2023年九上數(shù)學(xué)說課稿(六篇)

格式:DOC 上傳日期:2023-04-01 14:30:24
2023年九上數(shù)學(xué)說課稿(六篇)
時(shí)間:2023-04-01 14:30:24     小編:admin

在日常學(xué)習(xí)、工作或生活中,大家總少不了接觸作文或者范文吧,通過文章可以把我們那些零零散散的思想,聚集在一塊。那么我們該如何寫一篇較為完美的范文呢?下面是小編為大家收集的優(yōu)秀范文,供大家參考借鑒,希望可以幫助到有需要的朋友。

九上數(shù)學(xué)說課稿篇一

上學(xué)年學(xué)生期末考試的成績總體來看比較好,但是優(yōu)生面不廣,尖子不尖。在學(xué)生所學(xué)知識(shí)的掌握程度上,良莠不齊,對(duì)優(yōu)生來說,能夠透徹理解知識(shí),知識(shí)間的內(nèi)在聯(lián)系也較為清楚,對(duì)差一點(diǎn)的學(xué)生來說,有些基礎(chǔ)知識(shí)還不能有效的掌握,學(xué)生仍然缺少大量的推理題訓(xùn)練,推理的思考方法與寫法上均存在著一定的困難,對(duì)幾何有畏難情緒,相關(guān)知識(shí)學(xué)得不很透徹。在學(xué)習(xí)能力上,學(xué)生課外主動(dòng)獲取知識(shí)的能力較差,為減輕學(xué)生的經(jīng)濟(jì)負(fù)擔(dān)與課業(yè)負(fù)擔(dān),不提倡學(xué)生買教輔參考書,學(xué)生自主拓展知識(shí)面,向深處學(xué)習(xí)知識(shí)的能力沒有得到很好的培養(yǎng)。在以后的教學(xué)中,培養(yǎng)學(xué)生課外主動(dòng)獲取知識(shí)的能力。學(xué)生的邏輯推理、邏輯思維能力,計(jì)算能力需要得到加強(qiáng),以提升學(xué)生的整體成績,應(yīng)在合適的時(shí)候補(bǔ)充課外知識(shí),拓展學(xué)生的知識(shí)面,提升學(xué)生素質(zhì);在學(xué)習(xí)態(tài)度上,一部分學(xué)生上課能全神貫注,積極的投入到學(xué)習(xí)中去,大部分學(xué)生對(duì)數(shù)學(xué)學(xué)習(xí)好高鶩遠(yuǎn)、心浮氣躁,學(xué)習(xí)態(tài)度和學(xué)習(xí)習(xí)慣還需培養(yǎng)。學(xué)生的學(xué)習(xí)習(xí)慣養(yǎng)成還不理想,預(yù)習(xí)的習(xí)慣,進(jìn)行總結(jié)的習(xí)慣,自習(xí)課專心致志學(xué)習(xí)的習(xí)慣,主動(dòng)糾正(考試、作業(yè)后)錯(cuò)誤的習(xí)慣,有些學(xué)生不具有或不夠重視,需要教師的督促才能做,陶行知說:“教育就是培養(yǎng)習(xí)慣”,這是本期教學(xué)中重點(diǎn)予以關(guān)注的。

二、指導(dǎo)思想:

通過九年數(shù)學(xué)的教學(xué),提供進(jìn)一步學(xué)習(xí)所必需的數(shù)學(xué)基礎(chǔ)知識(shí)與基本技能,進(jìn)一步培養(yǎng)學(xué)生的運(yùn)算能力、思維能力和空間想象能力,能夠運(yùn)用所學(xué)知識(shí)解決簡單的實(shí)際問題,教育學(xué)生掌握基礎(chǔ)知識(shí)與基本技能,培養(yǎng)學(xué)生的邏輯思維能力、運(yùn)算能力、空間觀念和解決簡單實(shí)際問題的能力,使學(xué)生逐步學(xué)會(huì)正確、合理地進(jìn)行運(yùn)算,逐步學(xué)會(huì)觀察分析、綜合、抽象、概括。會(huì)用歸納演繹、類比進(jìn)行簡單的推理。提高學(xué)習(xí)數(shù)學(xué)的興趣,逐步培養(yǎng)學(xué)生具有良好的學(xué)習(xí)習(xí)慣,實(shí)事求是的態(tài)度。頑強(qiáng)的學(xué)習(xí)毅力和獨(dú)立思考、探索的新思想。培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)知識(shí)解決問題的能力。

