編寫教案需要對教材進(jìn)行仔細(xì)研究和分析,具備一定的教學(xué)經(jīng)驗(yàn)和方法。教案的教學(xué)步驟和教學(xué)方法要選擇合適的,能夠激發(fā)學(xué)生的興趣,提高學(xué)習(xí)效果。教案是教學(xué)活動(dòng)中用于指導(dǎo)教師進(jìn)行教學(xué)的文字材料,它可以系統(tǒng)地規(guī)劃課堂教學(xué)內(nèi)容和步驟。一個(gè)好的教案可以提高教學(xué)效果,使學(xué)生更好地掌握知識(shí)。編寫教案要明確教學(xué)目標(biāo),確保教學(xué)的針對性和有效性。教案的結(jié)構(gòu)應(yīng)該清晰合理,包括導(dǎo)入、呈現(xiàn)、練習(xí)、鞏固和評價(jià)等環(huán)節(jié)。教案要與學(xué)校的教學(xué)大綱和教材要求相一致,符合教學(xué)政策和要求。以下是小編為大家收集的教案范文,僅供參考,大家一起來看看吧。
高一數(shù)學(xué)教案設(shè)計(jì)篇一
1、復(fù)習(xí)6以內(nèi)數(shù)的組成,能正確地記錄6以內(nèi)數(shù)的分合形式。
2、練習(xí)5以內(nèi)的加減運(yùn)算,能看算式報(bào)出答案。
3、能大方地在集體面前回答問題。
1、經(jīng)驗(yàn)準(zhǔn)備:幼兒已學(xué)過6的組成和5的加減。
2、幼兒用書1-21頁。
(一)游戲:碰球。
——鼓勵(lì)幼兒前一已有經(jīng)驗(yàn)大方地在集體面前回答。
——師幼共同玩“碰球”的游戲。
1、教師出示數(shù)字卡片“5”,請幼兒看數(shù)字卡片,要求幼兒口報(bào)的數(shù)字和老師報(bào)的數(shù)字合起來是“5”。
2、游戲2—3遍后,可更換出示數(shù)字“6”?!?”,提醒幼兒口報(bào)的數(shù)字要和老師報(bào)的數(shù)字合起來與卡片上的數(shù)字一樣多。
(二)游戲:開快樂火車。
——師友共同玩游戲,鼓勵(lì)幼兒快速地報(bào)出算式卡片上的得數(shù),要求既要算得快,又要算的對:嘿嘿,我的火車就要開,幼兒:幾點(diǎn)開?教師出示算式:你們猜?幼兒:()點(diǎn)開。
(三)幼兒操作活動(dòng)。
——看分合式填空格。引導(dǎo)幼兒觀察圓點(diǎn)和數(shù)字分合式。啟發(fā)幼兒在空格中填寫相應(yīng)數(shù)量的圓點(diǎn)或數(shù)字,并說一說分合式。
——看算式進(jìn)行5以內(nèi)加減運(yùn)算。
——看圖列算式。
——算式與答案連線。
(四)活動(dòng)評價(jià)。
——鼓勵(lì)個(gè)別幼兒大方地在集體面前介紹自己的活動(dòng)與記錄,其他幼兒對照檢查自己的操作活動(dòng)。
——展示幼兒的操作材料,表揚(yáng)畫面整潔、正確的幼兒。
高一數(shù)學(xué)教案設(shè)計(jì)篇二
知識(shí)與技能:使學(xué)生理解奇函數(shù)、偶函數(shù)的概念,學(xué)會(huì)運(yùn)用定義判斷函數(shù)的奇偶性。
過程與方法:通過設(shè)置問題情境培養(yǎng)學(xué)生判斷、推斷的能力。
情感態(tài)度與價(jià)值觀:通過繪制和展示優(yōu)美的函數(shù)圖象來陶冶學(xué)生的情操,通過組織學(xué)生分組討論,培養(yǎng)學(xué)生主動(dòng)交流的合作精神,使學(xué)生學(xué)會(huì)認(rèn)識(shí)事物的特殊性和一般性之間的關(guān)系,培養(yǎng)學(xué)生善于探索的思維品質(zhì)。
難點(diǎn):函數(shù)奇偶性的判斷。
學(xué)生在獨(dú)立思考的基礎(chǔ)上進(jìn)行合作交流,在思考、探索和交流的過程中獲得對函數(shù)奇偶性的全面的體驗(yàn)和理解。對于奇偶性的應(yīng)用采取講練結(jié)合的方式進(jìn)行處理,使學(xué)生邊學(xué)邊練,及時(shí)鞏固。
1、復(fù)習(xí)在初中學(xué)習(xí)的軸對稱圖形和中心對稱圖形的定義:
2、分別畫出函數(shù)f(x)=x3與g(x)=x2的圖象,并說出圖象的對稱性。
(1)對于函數(shù),其定義域關(guān)于原點(diǎn)對稱:
如果______________________________________,那么函數(shù)為偶函數(shù)。
(2)奇函數(shù)的圖象關(guān)于__________對稱,偶函數(shù)的圖象關(guān)于_________對稱。
(3)奇函數(shù)在對稱區(qū)間的增減性;偶函數(shù)在對稱區(qū)間的增減性。
(1)f(x)=x4;(2)f(x)=x5;。
(3)f(x)=x+(4)f(x)=。
a2、二次函數(shù)()是偶函數(shù),則b=___________。
b3、已知,其中為常數(shù),若,則。
_______。
b4、若函數(shù)是定義在r上的奇函數(shù),則函數(shù)的圖象關(guān)于()。
(a)軸對稱(b)軸對稱(c)原點(diǎn)對稱(d)以上均不對。
b5、如果定義在區(qū)間上的函數(shù)為奇函數(shù),則=_____。
c6、若函數(shù)是定義在r上的奇函數(shù),且當(dāng)時(shí),,那么當(dāng)。
時(shí),=_______。
d7、設(shè)是上的奇函數(shù),,當(dāng)時(shí),,則等于()。
(a)0.5(b)(c)1.5(d)。
d8、定義在上的奇函數(shù),則常數(shù)____,_____。
本節(jié)主要學(xué)習(xí)了函數(shù)的奇偶性,判斷函數(shù)的奇偶性通常有兩種方法,即定義法和圖象法,用定義法判斷函數(shù)的奇偶性時(shí),必須注意首先判斷函數(shù)的定義域是否關(guān)于原點(diǎn)對稱。單調(diào)性與奇偶性的綜合應(yīng)用是本節(jié)的一個(gè)難點(diǎn),需要學(xué)生結(jié)合函數(shù)的圖象充分理解好單調(diào)性和奇偶性這兩個(gè)性質(zhì)。
高一數(shù)學(xué)教案設(shè)計(jì)篇三
一、教材分析(結(jié)構(gòu)系統(tǒng)、單元內(nèi)容、重難點(diǎn))。
二、學(xué)生分析(雙基智能水平、學(xué)習(xí)態(tài)度、方法、紀(jì)律)。
較去年而言,今年的學(xué)生的素質(zhì)有了比較大的提高,學(xué)生的基礎(chǔ)知識(shí)水平與基本學(xué)習(xí)方法比較扎實(shí),大部分的學(xué)生對學(xué)習(xí)都有很大的興趣,學(xué)習(xí)紀(jì)律比較自覺。
三、
教學(xué)目的要求。
1.通過對任意三角形邊長和角度關(guān)系的探索,掌握正弦定理、余弦定理,并能解決一些簡單的三角形度量問題和與測量及幾何計(jì)算有關(guān)的實(shí)際問題。
2.通過日常生活中的實(shí)例,了解數(shù)列的概念和幾種簡單的表示方法,了解數(shù)列是一種特殊的函數(shù);理解等差數(shù)列、等比數(shù)列的概念,探索并掌握2種數(shù)列的通項(xiàng)公式與前n項(xiàng)和的公式,能用有關(guān)的知識(shí)解決相應(yīng)的問題。
3.理解不等式(組)對于刻畫不等關(guān)系的意義和價(jià)值;掌握求解一元二次不等式的基本方法,并能解決一些實(shí)際問題;能用一元二次不等式組表示平面區(qū)域,并嘗試解決簡單的二元線性規(guī)劃問題。
