完全平方公式教案(精選16篇)

格式:DOC 上傳日期:2023-11-23 18:22:11
完全平方公式教案(精選16篇)
時(shí)間:2023-11-23 18:22:11     小編:靈魂曲

教案是教師在備課過(guò)程中編寫(xiě)的一種指導(dǎo)教學(xué)的書(shū)面計(jì)劃。教案的編寫(xiě)還需要考慮評(píng)價(jià)內(nèi)容和方式,以便及時(shí)了解學(xué)生的學(xué)習(xí)情況。以下是小編為大家收集的教案范例,供大家參考。

完全平方公式教案篇一

學(xué)習(xí)了乘法公式中的完全平方,一個(gè)是兩數(shù)和的平方,另一個(gè)是兩數(shù)差的平方,兩者僅一個(gè)“符號(hào)”不同。相乘的結(jié)果是兩數(shù)的平方和,加上(或減去)兩數(shù)的積的2倍,兩者也僅差一個(gè)“符號(hào)”不同,運(yùn)用完全平方公式計(jì)算時(shí),要注意:

(1)切勿把此公式與平方差公式混淆,而隨意寫(xiě)。

(2)切勿把“乘積項(xiàng)”2ab中的2丟掉。

(3)計(jì)算時(shí),要先觀察題目是否符合公式的條件。若不符合,應(yīng)先變形為符合公式的條件的形式,再利用公式進(jìn)行計(jì)算;若不能變?yōu)榉蠗l件的形式,則應(yīng)運(yùn)用乘法法則進(jìn)行計(jì)算。

今后在教學(xué)中,要注意以下幾點(diǎn):

1.讓學(xué)生自編幾道符合平方差公式結(jié)構(gòu)的計(jì)算題,目的是辨認(rèn)題目的結(jié)構(gòu)特征。

2.引入完全平方公式,讓學(xué)生用文字概括公式的內(nèi)容,培養(yǎng)抽象的數(shù)字思維能力。

完全平方公式教案篇二

二、學(xué)習(xí)重點(diǎn)。

三、學(xué)習(xí)難點(diǎn)。

靈活運(yùn)用平方差和完全平方公式進(jìn)行整式的簡(jiǎn)便運(yùn)算。

四、學(xué)習(xí)設(shè)計(jì)。

(一)預(yù)習(xí)準(zhǔn)備。

(2)思考:如何更簡(jiǎn)單迅捷地進(jìn)行各種乘法公式的運(yùn)算?[。

(1)(2)(3)(4)。

2.計(jì)算:

(1)(2)。

(二)學(xué)習(xí)過(guò)程。

由反之。

反之。

1、填空:

(1)(2)(3)。

(4)(5)。

(6)。

(7)若,則k=。

例1計(jì)算:1.2.

現(xiàn)在我們從幾何角度去解釋完全平方公式:

從圖(1)中可以看出大正方形的邊長(zhǎng)是a+b,

它是由兩個(gè)小正方形和兩個(gè)矩形組成,所以。

大正方形的面積等于這四個(gè)圖形的面積之和.

則s==。

即:

如圖(2)中,大正方形的邊長(zhǎng)是a,它的面積是;矩形dcge與矩形bchf是全等圖形,長(zhǎng)都是,寬都是,所以它們的面積都是;正方形hcgm的邊長(zhǎng)是b,其面積就是;正方形afme的邊長(zhǎng)是,所以它的面積是.從圖中可以看出正方形aemf的面積等于正方形abcd的面積減去兩個(gè)矩形dcge和bchf的面積再加上正方形hcgm的面積.也就是:(a-b)2=.這也正好符合完全平方公式.

例2.計(jì)算:。

(1)(2)。

變式訓(xùn)練:

(1)(2)。

(3)(4)(x+5)2c(x-2)(x-3)。

(5)(x-2)(x+2)-(x+1)(x-3)(6)(2x-y)2-4(x-y)(x+2y)。

拓展:1、(1)已知,則=。

(2)已知,求________,________。

(3)不論為任意有理數(shù),的值總是。

a.負(fù)數(shù)b.零c.正數(shù)d.不小于2。

2、(1)已知,求和的值。

(2)已知,求的值。

(3).已知,求的值。

回顧小結(jié)。

1.完全平方公式的使用:在做題過(guò)程中一定要注意符號(hào)問(wèn)題和正確認(rèn)識(shí)a、b表示的意義,它們可以是數(shù)、也可以是單項(xiàng)式,還可以是多項(xiàng)式,所以要記得添括號(hào)。

2.解題技巧:在解題之前應(yīng)注意觀察思考,選擇不同的方法會(huì)有不同的效果,要學(xué)會(huì)優(yōu)化選擇。

完全平方公式教案篇三

(2)思考:如何更簡(jiǎn)單迅捷地進(jìn)行各種乘法公式的運(yùn)算?[。

(1)(2)(3)(4)。

2、計(jì)算:

(1)(2)。

由反之。

反之。

1、填空:

(1)(2)(3)。

(4)(5)。

(6)。

(7)若,則k=。

例1計(jì)算:1.2.

現(xiàn)在我們從幾何角度去解釋完全平方公式:

從圖(1)中可以看出大正方形的邊長(zhǎng)是a+b,

它是由兩個(gè)小正方形和兩個(gè)矩形組成,所以。

大正方形的面積等于這四個(gè)圖形的面積之和。

則s==。

即:

如圖(2)中,大正方形的邊長(zhǎng)是a,它的面積是;矩形dcge與矩形bchf是全等圖形,長(zhǎng)都是,寬都是,所以它們的面積都是;正方形hcgm的邊長(zhǎng)是b,其面積就是;正方形afme的邊長(zhǎng)是,所以它的面積是。從圖中可以看出正方形aemf的面積等于正方形abcd的'面積減去兩個(gè)矩形dcge和bchf的面積再加上正方形hcgm的面積。也就是:(a-b)2=。這也正好符合完全平方公式。

例2.計(jì)算:。

(1)(2)。

變式訓(xùn)練:

(1)(2)。

(3)(4)(x+5)2–(x-2)(x-3)。

(5)(x-2)(x+2)-(x+1)(x-3)(6)(2x-y)2-4(x-y)(x+2y)。

拓展:1、(1)已知,則=。

(2)已知,求________,________。

(3)不論為任意有理數(shù),的值總是()。

a.負(fù)數(shù)b.零c.正數(shù)d.不小于2。

2、(1)已知,求和的值。

(2)已知,求的值。

(3)。已知,求的值。

1、完全平方公式的使用:在做題過(guò)程中一定要注意符號(hào)問(wèn)題和正確認(rèn)識(shí)a、b表示的意義,它們可以是數(shù)、也可以是單項(xiàng)式,還可以是多項(xiàng)式,所以要記得添括號(hào)。

2、解題技巧:在解題之前應(yīng)注意觀察思考,選擇不同的方法會(huì)有不同的效果,要學(xué)會(huì)優(yōu)化選擇。

完全平方公式教案篇四

學(xué)生的知識(shí)技能基礎(chǔ):學(xué)生通過(guò)對(duì)本章前幾節(jié)課的學(xué)習(xí),已經(jīng)學(xué)習(xí)了整式的概念、整式的加減、冪的運(yùn)算、整式的乘法、平方差公式,這些基礎(chǔ)知識(shí)的學(xué)習(xí)為本節(jié)課的學(xué)習(xí)奠定了基礎(chǔ)。

學(xué)生活動(dòng)經(jīng)驗(yàn)基礎(chǔ):在平方差公式一節(jié)的學(xué)習(xí)中,學(xué)生已經(jīng)經(jīng)歷了探索和應(yīng)用的過(guò)程,獲得了一些數(shù)學(xué)活動(dòng)的經(jīng)驗(yàn),培養(yǎng)了一定的符號(hào)感和推理能力;同時(shí)在相關(guān)知識(shí)的學(xué)習(xí)過(guò)程中,學(xué)生經(jīng)歷了很多探究學(xué)習(xí)的過(guò)程,具有了一定的獨(dú)立探究意識(shí)以及與同伴合作交流的能力。

教科書(shū)在學(xué)生已經(jīng)學(xué)習(xí)了整式的加法、乘法,以及平方差公式的基礎(chǔ)上,提出了本課的具體學(xué)習(xí)任務(wù):經(jīng)歷探索完全平方公式的過(guò)程,并能運(yùn)用公式進(jìn)行簡(jiǎn)單的計(jì)算。但這僅僅是這堂課外顯的具體教學(xué)目標(biāo),或者說(shuō)是一個(gè)近期目標(biāo)。整式是初中數(shù)學(xué)研究范圍內(nèi)的一塊重要內(nèi)容,整式的運(yùn)算又是整式中的一大主干,乘法公式則是對(duì)多項(xiàng)式乘法中出現(xiàn)的較為特殊的算式的一種歸納、總結(jié)。同時(shí),乘法公式的推導(dǎo)是初中數(shù)學(xué)中運(yùn)用推理方法進(jìn)行代數(shù)式恒等變形的開(kāi)端,通過(guò)乘法公式的學(xué)習(xí)對(duì)簡(jiǎn)化某些整式的運(yùn)算、培養(yǎng)學(xué)生的求簡(jiǎn)意識(shí)有較大好處。而且乘法公式是后繼學(xué)習(xí)的必備基礎(chǔ),不僅對(duì)學(xué)生提高運(yùn)算速度、準(zhǔn)確率有較大作用,更是以后學(xué)習(xí)分解因式、分式運(yùn)算的重要基礎(chǔ),同時(shí)也具有培養(yǎng)學(xué)生逐漸養(yǎng)成嚴(yán)密的邏輯推理能力的作用。為此,本節(jié)課的教學(xué)目標(biāo)是:

1.經(jīng)歷探索完全平方公式的過(guò)程,并從完全平方公式的推導(dǎo)過(guò)程中,培養(yǎng)學(xué)生觀察、發(fā)現(xiàn)、歸納、概括、猜想等探究創(chuàng)新能力,發(fā)展邏輯推理能力和有條理的表達(dá)能力。

2.體會(huì)公式的發(fā)現(xiàn)和推導(dǎo)過(guò)程,理解公式的本質(zhì),從不同的。層次上理解完全平方公式,并會(huì)運(yùn)用公式進(jìn)行簡(jiǎn)單的計(jì)算。

3.了解完全平方公式的幾何背景,培養(yǎng)學(xué)生的數(shù)形結(jié)合意識(shí)。

4.在學(xué)習(xí)中使學(xué)生體會(huì)學(xué)習(xí)數(shù)學(xué)的樂(lè)趣,培養(yǎng)學(xué)習(xí)數(shù)學(xué)的信心,感愛(ài)數(shù)學(xué)的內(nèi)在美。

本節(jié)課設(shè)計(jì)了七個(gè)教學(xué)環(huán)節(jié):回顧與思考、情境引入、初識(shí)完全平方公式、再識(shí)完全平方公式、又識(shí)完全平方公式、課堂小結(jié)、布置作業(yè)。

第一環(huán)節(jié)回顧與思考。

活動(dòng)內(nèi)容:復(fù)習(xí)已學(xué)過(guò)的平方差公式。

1.平方差公式:(a+b)(a-b)=a-b;公式的結(jié)構(gòu)特點(diǎn):左邊是兩個(gè)二項(xiàng)式的乘積,即兩數(shù)和與這兩數(shù)差的積。右邊是兩數(shù)的平方差。

2.應(yīng)用平方差公式的注意事項(xiàng):弄清在什么情況下才能使用平方差公式。

活動(dòng)目的:本堂課的學(xué)習(xí)方向仍是引導(dǎo)鼓勵(lì)學(xué)生通過(guò)已學(xué)習(xí)的知識(shí)經(jīng)過(guò)個(gè)人思考、小1組合作等方式推導(dǎo)出本課新知,進(jìn)一步發(fā)展學(xué)生的符號(hào)感和推理能力。而這個(gè)過(guò)程離不開(kāi)舊知識(shí)的鋪墊,平方差公式的學(xué)習(xí)有很多教學(xué)環(huán)節(jié)和形式與本節(jié)的學(xué)習(xí)是類似的,其中包含的基本知識(shí)與基本能力也仍是本節(jié)的精神主旨,因而復(fù)習(xí)很有必要。