三、教學(xué)內(nèi)容

本學(xué)期的教學(xué)內(nèi)容共五章:

第22章:二次根式;第23章:一元二次方程;第24章:圖形的相似;

第25章:解直角三角形;第26章:隨機(jī)事件的概率。

四、教學(xué)重點(diǎn)、難點(diǎn)

重點(diǎn):

1、要求學(xué)生掌握證明的基本要求和方法,學(xué)會(huì)推理論證;

2、探索證明的思路和方法,提倡證明的多樣性。

難點(diǎn):

1、引導(dǎo)學(xué)生探索、猜測、證明,體會(huì)證明的必要性;

2、在教學(xué)中滲透如歸納、類比、轉(zhuǎn)化等數(shù)學(xué)思想。

五、在教學(xué)過程中抓住以下幾個(gè)環(huán)節(jié):

(1)認(rèn)真?zhèn)湔n。認(rèn)真研究教材及考綱,明確教學(xué)目標(biāo),抓住重點(diǎn)、難點(diǎn),精心設(shè)計(jì)教學(xué)過程,重視每一章節(jié)內(nèi)容與前后知識(shí)的聯(lián)系及其地位,重視課后反思,設(shè)計(jì)好每一節(jié)課的師生互動(dòng)的細(xì)節(jié)。

(2)抓住課堂45分鐘。 嚴(yán)格按照教學(xué)計(jì)劃,精心設(shè)計(jì)每一節(jié)課的每一個(gè)環(huán)節(jié),爭取每節(jié)課達(dá)到教學(xué)目標(biāo),突出重點(diǎn),分散難點(diǎn),增大課堂容量組織學(xué)生人人參與課堂活動(dòng),使每個(gè)學(xué)生積極主動(dòng)參與課堂活動(dòng),使每個(gè)學(xué)生動(dòng)手、動(dòng)口、動(dòng)腦,及時(shí)反饋信息提高課堂效益。

(3)課后反饋。精選適當(dāng)?shù)木毩?xí)題、測試卷,及時(shí)批改作業(yè),發(fā)現(xiàn)問題及時(shí)給學(xué)生面對(duì)面的指出并指導(dǎo)學(xué)生搞懂弄通,不留一個(gè)疑難點(diǎn),讓學(xué)生學(xué)有所獲。

六、教學(xué)措施:

1.認(rèn)真學(xué)習(xí)鉆研新課標(biāo),掌握教材。

2.認(rèn)真?zhèn)湔n,爭取充分掌握學(xué)生動(dòng)態(tài)。

3.認(rèn)真上好每一堂課。

4.落實(shí)每一堂課后輔助,查漏補(bǔ)缺。

5.積極與其它老師溝通,加強(qiáng)教研教改,提高教學(xué)水平。

6.復(fù)習(xí)階段多讓學(xué)生動(dòng)腦、動(dòng)手,通過各種習(xí)題、綜合試題和模擬試題的訓(xùn)練,使學(xué)生逐步熟悉各知識(shí)點(diǎn),并能熟練運(yùn)用。

除了以上計(jì)劃外,我還將預(yù)計(jì)開展培優(yōu)和治跛工作,教學(xué)中注重?cái)?shù)學(xué)理論與社會(huì)實(shí)踐的聯(lián)系,鼓勵(lì)學(xué)生多觀察、多思考實(shí)際生活中蘊(yùn)藏的數(shù)學(xué)問題,逐步培養(yǎng)學(xué)生運(yùn)用書本知識(shí)解決實(shí)際問題的能力。

九上數(shù)學(xué)說課稿篇二

理解一元二次方程“降次”——轉(zhuǎn)化的數(shù)學(xué)思想,并能應(yīng)用它解決一些具體問題.