4.幾何學(xué)研究現(xiàn)實(shí)世界中物體的形狀、大小與位置的學(xué)科。直觀感知、操作確認(rèn)、思辨論證、度量計(jì)算是認(rèn)識(shí)和探索幾何圖形及其性質(zhì)的方法。先從對空間幾何體的整體觀察入手,認(rèn)識(shí)空間圖形及其直觀圖的畫法;再以長方體為載體,直觀認(rèn)識(shí)和理解空間中點(diǎn)、直線、平面之間的位置關(guān)系,并利用數(shù)學(xué)語言表述有關(guān)平行、垂直的性質(zhì)與判定,對某些結(jié)論進(jìn)行論證。另外了解一些簡單幾何體的表面積與體積的計(jì)算方法。在解析幾何初步中,在平面直角坐標(biāo)系中建立直線和圓的代數(shù)方程,運(yùn)用代數(shù)方法研究它們的幾何性質(zhì)及其相互關(guān)系,了解空間直角坐標(biāo)系。體會(huì)數(shù)形結(jié)合的思想,初步形成用代數(shù)方法解決幾何問題的能力。
四、完成教學(xué)任務(wù)和提高教學(xué)質(zhì)量的具體措施。
積極做好集體備課工作,達(dá)到內(nèi)容統(tǒng)一、進(jìn)度統(tǒng)一、目標(biāo)統(tǒng)一、例題統(tǒng)一、習(xí)題統(tǒng)一、資料統(tǒng)一;上好每一節(jié)課,及時(shí)對學(xué)生的思想進(jìn)行觀察與指導(dǎo);課后進(jìn)行有效的輔導(dǎo);進(jìn)行有效的課堂反思。
一、教材分析(結(jié)構(gòu)系統(tǒng)、單元內(nèi)容、重難點(diǎn))。
第1頁。
元一次不等式(組)與簡單的線性規(guī)劃問題及應(yīng)用;。
二、學(xué)生分析(雙基智能水平、學(xué)習(xí)態(tài)度、方法、紀(jì)律)。
較去年而言,今年的學(xué)生的素質(zhì)有了比較大的提高,學(xué)生的基礎(chǔ)知識(shí)水平與基本學(xué)習(xí)方法比較扎實(shí),大部分的學(xué)生對學(xué)習(xí)都有很大的興趣,學(xué)習(xí)紀(jì)律比較自覺。
三、教學(xué)目的要求。
1.通過對任意三角形邊長和角度關(guān)系的探索,掌握正弦定理、余弦定理,并能解決一些簡單的三角形度量問題和與測量及幾何計(jì)算有關(guān)的實(shí)際問題。
2.通過日常生活中的實(shí)例,了解數(shù)列的概念和幾種簡單的表示方法,了解數(shù)列是一種特殊的函數(shù);理解等差數(shù)列、等比數(shù)列的概念,探索并掌握2種數(shù)列的通項(xiàng)公式與前n項(xiàng)和的公式,能用有關(guān)的知識(shí)解決相應(yīng)的問題。
3.理解不等式(組)對于刻畫不等關(guān)系的意義和價(jià)值;掌握求解一元二次不等式的基本方法,并能解決一些實(shí)際問題;能用一元二次不等式組表示平面區(qū)域,并嘗試解決簡單的二元線性規(guī)劃問題。
4.幾何學(xué)研究現(xiàn)實(shí)世界中物體的形狀、大小與位置的學(xué)科。直觀感知、操作確認(rèn)、思辨論證、度量計(jì)算是認(rèn)識(shí)和探索幾何圖形及其性質(zhì)的方法。先從對空間幾何體的整體觀察入手,認(rèn)識(shí)空間圖形及其直觀圖的畫法;再以長方體為載體,直觀認(rèn)識(shí)和理解空間中點(diǎn)、直線、平面之間的位置關(guān)系,并利用數(shù)學(xué)語言表述有關(guān)平行、垂直的性質(zhì)與判定,對某些結(jié)論進(jìn)行論證。另外了解一些簡單幾何體的表面積與體積的計(jì)算方法。在解析幾何初步中,在平面直角坐標(biāo)系中建立直線和圓的代數(shù)方程,運(yùn)用代數(shù)方法研究它們的幾何性質(zhì)及其相互關(guān)系,了解空間直角坐標(biāo)系。體會(huì)數(shù)形結(jié)合的思想,初步形成用代數(shù)方法解決幾何問題的能力。
四、完成教學(xué)任務(wù)和提高教學(xué)質(zhì)量的具體措施。
一般說來,“教師”概念之形成經(jīng)歷了十分漫長的歷史。楊士勛(唐初學(xué)者,四門博士)《春秋谷梁傳疏》曰:“師者教人以不及,故謂師為師資也”。這兒的“師資”,其實(shí)就是先秦而后歷代對教師的別稱之一?!俄n非子》也有云:“今有不才之子……師長教之弗為變”其“師長”當(dāng)然也指教師。這兒的“師資”和“師長”可稱為“教師”概念的雛形,但仍說不上是名副其實(shí)的“教師”,因?yàn)椤敖處煛北仨氁忻鞔_的傳授知識(shí)的對象和本身明確的職責(zé)。
一般說來,“教師”概念之形成經(jīng)歷了十分漫長的歷史。楊士勛(唐初學(xué)者,四門博士)《春秋谷梁傳疏》曰:“師者教人以不及,故謂師為師資也”。這兒的“師資”,其實(shí)就是先秦而后歷代對教師的別稱之一?!俄n非子》也有云:“今有不才之子……師長教之弗為變”其“師長”當(dāng)然也指教師。這兒的“師資”和“師長”可稱為“教師”概念的雛形,但仍說不上是名副其實(shí)的“教師”,因?yàn)椤敖處煛北仨氁忻鞔_的傳授知識(shí)的對象和本身明確的職責(zé)。積極做好集體備課工作,達(dá)到內(nèi)容統(tǒng)一、進(jìn)度統(tǒng)一、目標(biāo)統(tǒng)一、例題統(tǒng)一、習(xí)題統(tǒng)一、資料統(tǒng)一;上好每一節(jié)課,及時(shí)對學(xué)生的思想進(jìn)行觀察與指導(dǎo);課后進(jìn)行有效的輔導(dǎo);進(jìn)行有效的課堂反思。
第2頁。
要練說,先練膽。說話膽小是幼兒語言發(fā)展的障礙。不少幼兒當(dāng)眾說話時(shí)顯得膽怯:有的結(jié)巴重復(fù),面紅耳赤;有的聲音極低,自講自聽;有的低頭不語,扯衣服,扭身子??傊f話時(shí)外部表現(xiàn)不自然。我抓住練膽這個(gè)關(guān)鍵,面向全體,偏向差生。一是和幼兒建立和諧的語言交流關(guān)系。每當(dāng)和幼兒講話時(shí),我總是笑臉相迎,聲音親切,動(dòng)作親昵,消除幼兒畏懼心理,讓他能主動(dòng)的、無拘無束地和我交談。二是注重培養(yǎng)幼兒敢于當(dāng)眾說話的習(xí)慣?;蛟谡n堂教學(xué)中,改變過去老師講學(xué)生聽的傳統(tǒng)的教學(xué)模式,取消了先舉手后發(fā)言的約束,多采取自由討論和談話的形式,給每個(gè)幼兒較多的當(dāng)眾說話的機(jī)會(huì),培養(yǎng)幼兒愛說話敢說話的興趣,對一些說話有困難的幼兒,我總是認(rèn)真地耐心地聽,熱情地幫助和鼓勵(lì)他把話說完、說好,增強(qiáng)其說話的勇氣和把話說好的信心。三是要提明確的說話要求,在說話訓(xùn)練中不斷提高,我要求每個(gè)幼兒在說話時(shí)要儀態(tài)大方,口齒清楚,聲音響亮,學(xué)會(huì)用眼神。對說得好的幼兒,即使是某一方面,我都抓住教育,提出表揚(yáng),并要其他幼兒模仿。長期堅(jiān)持,不斷訓(xùn)練,幼兒說話膽量也在不斷提高。
第3頁。
高一數(shù)學(xué)教案設(shè)計(jì)篇四
2結(jié)合的圖象及函數(shù)周期性的定義了解三角函數(shù)的周期性,及最小正周期。
3會(huì)用代數(shù)方法求等函數(shù)的周期。
4理解周期性的幾何意義。
“周期函數(shù)的概念”,周期的求解。