實(shí)際教學(xué)效果:在復(fù)習(xí)過(guò)程中,學(xué)生能夠順利地回答出平方差公式的內(nèi)容,而對(duì)于其結(jié)構(gòu)特點(diǎn)及應(yīng)用時(shí)的注意事項(xiàng),通過(guò)學(xué)生之間的相互補(bǔ)充,絕大多數(shù)學(xué)生也得以掌握。在復(fù)習(xí)中既把舊知識(shí)得以復(fù)習(xí),同時(shí)學(xué)生也會(huì)主動(dòng)的去回顧平方差公式一節(jié)的學(xué)習(xí)過(guò)程,從而為本節(jié)課的類比學(xué)習(xí)奠定了基礎(chǔ)。

第二環(huán)節(jié)情境引入。

活動(dòng)內(nèi)容:出示幻燈片,提出問(wèn)題。

一塊邊長(zhǎng)為a米的正方形實(shí)驗(yàn)田,由于效益比較高,所以要擴(kuò)大農(nóng)田,將其邊長(zhǎng)增加b米,形成四塊實(shí)驗(yàn)田,以種植不同的新品種(如圖)。

用不同的形式表示實(shí)驗(yàn)田的總面積,并進(jìn)行比較。

活動(dòng)目的:數(shù)學(xué)源自于生活,通過(guò)生活當(dāng)中的一個(gè)實(shí)際問(wèn)題,引入本節(jié)課的學(xué)習(xí)。從而在學(xué)生運(yùn)用舊知計(jì)算和比較實(shí)驗(yàn)田的面積當(dāng)中引出完全平方公式。由于實(shí)驗(yàn)田的總面積有多種表示方式,通過(guò)對(duì)比這些表示方式可以使學(xué)生對(duì)于公式有一個(gè)直觀的認(rèn)識(shí)。同時(shí)在古代人們也是通過(guò)類似的圖形認(rèn)識(shí)了這個(gè)公式。在列代數(shù)式解決問(wèn)題的過(guò)程當(dāng)中,通過(guò)自主探究和交流學(xué)到了新的知識(shí),學(xué)生的學(xué)習(xí)積極性和主動(dòng)性得到大大的激發(fā)。

實(shí)際教學(xué)效果:?jiǎn)栴}提出后,學(xué)生能夠主動(dòng)地去尋找解決問(wèn)題的方法。同時(shí)問(wèn)題要求用不同的形式來(lái)表示總面積,這就要求學(xué)生從不同的角度來(lái)進(jìn)行考慮,從而對(duì)于學(xué)生的思維提出了挑戰(zhàn)。不過(guò)由于前面列代數(shù)式一部分內(nèi)容的學(xué)習(xí),絕大多數(shù)學(xué)生能夠很順利地想到兩種不同的方法,并從中建立了數(shù)形結(jié)合的意識(shí)。從而在學(xué)生的自主探索過(guò)程中引出了完全平方公式,使學(xué)生有了一個(gè)直觀認(rèn)識(shí)。在整個(gè)過(guò)程中老師只是在提出問(wèn)題和引導(dǎo)學(xué)生解決問(wèn)題,學(xué)生的自主性得到了充分的體現(xiàn),課堂氣氛平等融洽。

活動(dòng)內(nèi)容:1.通過(guò)多項(xiàng)式的乘法法則來(lái)驗(yàn)證(a+b)2=a2+2ab+b2的正確性。并利用兩數(shù)和的完全平方公式推導(dǎo)出兩數(shù)差的完全平方公式:(a-b)2=a2-2ab+b2.2.引導(dǎo)學(xué)生利用幾何圖形來(lái)驗(yàn)證兩數(shù)差的完全平方公式。

3.分析完全平方公式的結(jié)構(gòu)特點(diǎn),并用語(yǔ)言來(lái)描述完全平方公式。

結(jié)構(gòu)特點(diǎn):左邊是二項(xiàng)式(兩數(shù)和(差))的平方;

右邊是兩數(shù)的平方和加上(減去)這兩數(shù)乘積的兩倍。

語(yǔ)言描述:兩數(shù)和(或差)的平方,等于這兩數(shù)的平方和加上(或減去)這兩數(shù)積的兩倍。

活動(dòng)目的:第一個(gè)活動(dòng)是讓學(xué)生在上面討論的基礎(chǔ)上,從代數(shù)運(yùn)算的角度運(yùn)用多項(xiàng)式的乘法法則,推導(dǎo)出兩數(shù)和的完全平方公式,并且進(jìn)一步推導(dǎo)出兩數(shù)差的完全平方公式。在教學(xué)中學(xué)生有條理的思考和語(yǔ)言表達(dá)能力得以培養(yǎng)。

第二個(gè)活動(dòng)使學(xué)生再次從幾何的角度來(lái)驗(yàn)證兩數(shù)差的完全平方公式。從而學(xué)生經(jīng)歷了幾何解釋到代數(shù)運(yùn)算,再到幾何解釋的過(guò)程,學(xué)生的數(shù)形結(jié)合意識(shí)得以培養(yǎng),并且從不同的角度推導(dǎo)出了公式,并且加以鞏固。

第三個(gè)活動(dòng)在前面的基礎(chǔ)上,加以總結(jié),使得學(xué)生從形式上初步地認(rèn)識(shí)了完全平方公式。實(shí)際教學(xué)效果:此環(huán)節(jié)的設(shè)計(jì)符合學(xué)生的認(rèn)知水平和認(rèn)知過(guò)程。在第一個(gè)活動(dòng)的教學(xué)中2應(yīng)重視學(xué)生對(duì)于算理的理解,讓學(xué)生嘗試說(shuō)出每一步運(yùn)算的道理,有意識(shí)地培養(yǎng)他們有條理的思考和語(yǔ)言表達(dá)能力。在第二個(gè)活動(dòng)中既是對(duì)于第二環(huán)節(jié)用幾何解釋驗(yàn)證兩數(shù)和的完全平方公式的鞏固,同時(shí)也是對(duì)于學(xué)生數(shù)形結(jié)合意識(shí)的一種培養(yǎng),絕大多數(shù)學(xué)生能夠通過(guò)交流合作得以掌握。通過(guò)幾個(gè)活動(dòng)學(xué)生能夠初步地掌握了完全平方公式,并在推導(dǎo)過(guò)程中培養(yǎng)了數(shù)學(xué)的基本能力。

(1)(2x3)2;

(2)(4x+5y)2;。

(3)(mna)22.總結(jié)口訣:首平方,尾平方,兩倍乘積放中央。

3.鞏固練習(xí)。

(1)計(jì)算:

11(2y)。

2;(2xyx)2。

;(n+1)2-n2。

;(4x+0.5)2。

;(2x2-3y2)225(2)糾錯(cuò)練習(xí):指出下列各式中的錯(cuò)誤,并加以改正:

(1)(2a1)2=2a22a+1;。

(2)(2a+1)2=4a2+1;

(3)(a1)2=a22a1.活動(dòng)目的:應(yīng)用完全平方公式進(jìn)行簡(jiǎn)單的計(jì)算。同時(shí)例1三個(gè)題目的設(shè)計(jì)上有一定的梯度,從而總結(jié)出進(jìn)行簡(jiǎn)單計(jì)算的一般口訣,并加以鞏固落實(shí)。

實(shí)際教學(xué)效果:對(duì)照公式,進(jìn)行獨(dú)立的簡(jiǎn)單計(jì)算,體會(huì)公式在解題中的應(yīng)用,進(jìn)一步熟悉公式。并通過(guò)小組交流,自我檢驗(yàn),鞏固反饋??疾靷€(gè)人的實(shí)際運(yùn)用能力,并及時(shí)查漏補(bǔ)缺。在此基礎(chǔ)上由教師總結(jié)出口訣,幫助學(xué)生進(jìn)一步認(rèn)識(shí)完全平方公式,并加以鞏固練習(xí)。

22(1)(-1-2x);(2)(-2x+1)。

2.進(jìn)一步完善口訣:首平方,尾平方,兩倍乘積放中央,加減看前方,同加異減?;顒?dòng)目的:例2是對(duì)課本內(nèi)容的補(bǔ)充,從而使得學(xué)生從更深的一個(gè)角度來(lái)認(rèn)識(shí)完全平方公式,防止解題時(shí)中間項(xiàng)的符號(hào)出現(xiàn)問(wèn)題,并能在解題中通過(guò)靈活的變形來(lái)運(yùn)用公式,解決問(wèn)題。并對(duì)上面總結(jié)的口訣進(jìn)行進(jìn)一步的完善。

實(shí)際教學(xué)效果:首先放手讓學(xué)生獨(dú)立來(lái)解決第一個(gè)題目,學(xué)生出錯(cuò)較多,且都集中在中間項(xiàng)的符號(hào)上,由此引出有進(jìn)一步認(rèn)識(shí)公式的必要,從而教師引導(dǎo)學(xué)生再次觀察題目,仔細(xì)分析題目當(dāng)中誰(shuí)相當(dāng)于公式當(dāng)中的a與b,從而運(yùn)用不同的方法和思路,解決問(wèn)題。在活動(dòng)中學(xué)生認(rèn)識(shí)到了解決問(wèn)題之前恰當(dāng)選擇公式和正確分析題目的必要性,學(xué)習(xí)的積極性再次被激發(fā),在此基礎(chǔ)上教師把上面總結(jié)的口訣再次完善,幫助學(xué)生突破難點(diǎn),教師的主導(dǎo)作用得以體現(xiàn)。

第六環(huán)節(jié)課堂小結(jié)。

活動(dòng)內(nèi)容:1.完全平方公式和平方差公式不同:

形式不同.。

3不弄錯(cuò)符號(hào)、2ab時(shí)不少乘2。

3.口訣:首平方,尾平方,兩倍乘積放中央,加減看前方,同加異減。

活動(dòng)目的:課堂小結(jié)并不只是課堂知識(shí)點(diǎn)的回顧,要盡量讓學(xué)生暢談自己的切身感受,教師對(duì)于發(fā)言進(jìn)行鼓勵(lì),進(jìn)一步梳理本節(jié)所學(xué),更要有所思考,達(dá)到對(duì)所學(xué)知識(shí)鞏固的目的。

實(shí)際教學(xué)效果:學(xué)生暢所欲言自己的實(shí)際收獲,達(dá)到了本節(jié)課的教學(xué)目標(biāo)。

第七環(huán)節(jié)布置作業(yè)。

1.基礎(chǔ)訓(xùn)練:教材習(xí)題1.13。

1.本節(jié)課學(xué)生的探究活動(dòng)比較多,教師既要全局把握,又要順其自然,千萬(wàn)不可拔苗助長(zhǎng),為了后面多做幾道練習(xí)而人為的主觀裁斷時(shí)間安排,其實(shí)公式的探究活動(dòng)本身既是對(duì)學(xué)生能力的培養(yǎng),又是對(duì)公式的識(shí)記過(guò)程,而且還可以提高他們的應(yīng)用公式的本領(lǐng)。因此,不但不可以省,而且還要充分挖掘,以使不同程度的學(xué)生都有事情做且樂(lè)此不疲,更加充分的參與其中。對(duì)于這一點(diǎn),教師一定要轉(zhuǎn)變觀念。

2.在完全平方公式的探求過(guò)程中,學(xué)生表現(xiàn)出觀察角度的差異:有些學(xué)生只是側(cè)重觀察某個(gè)單獨(dú)的式子,把它孤立地看,而不知道將幾個(gè)式子聯(lián)系地看;有些學(xué)生則既觀察入微,又統(tǒng)攬全局,表現(xiàn)出了較強(qiáng)的觀察力。教師要善于抓住這個(gè)契機(jī),適當(dāng)對(duì)學(xué)生進(jìn)行學(xué)法指導(dǎo),培養(yǎng)他們“既見(jiàn)樹(shù)木,又見(jiàn)森林”的優(yōu)良觀察品質(zhì)。

3.對(duì)于公式使用的條件既要把握好“度”,又要把握好“方向”。對(duì)于公式中的字母取值范圍,不必過(guò)分強(qiáng)調(diào)(實(shí)際上,這個(gè)范圍限定的太小了);而對(duì)于公式的特點(diǎn),則應(yīng)當(dāng)左右兼顧,特別是公式的左邊,它是正確應(yīng)用公式的前提,卻往往不被重視,結(jié)果造成幾個(gè)類似公式的混淆,給正確解題設(shè)置了障礙。