提出問題,列出缺一次項(xiàng)的一元二次方程ax2+c=0,根據(jù)平方根的意義解出這個(gè)方程,然后知識(shí)遷移到解a(ex+f)2+c=0型的一元二次方程.

重點(diǎn)

運(yùn)用開平方法解形如(x+m)2=n(n≥0)的方程,領(lǐng)會(huì)降次——轉(zhuǎn)化的數(shù)學(xué)思想.

難點(diǎn)

通過根據(jù)平方根的意義解形如x2=n的方程,將知識(shí)遷移到根據(jù)平方根的意義解形如(x+m)2=n(n≥0)的方程.

一、復(fù)習(xí)引入

學(xué)生活動(dòng):請同學(xué)們完成下列各題.

問題1:填空

(1)x2-8x+________=(x-________)2;(2)9x2+12x+________=(3x+________)2;(3)x2+px+________=(x+________)2.

解:根據(jù)完全平方公式可得:(1)164;(2)42;(3)(p2)2p2.

問題2:目前我們都學(xué)過哪些方程?二元怎樣轉(zhuǎn)化成一元?一元二次方程與一元一次方程有什么不同?二次如何轉(zhuǎn)化成一次?怎樣降次?以前學(xué)過哪些降次的方法?

二、探索新知

上面我們已經(jīng)講了x2=9,根據(jù)平方根的意義,直接開平方得x=±3,如果x換元為2t+1,即(2t+1)2=9,能否也用直接開平方的方法求解呢?

(學(xué)生分組討論)

老師點(diǎn)評(píng):回答是肯定的,把2t+1變?yōu)樯厦娴膞,那么2t+1=±3

即2t+1=3,2t+1=-3

方程的兩根為t1=1,t2=-2

例1解方程:(1)x2+4x+4=1(2)x2+6x+9=2

分析:(1)x2+4x+4是一個(gè)完全平方公式,那么原方程就轉(zhuǎn)化為(x+2)2=1.

(2)由已知,得:(x+3)2=2

直接開平方,得:x+3=±2

即x+3=2,x+3=-2

所以,方程的兩根x1=-3+2,x2=-3-2

解:略.

例2市政府計(jì)劃2年內(nèi)將人均住房面積由現(xiàn)在的10 m2提高到14.4 m2,求每年人均住房面積增長率.

分析:設(shè)每年人均住房面積增長率為x,一年后人均住房面積就應(yīng)該是10+10x=10(1+x);二年后人均住房面積就應(yīng)該是10(1+x)+10(1+x)x=10(1+x)2

解:設(shè)每年人均住房面積增長率為x,

則:10(1+x)2=14.4

(1+x)2=1.44

直接開平方,得1+x=±1.2

即1+x=1.2,1+x=-1.2

所以,方程的兩根是x1=0.2=20%,x2=-2.2

因?yàn)槊磕耆司》棵娣e的增長率應(yīng)為正的,因此,x2=-2.2應(yīng)舍去.

所以,每年人均住房面積增長率應(yīng)為20%.

(學(xué)生小結(jié))老師引導(dǎo)提問:解一元二次方程,它們的共同特點(diǎn)是什么?

共同特點(diǎn):把一個(gè)一元二次方程“降次”,轉(zhuǎn)化為兩個(gè)一元一次方程.我們把這種思想稱為“降次轉(zhuǎn)化思想”.

三、鞏固練習(xí)

教材第6頁練習(xí).

四、課堂小結(jié)

本節(jié)課應(yīng)掌握:由應(yīng)用直接開平方法解形如x2=p(p≥0)的方程,那么x=±p轉(zhuǎn)化為應(yīng)用直接開平方法解形如(mx+n)2=p(p≥0)的方程,那么mx+n=±p,達(dá)到降次轉(zhuǎn)化之目的.若p<0則方程無解.

五、作業(yè)布置

教材第16頁復(fù)習(xí)鞏固1.第2課時(shí)配方法的基本形式

理解間接即通過變形運(yùn)用開平方法降次解方程,并能熟練應(yīng)用它解決一些具體問題.

通過復(fù)習(xí)可直接化成x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程的解法,引入不能直接化成上面兩種形式的一元二次方程的解題步驟

九上數(shù)學(xué)說課稿篇三

理解一元二次方程“降次”——轉(zhuǎn)化的數(shù)學(xué)思想,并能應(yīng)用它解決一些具體問題.