1、是周期函數(shù)是指對定義域中所有都有,即應(yīng)是恒等式。
2、周期函數(shù)一定會(huì)有周期,但不一定存在最小正周期。
例1、若鐘擺的高度與時(shí)間之間的函數(shù)關(guān)系如圖所示。
(1)求該函數(shù)的周期;
(2)求時(shí)鐘擺的高度。
例2、求下列函數(shù)的周期。
(1)(2)。
總結(jié):(1)函數(shù)(其中均為常數(shù),且的周期t=xx)。
(2)函數(shù)(其中均為常數(shù),且的周期t=xx)。
例3、求證:的周期為。
且
總結(jié):函數(shù)(其中均為常數(shù),且的周期t=。
例5、(1)求的周期。
(2)已知滿足,求證:是周期函數(shù)。
課后思考:能否利用單位圓作函數(shù)的圖象。
高一數(shù)學(xué)教案設(shè)計(jì)篇五
理解函數(shù)的奇偶性及其幾何意義。
【過程與方法】。
利用指數(shù)函數(shù)的圖像和性質(zhì),及單調(diào)性來解決問題。
【情感態(tài)度與價(jià)值觀】。
體會(huì)指數(shù)函數(shù)是一類重要的函數(shù)模型,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
【重點(diǎn)】。
【難點(diǎn)】。
(一)導(dǎo)入新課。
取一張紙,在其上畫出平面直角坐標(biāo)系,并在第一象限任畫一可作為函數(shù)圖象的圖形,然后按如下操作并回答相應(yīng)問題:
答案:(1)可以作為某個(gè)函數(shù)y=f(x)的圖象,并且它的圖象關(guān)于y軸對稱;
(二)新課教學(xué)。
(1)偶函數(shù)(evenfunction)。
(學(xué)生活動(dòng)):仿照偶函數(shù)的定義給出奇函數(shù)的定義。
(2)奇函數(shù)(oddfunction)。
注意:
1函數(shù)是奇函數(shù)或是偶函數(shù)稱為函數(shù)的奇偶性,函數(shù)的奇偶性是函數(shù)的整體性質(zhì);
2由函數(shù)的奇偶性定義可知,函數(shù)具有奇偶性的一個(gè)必要條件是,對于定義域內(nèi)的任意一個(gè)x,則-x也一定是定義域內(nèi)的一個(gè)自變量(即定義域關(guān)于原點(diǎn)對稱)。
2、具有奇偶性的函數(shù)的圖象的特征。
偶函數(shù)的圖象關(guān)于y軸對稱;
奇函數(shù)的圖象關(guān)于原點(diǎn)對稱。
3、典型例題。
例1.(教材p36例3)應(yīng)用函數(shù)奇偶性定義說明兩個(gè)觀察思考中的四個(gè)函數(shù)的奇偶性(本例由學(xué)生討論,師生共同總結(jié)具體方法步驟)。
解:(略)。
總結(jié):利用定義判斷函數(shù)奇偶性的格式步驟:
1首先確定函數(shù)的定義域,并判斷其定義域是否關(guān)于原點(diǎn)對稱;
2確定f(-x)與f(x)的關(guān)系;
3作出相應(yīng)結(jié)論:
若f(-x)=f(x)或f(-x)-f(x)=0,則f(x)是偶函數(shù);
若f(-x)=-f(x)或f(-x)+f(x)=0,則f(x)是奇函數(shù)。
(三)鞏固提高。
1、教材p46習(xí)題1.3b組每1題。
解:(略)。
(教材p41思考題)。
規(guī)律:
偶函數(shù)的圖象關(guān)于y軸對稱;
奇函數(shù)的圖象關(guān)于原點(diǎn)對稱。
說明:這也可以作為判斷函數(shù)奇偶性的依據(jù)。
(四)小結(jié)作業(yè)。
課本p46習(xí)題1.3(a組)第9、10題,b組第2題。
三、規(guī)律:
偶函數(shù)的圖象關(guān)于y軸對稱;
奇函數(shù)的`圖象關(guān)于原點(diǎn)對稱。
高一數(shù)學(xué)教案設(shè)計(jì)篇六
【過程與方法】。
利用指數(shù)函數(shù)的圖像和性質(zhì),及單調(diào)性來解決問題。
【情感態(tài)度與價(jià)值觀】。
體會(huì)指數(shù)函數(shù)是一類重要的函數(shù)模型,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
【重點(diǎn)】。
【難點(diǎn)】。
(一)導(dǎo)入新課。
取一張紙,在其上畫出平面直角坐標(biāo)系,并在第一象限任畫一可作為函數(shù)圖象的圖形,然后按如下操作并回答相應(yīng)問題:
答案:(1)可以作為某個(gè)函數(shù)y=f(x)的圖象,并且它的圖象關(guān)于y軸對稱;。
(二)新課教學(xué)。
(1)偶函數(shù)(evenfunction)。
(學(xué)生活動(dòng)):仿照偶函數(shù)的定義給出奇函數(shù)的定義。
(2)奇函數(shù)(oddfunction)。
注意:
1函數(shù)是奇函數(shù)或是偶函數(shù)稱為函數(shù)的奇偶性,函數(shù)的奇偶性是函數(shù)的整體性質(zhì);。
2由函數(shù)的奇偶性定義可知,函數(shù)具有奇偶性的一個(gè)必要條件是,對于定義域內(nèi)的任意一個(gè)x,則-x也一定是定義域內(nèi)的一個(gè)自變量(即定義域關(guān)于原點(diǎn)對稱)。
2.具有奇偶性的函數(shù)的圖象的特征。
偶函數(shù)的圖象關(guān)于y軸對稱;。
奇函數(shù)的圖象關(guān)于原點(diǎn)對稱。
3.典型例題。
例1.(教材p36例3)應(yīng)用函數(shù)奇偶性定義說明兩個(gè)觀察思考中的四個(gè)函數(shù)的奇偶性(本例由學(xué)生討論,師生共同總結(jié)具體方法步驟)。
解:(略)。
總結(jié):利用定義判斷函數(shù)奇偶性的格式步驟:
1首先確定函數(shù)的定義域,并判斷其定義域是否關(guān)于原點(diǎn)對稱;。
2確定f(-x)與f(x)的關(guān)系;。
3作出相應(yīng)結(jié)論:
若f(-x)=f(x)或f(-x)-f(x)=0,則f(x)是偶函數(shù);。
若f(-x)=-f(x)或f(-x)+f(x)=0,則f(x)是奇函數(shù)。
(三)鞏固提高。
1.教材p46習(xí)題1.3b組每1題。
解:(略)。
(教材p41思考題)。
規(guī)律:
偶函數(shù)的圖象關(guān)于y軸對稱;。
奇函數(shù)的圖象關(guān)于原點(diǎn)對稱。
(四)小結(jié)作業(yè)。
課本p46習(xí)題1.3(a組)第9、10題,b組第2題。
三、規(guī)律:
偶函數(shù)的圖象關(guān)于y軸對稱;。
奇函數(shù)的`圖象關(guān)于原點(diǎn)對稱。
高一數(shù)學(xué)教案設(shè)計(jì)篇七
數(shù)學(xué)是一門培養(yǎng)人的思維,發(fā)展人的思維的重要學(xué)科。因此,在教學(xué)中,不僅要使學(xué)生“知其然”而且要使學(xué)生“知其所以然”。所以在學(xué)生為主體,教師為主導(dǎo)的原則下,要充分揭示獲取知識(shí)和方法的思維過程。因此本節(jié)課我以建構(gòu)主義的“創(chuàng)設(shè)問題情境——提出數(shù)學(xué)問題——嘗試解決問題——驗(yàn)證解決方法”為主,主要采用觀察、啟發(fā)、類比、引導(dǎo)、探索相結(jié)合的教學(xué)方法。在教學(xué)手段上,則采用多媒體輔助教學(xué),將抽象問題形象化,使教學(xué)目標(biāo)體現(xiàn)的更加完美。