4.教無(wú)定法,教師應(yīng)根據(jù)本班的實(shí)際情況靈活安排教學(xué)步驟,切實(shí)把關(guān)注學(xué)生的發(fā)展放在首位來(lái)考慮,并依此制定合理而科學(xué)的教學(xué)計(jì)劃。如,對(duì)于較好的班級(jí),則可以優(yōu)先發(fā)展,采取居高臨下的教學(xué)思路,先整體把握再對(duì)比擊破,或是將其納入整體結(jié)構(gòu)系統(tǒng),采取類比的學(xué)習(xí)方式;而對(duì)于基礎(chǔ)較薄弱的班級(jí),則應(yīng)以提高學(xué)習(xí)興趣、教會(huì)學(xué)習(xí)、培養(yǎng)成功體驗(yàn)為主,千萬(wàn)不可拔苗助長(zhǎng),以防物極必反。

完全平方公式教案篇五

教學(xué)目標(biāo):

1.經(jīng)歷探索完全平方公式的過(guò)程,進(jìn)一步發(fā)展學(xué)生的符號(hào)感和推理能力;。

1.弄清完全平方公式的來(lái)源及其結(jié)構(gòu)特點(diǎn),能用自己的語(yǔ)言說(shuō)明公式及其特點(diǎn);。

2.會(huì)用完全平方公式進(jìn)行運(yùn)算.教學(xué)難點(diǎn):會(huì)用完全平方公式進(jìn)行運(yùn)算教學(xué)過(guò)程:

一、探索練習(xí):

一塊邊長(zhǎng)為a米的正方形實(shí)驗(yàn)田,因需要將其邊長(zhǎng)增加b米,形成四塊實(shí)驗(yàn)田,以種植不同的新品種.(圖略)。

用不同的形式表示實(shí)驗(yàn)田的總面積,并進(jìn)行比較你發(fā)現(xiàn)了什么?

觀察得到的式子,想一想:

(1)(a+b)2等于什么?你能不能用多項(xiàng)式乘法法則說(shuō)明理由呢?

(2)(a-b)2等于什么?小穎寫(xiě)出了如下的算式:

(a-b)2=[a+(b)]2.

她是怎么想的?你能繼續(xù)做下去嗎?

(a+b)2=a2+2ab+b2。

(a-b)2=a22ab+b2。

教師在此時(shí)應(yīng)該引導(dǎo)觀察完全平方公式的特點(diǎn),并用自己的言語(yǔ)表達(dá)出來(lái).

(1)(2x-3)2。

解:(2x-3)2。

=(2x)2-2(2x)3+32。

=4x12x+9。

二、鞏固練習(xí):

1.下列各式中哪些可以運(yùn)用完全平方公式計(jì)算_______________。

(1);(2);。

(3);(4).

2.計(jì)算下列各式:

(1);(2);(3);。

(4);(5);。

(6).

4.填空:

(1)_____________;(2);。

(3);三、提高練習(xí):

1.求的值,其中。

2.若。

對(duì)公式的真正理解有待加強(qiáng).

完全平方公式教案篇六

1、使學(xué)生理解完全平方公式的意義,弄清完全平方公式的形式和特點(diǎn);使學(xué)生知道把完全平方公式反過(guò)來(lái)就可以得到相應(yīng)的因式分解。

2、掌握運(yùn)用完全平方公式分解因式的`方法,能正確運(yùn)用完全平方公式把多項(xiàng)式分解因式(直接用公式不超過(guò)兩次)。

教學(xué)方法:對(duì)比發(fā)現(xiàn)法課型新授課教具投影儀。

教師活動(dòng):學(xué)生活動(dòng)。

新課講解:

(投影)我們把形如a2+2ab+b2與a2-2ab+b2叫做完全平方式,和平方差公式一樣,我們也可以利用它把一些多項(xiàng)式因式分解。例如:

a2+8a+16=a2+2×4a+42=(a+4)2。

a2-8a+16=a2-2×4a+42=(a-4)2。

(要強(qiáng)調(diào)注意符號(hào))。

首先我們來(lái)試一試:(投影:牛刀小試)。

1.把下列各式分解因式:

(1)x2+8x+16;;(2)25a4+10a2+1。

(3)(m+n)2-4(m+n)+4。

(教師強(qiáng)調(diào)步驟的重要性,注意發(fā)現(xiàn)學(xué)生易錯(cuò)點(diǎn),及時(shí)糾正)。

2.把81x4-72x2y2+16y4分解因式。

(本題用了兩次乘法公式,難度稍大,教師要鼓勵(lì)學(xué)生大膽嘗試,敢于創(chuàng)新)。

將乘法公式反過(guò)來(lái)就得到多項(xiàng)式因式分解的公式。運(yùn)用這些公式把一個(gè)多項(xiàng)式分解因式的方法叫做運(yùn)用公式法。

練習(xí):第88頁(yè)練一練第1、2題。

完全平方公式教案篇七

(l)(2)(3)(4)。

學(xué)生活動(dòng):學(xué)生分組討論,選代表解答.。

練習(xí)三。

甲的計(jì)算過(guò)程是:原式。

乙的計(jì)算過(guò)程是:原式。

丙的計(jì)算過(guò)程是:原式。

丁的計(jì)算過(guò)程是:原式。

(2)想一想,與相等嗎?為什么?

與相等嗎?為什么?

學(xué)生活動(dòng):觀察、思考后,回答問(wèn)題.。

練習(xí)四。

(l)(2)。

(3)(4)。

(四)總結(jié)、擴(kuò)展。

這節(jié)課我們學(xué)習(xí)了乘法公式中的完全平方公式.。

引導(dǎo)學(xué)生舉例說(shuō)明公式的結(jié)構(gòu)特征,公式中字母含義和運(yùn)用公式時(shí)應(yīng)該注意的問(wèn)題.。

八、布置作業(yè)。

p1331,2.(3)(4).。

參考答案。

略.。

完全平方公式教案篇八

1.弄清完全平方公式的來(lái)源及其結(jié)構(gòu)特點(diǎn),能用自己的。語(yǔ)言說(shuō)明公式及其特點(diǎn);

2.會(huì)用完全平方公式進(jìn)行運(yùn)算。教學(xué)難點(diǎn):會(huì)用完全平方公式進(jìn)行運(yùn)算教學(xué)過(guò)程:

一塊邊長(zhǎng)為a米的正方形實(shí)驗(yàn)田,因需要將其邊長(zhǎng)增加b米,形成四塊實(shí)驗(yàn)田,以種植不同的新品種。(圖略)。

用不同的形式表示實(shí)驗(yàn)田的總面積,并進(jìn)行比較你發(fā)現(xiàn)了什么?