提出問題,列出缺一次項(xiàng)的一元二次方程ax2+c=0,根據(jù)平方根的意義解出這個(gè)方程,然后知識(shí)遷移到解a(ex+f)2+c=0型的一元二次方程.

重點(diǎn)

運(yùn)用開平方法解形如(x+m)2=n(n≥0)的方程,領(lǐng)會(huì)降次——轉(zhuǎn)化的數(shù)學(xué)思想.

難點(diǎn)

通過根據(jù)平方根的意義解形如x2=n的方程,將知識(shí)遷移到根據(jù)平方根的意義解形如(x+m)2=n(n≥0)的方程.

一、復(fù)習(xí)引入

學(xué)生活動(dòng):請同學(xué)們完成下列各題.

問題1:填空

(1)x2-8x+________=(x-________)2;(2)9x2+12x+________=(3x+________)2;(3)x2+px+________=(x+________)2.

解:根據(jù)完全平方公式可得:(1)164;(2)42;(3)(p2)2p2.

問題2:目前我們都學(xué)過哪些方程?二元怎樣轉(zhuǎn)化成一元?一元二次方程與一元一次方程有什么不同?二次如何轉(zhuǎn)化成一次?怎樣降次?以前學(xué)過哪些降次的方法?

二、探索新知

上面我們已經(jīng)講了x2=9,根據(jù)平方根的意義,直接開平方得x=±3,如果x換元為2t+1,即(2t+1)2=9,能否也用直接開平方的方法求解呢?

(學(xué)生分組討論)

老師點(diǎn)評(píng):回答是肯定的,把2t+1變?yōu)樯厦娴膞,那么2t+1=±3

即2t+1=3,2t+1=-3

方程的兩根為t1=1,t2=-2

例1解方程:(1)x2+4x+4=1(2)x2+6x+9=2

分析:(1)x2+4x+4是一個(gè)完全平方公式,那么原方程就轉(zhuǎn)化為(x+2)2=1.

(2)由已知,得:(x+3)2=2

直接開平方,得:x+3=±2

即x+3=2,x+3=-2

所以,方程的兩根x1=-3+2,x2=-3-2

解:略.

例2市政府計(jì)劃2年內(nèi)將人均住房面積由現(xiàn)在的10 m2提高到14.4 m2,求每年人均住房面積增長率.

分析:設(shè)每年人均住房面積增長率為x,一年后人均住房面積就應(yīng)該是10+10x=10(1+x);二年后人均住房面積就應(yīng)該是10(1+x)+10(1+x)x=10(1+x)2

解:設(shè)每年人均住房面積增長率為x,

則:10(1+x)2=14.4

(1+x)2=1.44

直接開平方,得1+x=±1.2

即1+x=1.2,1+x=-1.2

所以,方程的兩根是x1=0.2=20%,x2=-2.2

因?yàn)槊磕耆司》棵娣e的增長率應(yīng)為正的,因此,x2=-2.2應(yīng)舍去.

所以,每年人均住房面積增長率應(yīng)為20%.

(學(xué)生小結(jié))老師引導(dǎo)提問:解一元二次方程,它們的共同特點(diǎn)是什么?

共同特點(diǎn):把一個(gè)一元二次方程“降次”,轉(zhuǎn)化為兩個(gè)一元一次方程.我們把這種思想稱為“降次轉(zhuǎn)化思想”.

三、鞏固練習(xí)

教材第6頁練習(xí).

四、課堂小結(jié)

本節(jié)課應(yīng)掌握:由應(yīng)用直接開平方法解形如x2=p(p≥0)的方程,那么x=±p轉(zhuǎn)化為應(yīng)用直接開平方法解形如(mx+n)2=p(p≥0)的方程,那么mx+n=±p,達(dá)到降次轉(zhuǎn)化之目的.若p<0則方程無解.

五、作業(yè)布置

九上數(shù)學(xué)說課稿篇四

配方法的基本形式

理解間接即通過變形運(yùn)用開平方法降次解方程,并能熟練應(yīng)用它解決一些具體問題.

