根據(jù)積累的考試經(jīng)驗,大致估計一下每部分應(yīng)該分配的時間。對于能夠很快做出來的.題目,一定要拿到應(yīng)得的分數(shù)。
二、確定每部分的答題時間。
1、考試時占用了很多時間卻一點也沒有做出來的題目。對于這類題目,你以后考試時就應(yīng)該盡量減少時間,或者放棄,等以后學(xué)習(xí)進階了再嘗試著做。
2、考試時花了過多的時間才做出來的題目。對于這類題目,你以后平時做題時要盡量加快速度,或者通過“反復(fù)訓(xùn)練”等提高反應(yīng)速度,這樣,你下次考試時能用較少的時間做出來。
三、碰到難題時。
1、你可以先用“直覺”最快的找到解題思路;。
2、如果“直覺”不管用,你可以聯(lián)想以前做過的類似的題目,從而找到解題思路;。
3、如果這樣也不行,你可以猜測一下這道題目可能涉及到的知識點和解題技巧。
4、對于花了一定時間仍然不能做出來的題目,要勇于放棄。
四、卷面整潔、字跡清楚、注意小節(jié)。
做到卷面整潔、字跡清楚,把標(biāo)點、符號、解題步驟等小的地方盡量做好,不要丟掉應(yīng)得的每一分。
同角三角函數(shù)教案篇十八
教學(xué)目標(biāo):
1、抓住中心句,聯(lián)系上下文,體悟其真正內(nèi)涵。
2、運用課文語言練說,以內(nèi)化語言,強化感受。
3、分角色朗讀,讀出體會和感悟。
4、聯(lián)系自身情況,談?wù)劯惺堋?/p>
教學(xué)過程:
一、板書課題,點明中心句。
1、題目“軍神”是從哪兒來的?
2、把沃克醫(yī)生說的話讀一讀。
二、理解中心句。
1、齊讀。
2、有幾句話?
3、指導(dǎo)朗讀:體會一下該怎樣讀?
三、聯(lián)系上文內(nèi)容,體會內(nèi)涵。
1、沃克醫(yī)生怎么知道劉伯承是一位軍人的呢?哪一節(jié)寫的?(生邊默讀邊思考)。
2、分組朗讀第一節(jié)。師讀旁白,生體會鎮(zhèn)定。
3、沃克為什么稱劉伯承為“軍神”呢?我們分別從手術(shù)前、手術(shù)中、手術(shù)后來體會朗讀。
4、手術(shù)前,從哪兒看出劉伯承是“軍神”?
生邊默讀邊練說:手術(shù)前,劉伯承堅決______,堅定認為能_____,行為也很________!
追問:他為什么堅決不愿意使用麻醉劑?
5、分角色朗讀第2節(jié),體會堅決。
6、手術(shù)中,從哪兒看出劉伯承是位軍神?生邊默讀邊劃重點詞邊練說:手術(shù)中,連一向鎮(zhèn)定的沃克醫(yī)生都_____,可劉伯承______,一條嶄新的床單竟然被他______。
追問:一向鎮(zhèn)定的沃克醫(yī)生,這次為什么雙手微微發(fā)抖?聯(lián)系下文說說。
“一條嶄新的床單竟然被他抓破了”,你可以從中體會到什么?
7、男女生分角色朗讀:女生讀出沃克醫(yī)生擔(dān)心、緊張的神態(tài),男生讀出劉伯承忍受劇痛的堅強。
8、過渡:沃克是在什么情況下稱劉伯承為“軍神”的?同學(xué)們輕聲讀第5節(jié),然后回答。
練說:沃克問劉伯承_____,劉伯承笑著說___。在這種情況下,沃克稱劉伯承為________。
9、想象一下,沃克這樣喊時臉上會露出怎樣的神情?哪個詞語告訴我們這一點?