觀察得到的式子,想一想:

(1)(a+b)2等于什么?你能不能用多項(xiàng)式乘法法則說(shuō)明理由呢?

(2)(a-b)2等于什么?小穎寫(xiě)出了如下的算式:

(a-b)2=[a+(b)]2.

她是怎么想的?你能繼續(xù)做下去嗎?

(a+b)2=a2+2ab+b2。

(a-b)2=a22ab+b2。

教師在此時(shí)應(yīng)該引導(dǎo)觀察完全平方公式的特點(diǎn),并用自己的言語(yǔ)表達(dá)出來(lái)。

(1)(2x-3)2。

解:(2x-3)2。

=(2x)2-2(2x)3+32。

=4x12x+9。

1.下列各式中哪些可以運(yùn)用完全平方公式計(jì)算_______________。

(1);(2);。

(3);(4).

2.計(jì)算下列各式:

(1);(2);(3);。

(4);(5);。

(6).

4.填空:

(1)_____________;(2);。

1.求的值,其中。

2.若。

對(duì)公式的真正理解有待加強(qiáng)。

完全平方公式教案篇九

學(xué)習(xí)目標(biāo):

1、能說(shuō)出有序數(shù)對(duì)的定義。

2、能用有序數(shù)對(duì)表示實(shí)際生活中物體的位置。

學(xué)習(xí)重點(diǎn):用有序數(shù)對(duì)表示位置。

學(xué)習(xí)難點(diǎn):用有序數(shù)對(duì)表示位置。

學(xué)習(xí)過(guò)程:

自學(xué)過(guò)程:(一)、自學(xué)知識(shí)清單。

1、教材64頁(yè),在圖7.1—1中找出參加數(shù)學(xué)問(wèn)題討論的同學(xué)。

小組內(nèi)交流一下,看一看你們找的'位置相同嗎?

思考:(2,4)和(4,2)在同一位置嗎?為什么?

2、請(qǐng)回答教材65頁(yè):思考題。

3、我們把這種有順序的______個(gè)數(shù)a與b組成的_______叫做_______,記作(,)。

(二)、自學(xué)反饋。

練習(xí)1、利用________________,可以準(zhǔn)確地表示出一個(gè)位置,

如電影院的座號(hào),“3排2號(hào)”、表示為(3,2),則“2排3號(hào)”可以表示為。

練習(xí)2、如圖(1)所示,一方隊(duì)正沿箭頭所指的方向前進(jìn),a的位置為三列四行,表示為a(3,4),則b,c,d表示為b(,),c(,)。

d(,)。

練習(xí)3、完成課本第65頁(yè)的練習(xí)。

練習(xí)4、用有序數(shù)對(duì)表示物體位置時(shí),(3,2)與(2,3)表示的位置相同嗎?請(qǐng)結(jié)合下面圖形加以說(shuō)明.

練習(xí)5、如圖所示,a的位置為(2,6),小明從a出發(fā),經(jīng)。

完全平方公式教案篇十

理解兩個(gè)完全平方公式的結(jié)構(gòu),靈活運(yùn)用完全平方公式進(jìn)行運(yùn)算。

在運(yùn)用完全平方公式的過(guò)程中,進(jìn)一步發(fā)展學(xué)生的符號(hào)演算的能力,提高運(yùn)算能力。

培養(yǎng)學(xué)生在獨(dú)立思考的基礎(chǔ)上,積極參與對(duì)數(shù)學(xué)問(wèn)題的討論,敢于發(fā)表自己的見(jiàn)解。

一、復(fù)習(xí)導(dǎo)入。

2.計(jì)算,除了直接用兩數(shù)差的完全平方公式外,還有別的方法嗎?

學(xué)生思考后回答:由于兩數(shù)差可以轉(zhuǎn)化成兩數(shù)和,所以還可以用兩數(shù)和的完全平方公式計(jì)算,把“”看成加數(shù),按照兩數(shù)和的完全平方公式計(jì)算,結(jié)果是一樣的。

教師歸納:當(dāng)我們對(duì)差與和加以區(qū)分時(shí),兩個(gè)公式是有區(qū)別的,區(qū)別是其結(jié)果的中間項(xiàng)一個(gè)是“減”一個(gè)是“加”,注意到區(qū)別有助于計(jì)算的準(zhǔn)確;另一方面,當(dāng)我們對(duì)差與和不加區(qū)分,全部理解成“加項(xiàng)”時(shí),那么兩個(gè)公式從結(jié)構(gòu)上來(lái)看就是一致的了,其結(jié)構(gòu)都是“兩項(xiàng)和的平方,等于它們的平方和,加上它們的積的兩倍?!弊⒁獾剿鼈兊慕y(tǒng)一性,有于我們更深刻地理解公式特點(diǎn),提高運(yùn)算的靈活性。

我們學(xué)習(xí)運(yùn)算,除了要重視結(jié)果,還要重視過(guò)程,平時(shí)注意訓(xùn)練運(yùn)算方法的多樣性,可以加深對(duì)算理的理解和運(yùn)用,提高運(yùn)算過(guò)程的合理性和靈活性,從而真正的提高運(yùn)算能力。

二、新課講解。

溫故知新。

與,與相等嗎?為什么?

學(xué)生討論交流,鼓勵(lì)學(xué)生從不同的。角度進(jìn)行說(shuō)理,共同歸納總結(jié)出兩條判斷的思路:

1.對(duì)原式進(jìn)行運(yùn)算,利用運(yùn)算的結(jié)果來(lái)判斷;

2.不對(duì)原式進(jìn)行運(yùn)算,只做適當(dāng)變形后利用整體的方法來(lái)判斷。

思考:與,與相等嗎?為什么?

利用整體的方法判斷,把看成一個(gè)數(shù),則是它的相反數(shù),相反數(shù)的奇次方是相反的,所以它們不相等。

總結(jié)歸納得到:;

三、典例剖析。

完全平方公式教案篇十一

1.弄清完全平方公式的來(lái)源及其結(jié)構(gòu)特點(diǎn),能用自己的。語(yǔ)言說(shuō)明公式及其特點(diǎn);

2.會(huì)用完全平方公式進(jìn)行運(yùn)算。教學(xué)難點(diǎn):會(huì)用完全平方公式進(jìn)行運(yùn)算教學(xué)過(guò)程:

一塊邊長(zhǎng)為a米的正方形實(shí)驗(yàn)田,因需要將其邊長(zhǎng)增加b米,形成四塊實(shí)驗(yàn)田,以種植不同的新品種。(圖略)。

用不同的`形式表示實(shí)驗(yàn)田的總面積,并進(jìn)行比較你發(fā)現(xiàn)了什么?