三角函數(shù)的誘導(dǎo)公式是普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(人教a版)數(shù)學(xué)必修四,第一章第三節(jié)的內(nèi)容,其主要內(nèi)容是三角函數(shù)誘導(dǎo)公式中的公式(二)至公式(六)。本節(jié)是第一課時(shí),教學(xué)內(nèi)容為公式(二)、(三)、(四)。教材要求通過學(xué)生在已經(jīng)掌握的任意角的三角函數(shù)的定義和誘導(dǎo)公式(一)的基礎(chǔ)上,利用對稱思想發(fā)現(xiàn)任意角、終邊的對稱關(guān)系,發(fā)現(xiàn)他們與單位圓的交點(diǎn)坐標(biāo)之間關(guān)系,進(jìn)而發(fā)現(xiàn)他們的三角函數(shù)值的關(guān)系,即發(fā)現(xiàn)、掌握、應(yīng)用三角函數(shù)的誘導(dǎo)公式公式(二)、(三)、(四)。同時(shí)教材滲透了轉(zhuǎn)化與化歸等數(shù)學(xué)思想方法,為培養(yǎng)學(xué)生養(yǎng)成良好的學(xué)習(xí)習(xí)慣提出了要求。為此本節(jié)內(nèi)容在三角函數(shù)中占有非常重要的地位。
本節(jié)課的授課對象是本校高一(x)班全體同學(xué),本班學(xué)生水平處于中等偏下,但本班學(xué)生具有善于動(dòng)手的良好學(xué)習(xí)習(xí)慣,所以采用發(fā)現(xiàn)的教學(xué)方法應(yīng)該能輕松的完成本節(jié)課的教學(xué)內(nèi)容。
(1)基礎(chǔ)知識(shí)目標(biāo):理解誘導(dǎo)公式的發(fā)現(xiàn)過程,掌握正弦、余弦、正切的誘導(dǎo)公式;
(4)個(gè)性品質(zhì)目標(biāo):通過誘導(dǎo)公式的學(xué)習(xí)和應(yīng)用,感受事物之間的普通聯(lián)系規(guī)律,運(yùn)用化歸等數(shù)學(xué)思想方法,揭示事物的本質(zhì)屬性,培養(yǎng)學(xué)生的唯物史觀。
1、教學(xué)重點(diǎn):理解并掌握誘導(dǎo)公式。
2、教學(xué)難點(diǎn):正確運(yùn)用誘導(dǎo)公式,求三角函數(shù)值,化簡三角函數(shù)式。
“授人以魚不如授之以魚”,作為一名老師,我們不僅要傳授給學(xué)生數(shù)學(xué)知識(shí),更重要的是傳授給學(xué)生數(shù)學(xué)思想方法,如何實(shí)現(xiàn)這一目的,要求我們每一位教者苦心鉆研、認(rèn)真探究。下面我從教法、學(xué)法、預(yù)期效果等三個(gè)方面做如下分析。
數(shù)學(xué)教學(xué)是數(shù)學(xué)思維活動(dòng)的教學(xué),而不僅僅是數(shù)學(xué)活動(dòng)的結(jié)果,數(shù)學(xué)學(xué)習(xí)的目的不僅僅是為了獲得數(shù)學(xué)知識(shí),更主要作用是為了訓(xùn)練人的思維技能,提高人的思維品質(zhì)。
在本節(jié)課的教學(xué)過程中,本人以學(xué)生為主題,以發(fā)現(xiàn)為主線,盡力滲透類比、化歸、數(shù)形結(jié)合等數(shù)學(xué)思想方法,采用提出問題、啟發(fā)引導(dǎo)、共同探究、綜合應(yīng)用等教學(xué)模式,還給學(xué)生“時(shí)間”、“空間”,由易到難,由特殊到一般,盡力營造輕松的學(xué)習(xí)環(huán)境,讓學(xué)生體味學(xué)習(xí)的快樂和成功的喜悅。
“現(xiàn)代的文盲不是不識(shí)字的人,而是沒有掌握學(xué)習(xí)方法的人”,很多課堂教學(xué)常常以高起點(diǎn)、大容量、快推進(jìn)的做法,以便教給學(xué)生更多的知識(shí)點(diǎn),卻忽略了學(xué)生接受知識(shí)需要時(shí)間消化,進(jìn)而泯滅了學(xué)生學(xué)習(xí)的興趣與熱情。如何能讓學(xué)生程度的消化知識(shí),提高學(xué)習(xí)熱情是教者必須思考的問題。
在本節(jié)課的教學(xué)過程中,本人引導(dǎo)學(xué)生的學(xué)法為思考問題、共同探討、解決問題簡單應(yīng)用、重現(xiàn)探索過程、練習(xí)鞏固。讓學(xué)生參與探索的全部過程,讓學(xué)生在獲取新知識(shí)及解決問題的方法后,合作交流、共同探索,使之由被動(dòng)學(xué)習(xí)轉(zhuǎn)化為主動(dòng)的自主學(xué)習(xí)。
本節(jié)課預(yù)期讓學(xué)生能正確理解誘導(dǎo)公式的發(fā)現(xiàn)、證明過程,掌握誘導(dǎo)公式,并能熟練應(yīng)用誘導(dǎo)公式了解一些簡單的化簡問題。
高一數(shù)學(xué)教案設(shè)計(jì)篇八
教學(xué)重點(diǎn):理解等比數(shù)列的概念,認(rèn)識(shí)等比數(shù)列是反映自然規(guī)律的重要數(shù)列模型之一,探索并掌握等比數(shù)列的通項(xiàng)公式。
教學(xué)難點(diǎn):遇到具體問題時(shí),抽象出數(shù)列的模型和數(shù)列的等比關(guān)系,并能用有關(guān)知識(shí)解決相應(yīng)問題。
教學(xué)過程:
1.等差數(shù)列的通項(xiàng)公式。
2.等差數(shù)列的前n項(xiàng)和公式。
引入:1“一尺之棰,日取其半,萬世不竭。”
2細(xì)胞分裂模型。
3計(jì)算機(jī)病毒的傳播。
由學(xué)生通過類比,歸納,猜想,發(fā)現(xiàn)等比數(shù)列的特點(diǎn)。
進(jìn)而讓學(xué)生通過用遞推公式描述等比數(shù)列。
讓學(xué)生回憶用不完全歸納法得到等差數(shù)列的通項(xiàng)公式的過程然后類比等比數(shù)列的通項(xiàng)公式。
注意:1公比q是任意一個(gè)常數(shù),不僅可以是正數(shù)也可以是負(fù)數(shù)。
2當(dāng)首項(xiàng)等于0時(shí),數(shù)列都是0。當(dāng)公比為0時(shí),數(shù)列也都是0。
所以首項(xiàng)和公比都不可以是0。
3當(dāng)公比q=1時(shí),數(shù)列是怎么樣的,當(dāng)公比q大于1,公比q小于1時(shí)數(shù)列是怎么樣的?
4以及等比數(shù)列和指數(shù)函數(shù)的關(guān)系。
5是后一項(xiàng)比前一項(xiàng)。
列:1,2,(略)。
小結(jié):等比數(shù)列的通項(xiàng)公式。
1.教材p59練習(xí)1,2,3,題。
2.作業(yè):p60習(xí)題1,4。
第二課時(shí)5.2.4等比數(shù)列(二)。
提問:等差數(shù)列的通項(xiàng)公式。
等比數(shù)列的通項(xiàng)公式。
1.討論:如果是等差列的三項(xiàng)滿足。
由學(xué)生給出如果是等比數(shù)列滿足。
2練習(xí):如果等比數(shù)列=4,=16,=?(學(xué)生口答)。
如果等比數(shù)列=4,=16,=?(學(xué)生口答)。
3等比中項(xiàng):如果等比數(shù)列。那么,
則叫做等比數(shù)列的等比中項(xiàng)(教師給出)。
4思考:是否成立呢?成立嗎?
成立嗎?