通過復(fù)習(xí)可直接化成x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程的解法,引入不能直接化成上面兩種形式的一元二次方程的解題步驟.

重點(diǎn)

講清直接降次有困難,如x2+6x-16=0的一元二次方程的解題步驟.

難點(diǎn)

將不可直接降次解方程化為可直接降次解方程的“化為”的轉(zhuǎn)化方法與技巧.

一、復(fù)習(xí)引入

(學(xué)生活動(dòng))請同學(xué)們解下列方程:

(1)3x2-1=5(2)4(x-1)2-9=0(3)4x2+16x+16=9(4)4x2+16x=-7

老師點(diǎn)評(píng):上面的方程都能化成x2=p或(mx+n)2=p(p≥0)的形式,那么可得

x=±p或mx+n=±p(p≥0).

如:4x2+16x+16=(2x+4)2,你能把4x2+16x=-7化成(2x+4)2=9嗎?

二、探索新知

列出下面問題的方程并回答:

(1)列出的經(jīng)化簡為一般形式的方程與剛才解題的方程有什么不同呢?

(2)能否直接用上面前三個(gè)方程的解法呢?

問題:要使一塊矩形場地的長比寬多6 m,并且面積為16 m2,求場地的長和寬各是多少?

(1)列出的經(jīng)化簡為一般形式的方程與前面講的三道題不同之處是:前三個(gè)左邊是含有x的完全平方式而后二個(gè)不具有此特征.

(2)不能.

既然不能直接降次解方程,那么,我們就應(yīng)該設(shè)法把它轉(zhuǎn)化為可直接降次解方程的方程,下面,我們就來講如何轉(zhuǎn)化:

x2+6x-16=0移項(xiàng)→x2+6x=16

兩邊加(6/2)2使左邊配成x2+2bx+b2的形式→x2+6x+32=16+9

左邊寫成平方形式→(x+3)2=25降次→x+3=±5即x+3=5或x+3=-5

解一次方程→x1=2,x2=-8

可以驗(yàn)證:x1=2,x2=-8都是方程的根,但場地的寬不能是負(fù)值,所以場地的寬為2 m,長為8 m.

像上面的解題方法,通過配成完全平方形式來解一元二次方程的方法,叫配方法.

可以看出,配方法是為了降次,把一個(gè)一元二次方程轉(zhuǎn)化為兩個(gè)一元一次方程來解.

例1用配方法解下列關(guān)于x的方程:

(1)x2-8x+1=0(2)x2-2x-12=0

分析:(1)顯然方程的左邊不是一個(gè)完全平方式,因此,要按前面的方法化為完全平方式;(2)同上.

解:略.

三、鞏固練習(xí)

教材第9頁練習(xí)1,2.(1)(2).

四、課堂小結(jié)

本節(jié)課應(yīng)掌握:

左邊不含有x的完全平方形式的一元二次方程化為左邊是含有x的完全平方形式,右邊是非負(fù)數(shù),可以直接降次解方程的方程.

五、作業(yè)布置

九上數(shù)學(xué)說課稿篇五

根據(jù)對(duì)教學(xué)目標(biāo)的整體把控,來選擇合適的教學(xué)方法,由于多面向中小學(xué)生,可以選擇圖示語言等直觀為主的教學(xué)方法。今天小編在這里給大家分享一些有關(guān)于2021九年級(jí)數(shù)學(xué)教案及說課稿例文,希望可以幫助到大家。

一、基本情況分析:

上學(xué)年學(xué)生期末考試的成績總體來看比較好,但是優(yōu)生面不廣,尖子不尖。在學(xué)生所學(xué)知識(shí)的掌握程度上,良莠不齊,對(duì)優(yōu)生來說,能夠透徹理解知識(shí),知識(shí)間的內(nèi)在聯(lián)系也較為清楚,對(duì)差一點(diǎn)的學(xué)生來說,有些基礎(chǔ)知識(shí)還不能有效的掌握,學(xué)生仍然缺少大量的推理題訓(xùn)練,推理的思考方法與寫法上均存在著一定的困難,對(duì)幾何有畏難情緒,相關(guān)知識(shí)學(xué)得不很透徹。在學(xué)習(xí)能力上,學(xué)生課外主動(dòng)獲取知識(shí)的能力較差,為減輕學(xué)生的經(jīng)濟(jì)負(fù)擔(dān)與課業(yè)負(fù)擔(dān),不提倡學(xué)生買教輔參考書,學(xué)生自主拓展知識(shí)面,向深處學(xué)習(xí)知識(shí)的能力沒有得到很好的培養(yǎng)。在以后的教學(xué)中,培養(yǎng)學(xué)生課外主動(dòng)獲取知識(shí)的能力。學(xué)生的邏輯推理、邏輯思維能力,計(jì)算能力需要得到加強(qiáng),以提升學(xué)生的整體成績,應(yīng)在合適的時(shí)候補(bǔ)充課外知識(shí),拓展學(xué)生的知識(shí)面,提升學(xué)生素質(zhì);在學(xué)習(xí)態(tài)度上,一部分學(xué)生上課能全神貫注,積極的投入到學(xué)習(xí)中去,大部分學(xué)生對(duì)數(shù)學(xué)學(xué)習(xí)好高鶩遠(yuǎn)、心浮氣躁,學(xué)習(xí)態(tài)度和學(xué)習(xí)習(xí)慣還需培養(yǎng)。學(xué)生的學(xué)習(xí)習(xí)慣養(yǎng)成還不理想,預(yù)習(xí)的習(xí)慣,進(jìn)行總結(jié)的習(xí)慣,自習(xí)課專心致志學(xué)習(xí)的習(xí)慣,主動(dòng)糾正(考試、作業(yè)后)錯(cuò)誤的習(xí)慣,有些學(xué)生不具有或不夠重視,需要教師的督促才能做,陶行知說:“教育就是培養(yǎng)習(xí)慣”,這是本期教學(xué)中重點(diǎn)予以關(guān)注的。

二、指導(dǎo)思想:

通過九年數(shù)學(xué)的教學(xué),提供進(jìn)一步學(xué)習(xí)所必需的數(shù)學(xué)基礎(chǔ)知識(shí)與基本技能,進(jìn)一步培養(yǎng)學(xué)生的運(yùn)算能力、思維能力和空間想象能力,能夠運(yùn)用所學(xué)知識(shí)解決簡單的實(shí)際問題,教育學(xué)生掌握基礎(chǔ)知識(shí)與基本技能,培養(yǎng)學(xué)生的邏輯思維能力、運(yùn)算能力、空間觀念和解決簡單實(shí)際問題的能力,使學(xué)生逐步學(xué)會(huì)正確、合理地進(jìn)行運(yùn)算,逐步學(xué)會(huì)觀察分析、綜合、抽象、概括。會(huì)用歸納演繹、類比進(jìn)行簡單的推理。提高學(xué)習(xí)數(shù)學(xué)的興趣,逐步培養(yǎng)學(xué)生具有良好的學(xué)習(xí)習(xí)慣,實(shí)事求是的態(tài)度。頑強(qiáng)的學(xué)習(xí)毅力和獨(dú)立思考、探索的新思想。培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)知識(shí)解決問題的能力。

三、教學(xué)內(nèi)容

本學(xué)期的教學(xué)內(nèi)容共五章:

第22章:二次根式;第23章:一元二次方程;第24章:圖形的相似;

第25章:解直角三角形;第26章:隨機(jī)事件的概率。

四、教學(xué)重點(diǎn)、難點(diǎn)

重點(diǎn):

1、要求學(xué)生掌握證明的基本要求和方法,學(xué)會(huì)推理論證;

2、探索證明的思路和方法,提倡證明的多樣性。

難點(diǎn):

1、引導(dǎo)學(xué)生探索、猜測、證明,體會(huì)證明的必要性;

2、在教學(xué)中滲透如歸納、類比、轉(zhuǎn)化等數(shù)學(xué)思想。

五、在教學(xué)過程中抓住以下幾個(gè)環(huán)節(jié):