觀察得到的式子,想一想:

(1)(a+b)2等于什么?你能不能用多項(xiàng)式乘法法則說(shuō)明理由呢?

(2)(a-b)2等于什么?小穎寫(xiě)出了如下的算式:

(a-b)2=[a+(b)]2.

她是怎么想的?你能繼續(xù)做下去嗎?

(a+b)2=a2+2ab+b2。

(a-b)2=a22ab+b2。

教師在此時(shí)應(yīng)該引導(dǎo)觀察完全平方公式的特點(diǎn),并用自己的言語(yǔ)表達(dá)出來(lái)。

(1)(2x-3)2。

解:(2x-3)2。

=(2x)2-2(2x)3+32。

=4x12x+9。

(1);(2);。

(3);(4).

2.計(jì)算下列各式:

(1);(2);(3);。

(4);(5);。

(6).

4.填空:

(1)xxxxxxxxx_;(2);。

1.求的值,其中。

2.若。

對(duì)公式的真正理解有待加強(qiáng)。

完全平方公式教案篇十二

完全平方和(差)公式是某些特殊形式的多項(xiàng)式相乘,只有掌握完全平方和(差)公式的一些本質(zhì)地結(jié)構(gòu)特點(diǎn),才能正確地讓公式更好地幫助我們進(jìn)行簡(jiǎn)單計(jì)算。

要學(xué)好這部分,首先要注意掌握:

1、公式本身:(a+b)2=a2+2ab+b2。

文字?jǐn)⑹觯簝蓴?shù)和(或差)的平方,等于它們的平方和,加(或減)它們的積2倍。

2、公式的結(jié)構(gòu)特點(diǎn):等號(hào)左邊是一個(gè)二項(xiàng)式的平方,等號(hào)右邊是一個(gè)二次三項(xiàng)式,其中有兩項(xiàng)是公式左邊二項(xiàng)式中每一項(xiàng)的平方,另一項(xiàng)是左邊二項(xiàng)式中那兩項(xiàng)乘積的2倍?;虻忍?hào)右邊記作:首平方,尾平方,2倍之積中間放。

3、公式中字母的廣泛意義:既可以代表任意的數(shù)(正數(shù)、負(fù)數(shù)),又可以代表任意代數(shù)式。注意代表代數(shù)式時(shí),要有“整體思想”的觀念。

其次要注意易錯(cuò)點(diǎn):

1、易錯(cuò)寫(xiě):(a+b)2=a2+b2。

許多學(xué)生往往認(rèn)為(a+b)2=a2+b2,甚至認(rèn)為(a+b)3=a3+b3,(a+b)4=a4+b4,等等。為了說(shuō)明這個(gè)問(wèn)題,我首先利用分地的`故事引入,第一個(gè)農(nóng)夫分得a2+b2,第二個(gè)分得(a+b)2,然后讓同學(xué)們對(duì)比2個(gè)代數(shù)式,通過(guò)各種方法說(shuō)明這兩者是不同的,比如計(jì)算法,代數(shù)字法,幾何作圖法(聯(lián)系公式的幾何意義),因而加深理解完全平方公式,并借此進(jìn)行強(qiáng)化訓(xùn)練。雖然還有極個(gè)別學(xué)生出現(xiàn)2項(xiàng)的情況,但絕大部分明白了2倍之積中間放的意義。

2、兩個(gè)公式中的符號(hào)易混:課堂上進(jìn)行了教學(xué)的改進(jìn),把2個(gè)公式(a+b)2與(a-b)2并作一個(gè)公式來(lái)處理。為了避免符號(hào)上出現(xiàn)混亂,把2個(gè)公式的符號(hào)特點(diǎn)進(jìn)行觀察,得出同號(hào)得正,異號(hào)得負(fù)的結(jié)論。由此應(yīng)對(duì)兩項(xiàng)式的平方的符號(hào)問(wèn)題,也省去了一些變號(hào)的煩惱。

3、兩公式靈活運(yùn)用。

在一些實(shí)際問(wèn)題中,有些題目不能直接運(yùn)用公式,需要一步轉(zhuǎn)化才可以。如計(jì)算:

(1)(y-x)(x-y)(2)(x+y)(-x-y)。

完全平方公式教案篇十三

(2)切勿把“乘積項(xiàng)”2ab中的2丟掉.

今后在教學(xué)中?,要注意以下幾點(diǎn):

1.讓學(xué)生自編幾道符合平方差公式結(jié)構(gòu)的計(jì)算題,目的是辨認(rèn)題目的結(jié)構(gòu)特征.

2.引入完全平方公式,讓學(xué)生用文字概括公式的內(nèi)容,培養(yǎng)抽象的數(shù)字思維能力.

完全平方公式教案篇十四

(2)思考:如何更簡(jiǎn)單迅捷地進(jìn)行各種乘法公式的運(yùn)算?[。

(1)(2)(3)(4)。

2.計(jì)算:

(1)(2)。

由反之。

反之。

1、填空:

(1)(2)(3)。

(4)(5)。

(6)。

(7)若,則k=。

例1計(jì)算:1.2.