師點撥:失聲喊道,不由自主地喊起來,人只有在驚訝到了極點的時候才會這樣喊。
10、師述:是啊,手術(shù)中不用麻醉劑能忍受劇烈疼痛的病人沃克醫(yī)生也許碰到過,但能一刀由一刀數(shù)清刀數(shù)的病人沃克醫(yī)生在此之前絕對沒有碰到過,所以他才會驚奇到極點。同學(xué)們想想看吧,一刀,一刀,又一刀,72刀啊,該要忍受多長時間的劇痛?。∥挚酸t(yī)生擔(dān)心他會暈過去,可他數(shù)得清清楚楚。這需要多么堅強的意志?。∵@種意志超乎尋常,不可思議!常人是絕對、絕對做不到的。
練說:劉伯承爺爺,你的意志_________!真不愧是_____!
11、分角色朗讀第四節(jié)。
四、總結(jié):最后,讓我們再次感受一下劉伯承這位軍神超乎尋常的頑強意志吧!
欣賞配樂朗讀,激情跟讀。
五、作業(yè)。
寫寫讀后感。
[評析]。
語文教學(xué)是教師、學(xué)生、文本三者充滿生命活力的對話過程。教師深入鉆研教材,領(lǐng)會文章的思想、情感、內(nèi)涵;深刻認識學(xué)生,把握學(xué)生的基礎(chǔ)、態(tài)度、特征,在此基礎(chǔ)上進行富有個性的教學(xué)設(shè)計。通過品詞析句、表達訓(xùn)練、朗讀指導(dǎo),用教師的情感激發(fā)學(xué)生的情感,用文本的情境塑造教學(xué)的情境,展開動人心弦、情味濃郁的教學(xué)過程,不僅達成了知識與技能、過程與方法、情感態(tài)度與價值觀的三維目標(biāo),提高了學(xué)生的語文素養(yǎng),而且使“軍神”的形象和教學(xué)的情景印到了學(xué)生心靈深處。這不正是我們語文教學(xué)所孜孜追求的目標(biāo)嗎?(萬小強)。
將本文的word文檔下載到電腦,方便收藏和打印。
同角三角函數(shù)教案篇十九
《同角三角函數(shù)關(guān)系式》是人教版高中新教材必修4第一章第二節(jié)的第二課。本節(jié)內(nèi)容是同角三角函數(shù)關(guān)系式的運用,三種題型“知值求值”“弦化切”“函數(shù)思想的應(yīng)用”。
二、學(xué)生情況分析。
本課時研究的是同角三角函數(shù)關(guān)系式的運用、逆用及變形,因此在教學(xué)過程中要發(fā)展學(xué)生的已有認知,發(fā)揮知識遷移。
三、教學(xué)目標(biāo)。
知識目標(biāo):
能力目標(biāo):
滲透分類討論思想、方程思想。
情感、態(tài)度、價值觀目標(biāo):
發(fā)展學(xué)生研究問題、解決問題的能力。
四、教學(xué)重難點。
重點:
難點:
1.正確判斷三角函數(shù)的符號。
2.靈活運用公式做運算。
五、教學(xué)方法與策略。
教學(xué)中注意用新課程理念處理教材,采用學(xué)生自主探索、動手實踐、合作交流、師生互動,教師發(fā)揮組織者、引導(dǎo)者、合作者的作用,引導(dǎo)學(xué)生主體參與、揭示本質(zhì)、經(jīng)歷過程。根據(jù)本節(jié)課內(nèi)容、高一學(xué)生認知特點,本節(jié)課采用“啟發(fā)探索、講練結(jié)合”的方法組織教學(xué)。
六、教學(xué)過程。
引入(課件中:)。
兩個公式。
新課。
例1練習(xí)1(課件中)。
意圖:加強學(xué)生對公式的理解,讓學(xué)生學(xué)會知值求值,能注意角的取值范圍,正確判斷函數(shù)值符號。
例2練習(xí)1(課件中)。
意圖:讓學(xué)生掌握齊次式分子分母同除余弦化正切。
例3練習(xí)3(課件中)。
意圖:讓學(xué)生理解掌握方程思想的應(yīng)用。
小結(jié)(課件中)。
作業(yè)(課件中)。
【本文地址:http://aiweibaby.com/zuowen/12513376.html】