又學(xué)生找到其間的規(guī)律,并對比記憶如果等差列,
5思考:如果是兩個(gè)等比數(shù)列,那么是等比數(shù)列嗎?
如果是為什么?是等比數(shù)列嗎?引導(dǎo)學(xué)生證明。
6思考:在等比數(shù)列里,如果成立嗎?
如果是為什么?由學(xué)生給出證明過程。
列3:一個(gè)等比數(shù)列的第3項(xiàng)和第4項(xiàng)分別是12和18,求它的第1項(xiàng)和第2項(xiàng)。
解(略)。
列4:略:
練習(xí):1在等比數(shù)列,已知那么。
2p61a組8。
高一數(shù)學(xué)教案設(shè)計(jì)篇九
知識(shí)梳理:
1、軸對稱圖形:
2中心對稱圖形:
1、畫出函數(shù),與的圖像;并觀察兩個(gè)函數(shù)圖像的對稱性。
2、求出,時(shí)的函數(shù)值,寫出。
結(jié)論:
(1)、強(qiáng)調(diào)定義中任意二字,奇偶性是函數(shù)在定義域上的整體性質(zhì)。
(2)、奇函數(shù)偶函數(shù)的定義域關(guān)于原點(diǎn)對稱。
5、奇函數(shù)與偶函數(shù)圖像的對稱性:
如果一個(gè)函數(shù)是奇函數(shù),則這個(gè)函數(shù)的圖像是以坐標(biāo)原點(diǎn)為對稱中心的__________。反之,如果一個(gè)函數(shù)的圖像是以坐標(biāo)原點(diǎn)為對稱中心的中心對稱圖形,則這個(gè)函數(shù)是___________。
如果一個(gè)函數(shù)是偶函數(shù),則這個(gè)函數(shù)的圖像是以軸為對稱軸的__________。反之,如果一個(gè)函數(shù)的圖像是關(guān)于軸對稱,則這個(gè)函數(shù)是___________。
(1)(2)(3)。
(4)(5)。
練習(xí):教材第49頁,練習(xí)a第1題。
總結(jié):根據(jù)例題,你能給出用定義判斷函數(shù)奇偶性的步驟?
題型二:利用奇偶性求函數(shù)解析式。
例2:若f(x)是定義在r上的奇函數(shù),當(dāng)x0時(shí),f(x)=x(1-x),求當(dāng)時(shí)f(x)的解析式。
練習(xí):若f(x)是定義在r上的奇函數(shù),當(dāng)x0時(shí),f(x)=x|x-2|,求當(dāng)x0時(shí)f(x)的解析式。
已知定義在實(shí)數(shù)集上的奇函數(shù)滿足:當(dāng)x0時(shí),,求的表達(dá)式。
題型三:利用奇偶性作函數(shù)圖像。
例3研究函數(shù)的性質(zhì)并作出它的圖像。
練習(xí):教材第49練習(xí)a第3,4,5題,練習(xí)b第1,2題。
當(dāng)堂檢測。
1已知是定義在r上的奇函數(shù),則(d)。
a.b.c.d.
2如果偶函數(shù)在區(qū)間上是減函數(shù),且最大值為7,那么在區(qū)間上是(b)。
a.增函數(shù)且最小值為-7b.增函數(shù)且最大值為7。
c.減函數(shù)且最小值為-7d.減函數(shù)且最大值為7。
3函數(shù)是定義在區(qū)間上的偶函數(shù),且,則下列各式一定成立的是(c)。
a.b.c.d.
4已知函數(shù)為奇函數(shù),若,則-1。
5若是偶函數(shù),則的單調(diào)增區(qū)間是。
6下列函數(shù)中不是偶函數(shù)的是(d)。
abcd。
7設(shè)f(x)是r上的偶函數(shù),切在上單調(diào)遞減,則f(-2),f(-),f(3)的大小關(guān)系是(a)。
abf(-)f(-2)f(3)cf(-)。
8奇函數(shù)的圖像必經(jīng)過點(diǎn)(c)。
a(a,f(-a))b(-a,f(a))c(-a,-f(a))d(a,f())。
9已知函數(shù)為偶函數(shù),其圖像與x軸有四個(gè)交點(diǎn),則方程f(x)=0的所有實(shí)根之和是(a)。
a0b1c2d4。
11若f(x)在上是奇函數(shù),且f(3)_f(-1)。
12、解答題。
已知函數(shù)在區(qū)間d上是奇函數(shù),函數(shù)在區(qū)間d上是偶函數(shù),求證:是奇函數(shù)。
已知分段函數(shù)是奇函數(shù),當(dāng)時(shí)的解析式為,求這個(gè)函數(shù)在區(qū)間上的解析表達(dá)式。
高一數(shù)學(xué)教案設(shè)計(jì)篇十
2.能力目標(biāo):使學(xué)生具有使用函數(shù)模型研究生活中簡單的事物變化規(guī)律的能力。
3.情感目標(biāo):滲透數(shù)學(xué)來源于生活,運(yùn)用于生活的思想。
重點(diǎn)讓學(xué)生理解現(xiàn)階段函數(shù)的概念,定義域的概念。
難點(diǎn)用函數(shù)模型去研究生活中簡單的事物變化規(guī)律時(shí),如何確定定義域。
學(xué)情。
分析授課班級為高一年級的學(xué)生,有朝氣,有活力,愛實(shí)踐,愛生活。本課之前,學(xué)生已經(jīng)學(xué)習(xí)了初中函數(shù)概念,為本課的學(xué)習(xí)打下基礎(chǔ)。
教法與學(xué)法教法:微課視頻中包含情境教學(xué)法、多媒體輔助教學(xué)法的使用。
1.動(dòng)畫設(shè)計(jì)《世界在不斷的變化》。
2.專業(yè)錄頻軟件;
3.視頻后期處理軟件;
;
5.其它圖片、背景音樂。
課前準(zhǔn)備。
教學(xué)過程。
環(huán)節(jié)設(shè)計(jì):教師活動(dòng)、學(xué)生活動(dòng)、設(shè)計(jì)意圖。
環(huán)節(jié)一創(chuàng)設(shè)情境。
興趣導(dǎo)入首先讓學(xué)生觀看視頻《世界在不斷的變化》。
老師解說:這個(gè)世界在不斷的變化,有一句很有哲理的話“這個(gè)世界唯一沒有變化的就是這個(gè)世界一直在改變”。聰明的人類為了在這個(gè)不斷變化的世界中生存,想出了很多記錄世界變化規(guī)律的辦法。今天我們就來學(xué)習(xí)一個(gè)好辦法,它就是數(shù)學(xué)函數(shù),函數(shù)是研究事物變化規(guī)律的數(shù)學(xué)模型之一。
1看視頻。
2聽老師解說,函數(shù)是研究世界變化規(guī)律的數(shù)學(xué)模型之一。
3了解函數(shù)的作用,對函數(shù)產(chǎn)生興趣。
通過讓學(xué)生觀看視頻,并對學(xué)生講解,讓學(xué)生了解函數(shù)是用來研究事物變化規(guī)律的數(shù)學(xué)模型之一,這樣學(xué)生能更深刻的理解函數(shù)的功能,即激發(fā)了學(xué)生學(xué)習(xí)熱情,又回顧初中學(xué)習(xí)的數(shù)學(xué)函數(shù)的定義。
在某一個(gè)變化過程中有兩個(gè)變更x和y,在某一法則的作用下,如果對于x的每一個(gè)值,y都有唯一的值與其相對應(yīng),就稱y是x的函數(shù),這時(shí)x是自變量,y是因變量.用一個(gè)生活實(shí)例加深對知識(shí)的理解。
實(shí)例:到學(xué)校商店購買某種果汁飲料,每瓶售價(jià)2.5元,那么購買瓶數(shù)x,與應(yīng)付款y之間存在一種對應(yīng)關(guān)系y=2.5x.瓶數(shù)x在自然數(shù)集中每取定一個(gè)值,應(yīng)付款y就有唯一一個(gè)值與其對應(yīng),我們可以運(yùn)用對應(yīng)關(guān)系y=2.5x去進(jìn)行方便的運(yùn)算。