從圖(1)中可以看出大正方形的邊長(zhǎng)是a+b,

它是由兩個(gè)小正方形和兩個(gè)矩形組成,所以。

大正方形的面積等于這四個(gè)圖形的面積之和。

則s==。

即:

如圖(2)中,大正方形的邊長(zhǎng)是a,它的面積是;矩形dcge與矩形bchf是全等圖形,長(zhǎng)都是,寬都是,所以它們的面積都是;正方形hcgm的邊長(zhǎng)是b,其面積就是;正方形afme的邊長(zhǎng)是,所以它的面積是.從圖中可以看出正方形aemf的面積等于正方形abcd的'面積減去兩個(gè)矩形dcge和bchf的面積再加上正方形hcgm的面積。也就是:(a-b)2=.這也正好符合完全平方公式。

例2.計(jì)算:

(1)(2)。

變式訓(xùn)練:

(1)(2)。

(3)(4)(x+5)2–(x-2)(x-3)。

(5)(x-2)(x+2)-(x+1)(x-3)(6)(2x-y)2-4(x-y)(x+2y)。

拓展:1、(1)已知,則=。

(2)已知,求________,________。

(3)不論為任意有理數(shù),的值總是()。

a.負(fù)數(shù)b.零c.正數(shù)d.不小于2。

2、(1)已知,求和的值。

(2)已知,求的值。

(3).已知,求的值。

1.完全平方公式的使用:在做題過(guò)程中一定要注意符號(hào)問(wèn)題和正確認(rèn)識(shí)a、b表示的意義,它們可以是數(shù)、也可以是單項(xiàng)式,還可以是多項(xiàng)式,所以要記得添括號(hào)。

2.解題技巧:在解題之前應(yīng)注意觀察思考,選擇不同的方法會(huì)有不同的效果,要學(xué)會(huì)優(yōu)化選擇。

完全平方公式教案篇十五

在進(jìn)入三中這個(gè)大家庭里,我感受到了這個(gè)大家庭的愛(ài),有來(lái)自領(lǐng)導(dǎo),師傅,辦公室同事的指導(dǎo),深感欣慰。由于第一次教授初中數(shù)學(xué),對(duì)于備學(xué)生和備教材缺乏全面理解,本節(jié)課的教學(xué)沒(méi)有很好的完成教學(xué)目的標(biāo),本課的知識(shí)要點(diǎn)是經(jīng)歷探索完全平方公式的過(guò)程,了解公式的幾何背景,會(huì)應(yīng)用公式進(jìn)行簡(jiǎn)單的計(jì)算。理解公式的推導(dǎo)過(guò)程,了解公式的幾何背景,會(huì)應(yīng)用公式進(jìn)行簡(jiǎn)單的計(jì)算。探索完全平方公式的過(guò)程,培養(yǎng)學(xué)生的發(fā)現(xiàn)能力、求簡(jiǎn)意識(shí)、應(yīng)用意識(shí)、解決問(wèn)題的能力和創(chuàng)新能力。培養(yǎng)學(xué)生敢于挑戰(zhàn),勇于探索的精神和善于觀察,大膽創(chuàng)新的思想品質(zhì)。

通過(guò)本課,讓學(xué)生體會(huì)公式的發(fā)現(xiàn)和推導(dǎo)過(guò)程,理解公式的本質(zhì),并會(huì)運(yùn)用公式進(jìn)行簡(jiǎn)單的計(jì)算,理解公式中的字母含義,及公式的應(yīng)用。

通過(guò)本節(jié)課的教學(xué)得到如下收獲:。

(1)這節(jié)課倡導(dǎo)了以學(xué)生為主,教師為輔的思想,留足了一定的時(shí)間讓學(xué)生去發(fā)現(xiàn)探索、以及做練習(xí)。

(2)采用了多媒體輔助教學(xué),以較清晰的手段呈現(xiàn)了學(xué)生整個(gè)學(xué)習(xí)過(guò)程,讓課堂更加直觀明了,同時(shí)客容量也增大了。

(3)讓學(xué)生體會(huì)了數(shù)形結(jié)合及轉(zhuǎn)化的數(shù)學(xué)思想,并知道猜想的結(jié)論必須要加以驗(yàn)證。

本節(jié)課采用了以小組自主探究的學(xué)習(xí)方式,整節(jié)課都在緊張而愉快的氣氛中進(jìn)行,學(xué)生活躍,能積極參與。教學(xué)中,比較關(guān)注學(xué)生的情感態(tài)度,對(duì)那些積極動(dòng)腦,熱情參與的同學(xué),都給予了鼓勵(lì)和表?yè)P(yáng),促使學(xué)生的情感和興趣始終保持最佳狀態(tài),進(jìn)而提高課堂教學(xué)的有效性。

完全平方公式教案篇十六

這一節(jié)課主要研究完全平方公式的證明方法,關(guān)鍵是引導(dǎo)學(xué)生正確理解完全平方公式的推導(dǎo)過(guò)程,以及這兩個(gè)公式的幾何背景。

這節(jié)課我做的比較好的方面:

經(jīng)歷探索完全平方公式的過(guò)程,通過(guò)拼圖游戲,從形到數(shù)又從數(shù)到形,讓學(xué)生了解公式的幾何背景,學(xué)生體會(huì)了數(shù)形結(jié)合的數(shù)學(xué)思想,并知道猜想的結(jié)論必須加以驗(yàn)證,本節(jié)授課思維流暢,知識(shí)發(fā)生發(fā)展過(guò)程過(guò)渡自然,學(xué)生容易得到一些結(jié)論但在老師的引導(dǎo)下又使問(wèn)題的探討得以不斷深入,學(xué)生思考積極,氣氛活躍,教學(xué)效果較好。

這節(jié)課采用小組自主探究,小組合作的學(xué)習(xí)方式,緊張而愉快,學(xué)生及相互交流的同時(shí)又相互合作,極大的調(diào)動(dòng)了學(xué)生學(xué)習(xí)的熱情同時(shí)我也比較關(guān)注那些積極動(dòng)腦,熱情參與的同學(xué),及時(shí)的給予表?yè)P(yáng)和鼓勵(lì),進(jìn)而促進(jìn)課堂教學(xué)的有效性。

從幾何意義出發(fā),激發(fā)學(xué)生的圖形觀,利用拼圖游戲,使學(xué)生在動(dòng)手的過(guò)程中發(fā)現(xiàn)結(jié)論,并通過(guò)小組合作,探究歸納公式,從而突出以學(xué)生為主體的的探究性學(xué)習(xí)原則。

這節(jié)課做的不足的方面有對(duì)學(xué)生個(gè)別指導(dǎo)較少,應(yīng)到各小組當(dāng)中去積極參與學(xué)生的活動(dòng);學(xué)生拼圖時(shí)間略微有些偏長(zhǎng),對(duì)后面的教學(xué)稍有影響,顯的前松后緊。

【本文地址:http://www.aiweibaby.com/zuowen/14465835.html】

全文閱讀已結(jié)束,如果需要下載本文請(qǐng)點(diǎn)擊

下載此文檔