在這個(gè)例子中,我們發(fā)現(xiàn)自變更x只有在自然數(shù)集中取值才有意義,其實(shí)如果我們細(xì)心研究所有已知函數(shù),就會(huì)發(fā)現(xiàn)確定自變量x的取值范圍,是使用函數(shù)模型描述世界變化規(guī)律的前提.所以我們重新定義函數(shù),將自變量x的取值范圍用集合d來表示.函數(shù)的定義:
知識(shí)總結(jié)。
(1)函數(shù)的概念。
(2)強(qiáng)調(diào)用函數(shù)來研究事物變化規(guī)律的前提是確定自變量x的取值范圍,即定義域。
學(xué)生回顧本次微課所學(xué)習(xí)的知識(shí)。讓學(xué)生回顧本節(jié)課學(xué)習(xí)內(nèi)容,強(qiáng)化本節(jié)課重點(diǎn),為下節(jié)課打下基礎(chǔ)。
環(huán)節(jié)四實(shí)例檢測。
實(shí)例:文具店出售某種鉛筆,每只售價(jià)0.12元,應(yīng)付款額是購買鉛筆數(shù)的函數(shù),當(dāng)購買6支以內(nèi)(含6支)的鉛筆時(shí),請用表達(dá)式來表示這個(gè)函數(shù).要求學(xué)生把做題結(jié)果拍成照片,發(fā)到郵箱,及時(shí)反饋.學(xué)生練習(xí),并把做題結(jié)果拍成照片,發(fā)到我的郵箱,并通過qq與學(xué)生進(jìn)行交流實(shí)例鞏固今天學(xué)習(xí)的函數(shù)概念。
高一數(shù)學(xué)教案設(shè)計(jì)篇十一
1、掌握雙曲線的范圍、對稱性、頂點(diǎn)、漸近線、離心率等幾何性質(zhì)。
2、掌握標(biāo)準(zhǔn)方程中的幾何意義。
3、能利用上述知識(shí)進(jìn)行相關(guān)的論證、計(jì)算、作雙曲線的草圖以及解決簡單的實(shí)際問題。
1、焦點(diǎn)在x軸上,虛軸長為12,離心率為的雙曲線的標(biāo)準(zhǔn)方程為、
2、頂點(diǎn)間的距離為6,漸近線方程為的雙曲線的標(biāo)準(zhǔn)方程為、
3、雙曲線的漸進(jìn)線方程為、
探究1、類比橢圓的幾何性質(zhì)寫出雙曲線的幾何性質(zhì),畫出草圖并,說出它們的不同、
探究2、雙曲線與其漸近線具有怎樣的關(guān)系、
例1根據(jù)以下條件,分別求出雙曲線的標(biāo)準(zhǔn)方程、
(1)過點(diǎn),離心率、
(2)、是雙曲線的左、右焦點(diǎn),是雙曲線上一點(diǎn),且,,離心率為、
例3(理)求離心率為,且過點(diǎn)的雙曲線標(biāo)準(zhǔn)方程、
2、橢圓的離心率為,則雙曲線的離心率為、
3、雙曲線的漸進(jìn)線方程是,則雙曲線的離心率等于=、
高一數(shù)學(xué)教案設(shè)計(jì)篇十二
通過提問匯總練習(xí)提煉的形式來發(fā)掘?qū)W生學(xué)習(xí)方法
培養(yǎng)學(xué)生系統(tǒng)化及創(chuàng)造性的思維
[教學(xué)重點(diǎn)、難點(diǎn)]:會(huì)正確應(yīng)用其概念和性質(zhì)做題 [教 具]:多媒體、實(shí)物投影儀
[教學(xué)方法]:講練結(jié)合法
[授課類型]:復(fù)習(xí)課
[課時(shí)安排]:1課時(shí)
[教學(xué)過程]:集合部分匯總
本單元主要介紹了以下三個(gè)問題:
1,集合的含義與特征
2,集合的表示與轉(zhuǎn)化
3,集合的基本運(yùn)算
一,集合的含義與表示(含分類)
1,具有共同特征的對象的全體,稱一個(gè)集合
2,集合按元素的個(gè)數(shù)分為:有限集和無窮集兩類
高一數(shù)學(xué)教案設(shè)計(jì)篇十三
1.使學(xué)生進(jìn)一步理解乘數(shù)是兩位數(shù)的連續(xù)進(jìn)位乘法的算理,掌握兩位數(shù)的進(jìn)位乘法的計(jì)算方法。
2.培養(yǎng)學(xué)生的分析推理能力。
理解乘數(shù)是兩位數(shù)的連續(xù)進(jìn)位乘法的`算理。
掌握兩位數(shù)的進(jìn)位乘法的計(jì)算方法。
一、自主探索,領(lǐng)悟知識(shí)。
1.創(chuàng)設(shè)情景,提出問題。
一個(gè)牌子寫著“門票每人48元”,有7名同學(xué)進(jìn)入博物館參觀展覽。
(1)學(xué)生根據(jù)以上情景提出數(shù)學(xué)問題。
2.改變情景,引出新課。
改變條件:一共進(jìn)72人。學(xué)生根據(jù)新情景提出問題。
(1)教師根據(jù)學(xué)生提出的問題有選擇性地解答并板書:48×72。
(2)小組研究計(jì)算方法。
(3)小組匯報(bào)。
(4)教師根據(jù)情況,重點(diǎn)指出以下兩個(gè)方面:
計(jì)算方法與前面的相同,相同的數(shù)位要對齊。不同的是48×72需要連續(xù)進(jìn)位,要特別注意。
(5)練習(xí):683745。
×34×82×46。
2.學(xué)習(xí)例4。
出示例題。
(1)讓學(xué)生讀題理解題意,再口頭列出算式。
(2)讓學(xué)生獨(dú)立試做。
(3)請一名學(xué)生展示計(jì)算過程,并說一說算理。
(4)其他學(xué)生補(bǔ)充完整,必要時(shí)教師給予指導(dǎo)。
(5)練習(xí)215309。
×32×25。
二、鞏固反饋,深化知識(shí)。
1.第11頁的做一做。
2.判斷。
(1)57(2)306(3)193(4)403。
×35×35×36×35。
25515301158215。
17112043791612。
196513570494816335。
板書:用兩位數(shù)乘(連續(xù)進(jìn)位)。
48×72=3456114×59=6726(分)。
48114。
×72×59。
961026。
336570。
34566726。
答:要用6726分。
高一數(shù)學(xué)教案設(shè)計(jì)篇十四
教科書第58頁的“用數(shù)學(xué)”。
1.使學(xué)生會(huì)用學(xué)過的數(shù)學(xué)知識(shí)解決簡單的實(shí)際問題。
2.培養(yǎng)學(xué)生用不同的方法解決同一個(gè)問題的能力。
3.初步感受數(shù)學(xué)在日常生活中的作用。
引導(dǎo)學(xué)生通過分析數(shù)量關(guān)系選擇正確的計(jì)算方法解決問題。
教具學(xué)具準(zhǔn)備。
課件,實(shí)物投影儀,展臺(tái),屏幕,練習(xí)用的圖片。
教師:同學(xué)們,鹿老師組織了一個(gè)旅游團(tuán)要到大森林里去游玩。你們想?yún)⒓訂幔?/p>
生:想。
師:坐上我們的小火車,準(zhǔn)備出發(fā)了。(放音樂;火車開了。學(xué)生以小組為單位做律動(dòng))。
出示課件:美麗的大森林。
師:瞧,美麗的大森林到了,有這么多可愛的小動(dòng)物,你們喜歡嗎?
生:喜歡。
師:今天小動(dòng)物們要請喜歡數(shù)學(xué)的同學(xué)去他們中間玩,你們誰想去呀?
生:……(爭先恐后地說想去)。
生:行。
師:我們先去看看草坪上的小動(dòng)物都有什么問題呀?(課件拉近第一幅畫面,并演示)。
師:你都看到了什么?
生:我看到了草地上原來有9只小鹿在吃草,后來走了3只。(課件出示:大括號和9只)。
師:那你能幫助小鹿提出一個(gè)數(shù)學(xué)問題嗎?
生:草地上還剩幾只鹿?(課件出示:?只)。
師:你的問題提得真好。誰能用學(xué)過的數(shù)學(xué)知識(shí)解決這個(gè)問題呢?先請你們集中五人的力量分小組研究一下。研究完以后,把算式寫在小黑板上。然后進(jìn)行匯報(bào)和訂正。
師:哪個(gè)小組愿意來展示一下你們小組研究的結(jié)果?
生:我們組列的算式是:9—3=6,草地上還剩6只鹿。
師:誰有問題要問他們?(引導(dǎo)學(xué)生提問題)。
生提問:請問你們?yōu)槭裁匆脺p法計(jì)算?
生解答:因?yàn)樵瓉聿莸厣嫌?只小鹿,跑了3只,求草地上還有幾只就是求還剩幾只。這3只小鹿是從9只里面跑掉的,所以用從9只里面去掉3只,就是剩下的6只。
生提問:9-3為什么等于6?
生解答:因?yàn)?能分成3和6。或因?yàn)?+6等于9,所以9-3=6。
師小結(jié):同學(xué)們真是太聰明了,這么快就幫助小鹿解決了問題,你們數(shù)學(xué)學(xué)得真好。老師真是太高興了。
過渡:看著這幅畫面,你還能發(fā)現(xiàn)什么數(shù)學(xué)問題?(引導(dǎo)學(xué)生看草地上的蘑菇)。
學(xué)生可能出現(xiàn)三種情況:
1.生提問:草地上一共有8個(gè)蘑菇,左邊有6個(gè),右邊有幾個(gè)?
師:誰能解決這個(gè)問題?
生解答:8-6=2。
生提問:你為什么用減法?
生解答:因?yàn)橹懒艘还灿?個(gè)蘑菇,左邊有6個(gè)蘑菇,從8個(gè)里面去掉左邊的6個(gè)就是右邊的2個(gè),所以用減法。
師引導(dǎo):還有發(fā)現(xiàn)不同問題的嗎?
2.生提問:草地上一共有8個(gè)蘑菇,右邊有2個(gè),左邊有幾個(gè)?
師:誰能解決這個(gè)問題?
生解答:8-2=6。
生提問:你為什么用減法?
生解答:因?yàn)橹懒艘还灿?個(gè)蘑菇,右邊有2個(gè)蘑菇,從8個(gè)里面去掉右邊的2個(gè)就是左邊的6個(gè),所以用減法。
師引導(dǎo):還有發(fā)現(xiàn)不同問題的嗎?
3.生提問:左邊有6個(gè)蘑菇,右邊有2個(gè)蘑菇,一共有幾個(gè)蘑菇?
師:你發(fā)現(xiàn)的問題真好,同學(xué)們聽清楚了嗎?我們再請他說一遍,好嗎?
(生說,課件依次出示:6只,大括號,?只)。
師:這個(gè)問題我們請同學(xué)們分小組來解決,好嗎?
請一個(gè)小組來匯報(bào)。提要求:要說清楚你們小組采用的是哪種計(jì)算方法,為什么?怎樣列的算式。
生匯報(bào):我們小組采用的是加法,因?yàn)檫@個(gè)問題得求總數(shù),我們只要把左邊的6個(gè)和右邊的2個(gè)合起來就行了,所以用加法。列的算式是:6+2=8。
(課件出示鴨子圖。)。
師:你會(huì)解決這個(gè)問題嗎?不告訴別人,自己把算式寫在紙上。
學(xué)生獨(dú)立完成,然后集體訂正。
師小結(jié):大家?guī)椭▲喿咏鉀Q了問題,聽它們在謝你們呢?(課件演示鴨子叫)。
課件演示聲音:小鴨子的問題解決了,我們還有問題呢?
師:這是誰的聲音呀?(課件出示猴子圖)原來是小樹林里的猴子們等急了,你們能解決猴子們的問題嗎?自己完成。
學(xué)生寫出算式,然后集體訂正。
(一)做題小競賽。
師過渡:同學(xué)們,你們還想不想繼續(xù)幫助小動(dòng)物們解決問題呀?
生:想。
學(xué)生獨(dú)立做題。
集體訂正。(指名直接說算式,集體判斷,最后挑出一個(gè)題讓學(xué)生說一說想法)。
(對全做對的同學(xué)進(jìn)行獎(jiǎng)勵(lì)。)。
學(xué)生隨意說。(教師相繼進(jìn)行熱愛大自然,保護(hù)小動(dòng)物的教育)。
讓我們開啟小火車回家吧。
(二)完成教科書第62頁的第13、14題。
讓學(xué)生獨(dú)立完成,然后在小組里訂正。最后集體訂正。
(三)請學(xué)生想一想在日常生活中能用數(shù)學(xué)知識(shí)解決哪些實(shí)際問題。
學(xué)生隨意說。
師:數(shù)學(xué)知識(shí)真重要呀,他能幫我們解決這么多實(shí)際問題,我們一定要學(xué)好它。
高一數(shù)學(xué)教案設(shè)計(jì)篇十五
使學(xué)生在九年義務(wù)教育數(shù)學(xué)課程的基礎(chǔ)上,進(jìn)一步提高作為未來公民所必要的數(shù)學(xué)素養(yǎng),以滿足個(gè)人發(fā)展與社會(huì)進(jìn)步的需要。具體目標(biāo)如下。
1.獲得必要的數(shù)學(xué)基礎(chǔ)知識(shí)和基本技能,理解基本的數(shù)學(xué)概念、數(shù)學(xué)結(jié)論的本質(zhì),了解概念、結(jié)論等產(chǎn)生的背景、應(yīng)用,體會(huì)其中所蘊(yùn)涵的數(shù)學(xué)思想和方法,以及它們在后續(xù)學(xué)習(xí)中的作用。通過不同形式的自主學(xué)習(xí)、探究活動(dòng),體驗(yàn)數(shù)學(xué)發(fā)現(xiàn)和創(chuàng)造的歷程。
2.提高空間想像、抽象概括、推理論證、運(yùn)算求解、數(shù)據(jù)處理等基本能力。
3.提高數(shù)學(xué)地提出、分析和解決問題(包括簡單的實(shí)際問題)的能力,數(shù)學(xué)表達(dá)和交流的能力,發(fā)展獨(dú)立獲取數(shù)學(xué)知識(shí)的能力。
4.發(fā)展數(shù)學(xué)應(yīng)用意識(shí)和創(chuàng)新意識(shí),力求對現(xiàn)實(shí)世界中蘊(yùn)涵的一些數(shù)學(xué)模式進(jìn)行思考和作出判斷。
5.提高學(xué)習(xí)數(shù)學(xué)的興趣,樹立學(xué)好數(shù)學(xué)的信心,形成鍥而不舍的鉆研精神和科學(xué)態(tài)度。 6.具有一定的數(shù)學(xué)視野,逐步認(rèn)識(shí)數(shù)學(xué)的科學(xué)價(jià)值、應(yīng)用價(jià)值和文化價(jià)值,形成批判性的思維習(xí)慣,崇尚數(shù)學(xué)的理性精神,體會(huì)數(shù)學(xué)的美學(xué)意義,從而進(jìn)一步樹立辯證唯物主義和歷史唯物主義世界觀。
我們所使用的教材是人教版《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書數(shù)學(xué)(a版)》,它在堅(jiān)持我國數(shù)學(xué)教育優(yōu)良傳統(tǒng)的前提下,認(rèn)真處理繼承,借簽,發(fā)展,創(chuàng)新之間的關(guān)系,體現(xiàn)基礎(chǔ)性,時(shí)代性,典型性和可接受性等到,具有如下特點(diǎn):
1.親和力:以生動(dòng)活潑的呈現(xiàn)方式,激發(fā)興趣和美感,引發(fā)學(xué)習(xí)激情。
2.問題性:以恰時(shí)恰點(diǎn)的問題引導(dǎo)數(shù)學(xué)活動(dòng),培養(yǎng)問題意識(shí),孕育創(chuàng)新精神。
3.科學(xué)性與思想性:通過不同數(shù)學(xué)內(nèi)容的聯(lián)系與啟發(fā),強(qiáng)調(diào)類比,推廣,特殊化,化歸等思想方法的運(yùn)用,學(xué)習(xí)數(shù)學(xué)地思考問題的方式,提高數(shù)學(xué)思維能力,培育理性精神。
4.時(shí)代性與應(yīng)用性:以具有時(shí)代性和現(xiàn)實(shí)感的素材創(chuàng)設(shè)情境,加強(qiáng)數(shù)學(xué)活動(dòng),發(fā)展應(yīng)用意識(shí)。
1. 選取與內(nèi)容密切相關(guān)的,典型的,豐富的和學(xué)生熟悉的素材,用生動(dòng)活潑的語言,創(chuàng)設(shè)能夠體現(xiàn)數(shù)學(xué)的概念和結(jié)論,數(shù)學(xué)的思想和方法,以及數(shù)學(xué)應(yīng)用的學(xué)習(xí)情境,使學(xué)生產(chǎn)生對數(shù)學(xué)的親切感,引發(fā)學(xué)生看個(gè)究竟的沖動(dòng),以達(dá)到培養(yǎng)其興趣的目的。
2. 通過觀察,思考,探究等欄目,引發(fā)學(xué)生的思考和探索活動(dòng),切實(shí)改進(jìn)學(xué)生的學(xué)習(xí)方式。
3. 在教學(xué)中強(qiáng)調(diào)類比,推廣,特殊化,化歸等數(shù)學(xué)思想方法,盡可能養(yǎng)成其邏輯思維的習(xí)慣。
兩個(gè)班一個(gè)普高一個(gè)職高,學(xué)習(xí)情況良好,但學(xué)生自覺性差,自我控制能力弱,因此在教學(xué)中需時(shí)時(shí)提醒學(xué)生,培養(yǎng)其自覺性。班級存在的最大問題是計(jì)算能力太差,學(xué)生不喜歡去算題,嫌麻煩,只注重思路,因此在以后的教學(xué)中,重點(diǎn)在于培養(yǎng)學(xué)生的計(jì)算能力,同時(shí)要進(jìn)一步提高其思維能力。同時(shí),由于初中課改的原因,高中教材與初中教材銜接力度不夠,需在新授時(shí)適機(jī)補(bǔ)充一些內(nèi)容。因此時(shí)間上可能仍然吃緊。同時(shí),其底子薄弱,因此在教學(xué)時(shí)只能注重基礎(chǔ)再基礎(chǔ),爭取每一堂課落實(shí)一個(gè)知識(shí)點(diǎn),掌握一個(gè)知識(shí)點(diǎn)。
1、激發(fā)學(xué)生的學(xué)習(xí)興趣。由數(shù)學(xué)活動(dòng)、故事、吸引人的課、合理的要求、師生談話等途徑樹立學(xué)生的學(xué)習(xí)信心,提高學(xué)習(xí)興趣,在主觀作用下上升和進(jìn)步。
2、注意從實(shí)例出發(fā),從感性提高到理性;注意運(yùn)用對比的方法,反復(fù)比較相近的概念;注意結(jié)合直觀圖形,說明抽象的知識(shí);注意從已有的`知識(shí)出發(fā),啟發(fā)學(xué)生思考。
3、加強(qiáng)培養(yǎng)學(xué)生的邏輯思維能力就解決實(shí)際問題的能力,以及培養(yǎng)提高學(xué)生的自學(xué)能力,養(yǎng)成善于分析問題的習(xí)慣,進(jìn)行辨證唯物主義教育。
4、抓住公式的推導(dǎo)和內(nèi)在聯(lián)系;加強(qiáng)復(fù)習(xí)檢查工作;抓住典型例題的分析,講清解題的關(guān)鍵和基本方法,注重提高學(xué)生分析問題的能力。
5、自始至終貫徹教學(xué)四環(huán)節(jié),針對不同的教材內(nèi)容選擇不同教法。
6、重視數(shù)學(xué)應(yīng)用意識(shí)及應(yīng)用能力的培養(yǎng)。
俗話說的好,好的教學(xué)計(jì)劃是教學(xué)成功的一半,作為一名優(yōu)異的教師,做好一定的教學(xué)計(jì)劃很有必要。
總結(jié):制定教學(xué)計(jì)劃的主要目的是為了全面了解學(xué)生的數(shù)學(xué)學(xué)習(xí)歷程,激勵(lì)學(xué)生的學(xué)習(xí)和改進(jìn)教師的教學(xué)。希望上面的,能受到大家的歡迎!
高一數(shù)學(xué)教案設(shè)計(jì)篇十六
突出重點(diǎn).培養(yǎng)能力.。
三、課堂練習(xí)。
教材第13頁練習(xí)1、2、3、4.。
【助練習(xí)】第13頁練習(xí)4(1)中用一個(gè)方向的斜平行線段表示,用另一方向的平行線段表示如圖:
凡有陰影部分即為所求.。
四、小結(jié)。
提綱式(略).再一次突出交集和并集兩個(gè)概念中“且”,“或”的含義的不同.。
五、作業(yè)。
習(xí)題1至8.。
筆練結(jié)合板書.。
傾聽.修改練習(xí).掌握方法.。
觀察.思考.傾聽.理解.記憶.。
傾聽.理解.記憶.。
回憶、再現(xiàn)內(nèi)容.。
落實(shí)。
介紹解題技能技巧.。
內(nèi)容條理化.。
課堂教學(xué)設(shè)計(jì)說明。
2.反演律可根據(jù)學(xué)生實(shí)際酌情使用.。
高一數(shù)學(xué)教案設(shè)計(jì)篇十七
(2)理解任意角的三角函數(shù)不同的定義方法;。
(4)掌握并能初步運(yùn)用公式一;。
(5)樹立映射觀點(diǎn),正確理解三角函數(shù)是以實(shí)數(shù)為自變量的函數(shù).
初中學(xué)過:銳角三角函數(shù)就是以銳角為自變量,以比值為函數(shù)值的函數(shù).引導(dǎo)學(xué)生把這個(gè)定義推廣到任意角,通過單位圓和角的終邊,探討任意角的三角函數(shù)值的求法,最終得到任意角三角函數(shù)的定義.根據(jù)角終邊所在位置不同,分別探討各三角函數(shù)的定義域以及這三種函數(shù)的值在各象限的符號.最后主要是借助有向線段進(jìn)一步認(rèn)識(shí)三角函數(shù).講解例題,總結(jié)方法,鞏固練習(xí).
任意角的三角函數(shù)可以有不同的定義方法,而且各種定義都有自己的特點(diǎn).過去習(xí)慣于用角的終邊上點(diǎn)的坐標(biāo)的“比值”來定義,這種定義方法能夠表現(xiàn)出從銳角三角函數(shù)到任意角的三角函數(shù)的推廣,有利于引導(dǎo)學(xué)生從自己已有認(rèn)知基礎(chǔ)出發(fā)學(xué)習(xí)三角函數(shù),但它對準(zhǔn)確把握三角函數(shù)的本質(zhì)有一定的不利影響,“從角的集合到比值的集合”的對應(yīng)關(guān)系與學(xué)生熟悉的一般函數(shù)概念中的“數(shù)集到數(shù)集”的對應(yīng)關(guān)系有沖突,而且“比值”需要通過運(yùn)算才能得到,這與函數(shù)值是一個(gè)確定的實(shí)數(shù)也有不同,這些都會(huì)影響學(xué)生對三角函數(shù)概念的理解.
本節(jié)利用單位圓上點(diǎn)的`坐標(biāo)定義任意角的正弦函數(shù)、余弦函數(shù).這個(gè)定義清楚地表明了正弦、余弦函數(shù)中從自變量到函數(shù)值之間的對應(yīng)關(guān)系,也表明了這兩個(gè)函數(shù)之間的關(guān)系.
教學(xué)重難點(diǎn)。
重點(diǎn):任意角的正弦、余弦、正切的定義(包括這三種三角函數(shù)的定義域和函數(shù)值在各象限的符號);終邊相同的角的同一三角函數(shù)值相等(公式一).
難點(diǎn):任意角的正弦、余弦、正切的定義(包括這三種三角函數(shù)的定義域和函數(shù)值在各象限的符號);三角函數(shù)線的正確理解.
【本文地址:http://www.aiweibaby.com/zuowen/15271741.html】