(1)認(rèn)真?zhèn)湔n。認(rèn)真研究教材及考綱,明確教學(xué)目標(biāo),抓住重點(diǎn)、難點(diǎn),精心設(shè)計(jì)教學(xué)過程,重視每一章節(jié)內(nèi)容與前后知識(shí)的聯(lián)系及其地位,重視課后反思,設(shè)計(jì)好每一節(jié)課的師生互動(dòng)的細(xì)節(jié)。

(2)抓住課堂45分鐘。 嚴(yán)格按照教學(xué)計(jì)劃,精心設(shè)計(jì)每一節(jié)課的每一個(gè)環(huán)節(jié),爭取每節(jié)課達(dá)到教學(xué)目標(biāo),突出重點(diǎn),分散難點(diǎn),增大課堂容量組織學(xué)生人人參與課堂活動(dòng),使每個(gè)學(xué)生積極主動(dòng)參與課堂活動(dòng),使每個(gè)學(xué)生動(dòng)手、動(dòng)口、動(dòng)腦,及時(shí)反饋信息提高課堂效益。

(3)課后反饋。精選適當(dāng)?shù)木毩?xí)題、測試卷,及時(shí)批改作業(yè),發(fā)現(xiàn)問題及時(shí)給學(xué)生面對(duì)面的指出并指導(dǎo)學(xué)生搞懂弄通,不留一個(gè)疑難點(diǎn),讓學(xué)生學(xué)有所獲。

六、教學(xué)措施:

1.認(rèn)真學(xué)習(xí)鉆研新課標(biāo),掌握教材。

2.認(rèn)真?zhèn)湔n,爭取充分掌握學(xué)生動(dòng)態(tài)。

3.認(rèn)真上好每一堂課。

4.落實(shí)每一堂課后輔助,查漏補(bǔ)缺。

5.積極與其它老師溝通,加強(qiáng)教研教改,提高教學(xué)水平。

6.復(fù)習(xí)階段多讓學(xué)生動(dòng)腦、動(dòng)手,通過各種習(xí)題、綜合試題和模擬試題的訓(xùn)練,使學(xué)生逐步熟悉各知識(shí)點(diǎn),并能熟練運(yùn)用。

除了以上計(jì)劃外,我還將預(yù)計(jì)開展培優(yōu)和治跛工作,教學(xué)中注重?cái)?shù)學(xué)理論與社會(huì)實(shí)踐的聯(lián)系,鼓勵(lì)學(xué)生多觀察、多思考實(shí)際生活中蘊(yùn)藏的數(shù)學(xué)問題,逐步培養(yǎng)學(xué)生運(yùn)用書本知識(shí)解決實(shí)際問題的能力。

理解一元二次方程“降次”——轉(zhuǎn)化的數(shù)學(xué)思想,并能應(yīng)用它解決一些具體問題.

提出問題,列出缺一次項(xiàng)的一元二次方程ax2+c=0,根據(jù)平方根的意義解出這個(gè)方程,然后知識(shí)遷移到解a(ex+f)2+c=0型的一元二次方程.

重點(diǎn)

運(yùn)用開平方法解形如(x+m)2=n(n≥0)的方程,領(lǐng)會(huì)降次——轉(zhuǎn)化的數(shù)學(xué)思想.

難點(diǎn)

通過根據(jù)平方根的意義解形如x2=n的方程,將知識(shí)遷移到根據(jù)平方根的意義解形如(x+m)2=n(n≥0)的方程.

一、復(fù)習(xí)引入

學(xué)生活動(dòng):請同學(xué)們完成下列各題.

問題1:填空

(1)x2-8x+________=(x-________)2;(2)9x2+12x+________=(3x+________)2;(3)x2+px+________=(x+________)2.

解:根據(jù)完全平方公式可得:(1)164;(2)42;(3)(p2)2p2.

問題2:目前我們都學(xué)過哪些方程?二元怎樣轉(zhuǎn)化成一元?一元二次方程與一元一次方程有什么不同?二次如何轉(zhuǎn)化成一次?怎樣降次?以前學(xué)過哪些降次的方法?

二、探索新知

上面我們已經(jīng)講了x2=9,根據(jù)平方根的意義,直接開平方得x=±3,如果x換元為2t+1,即(2t+1)2=9,能否也用直接開平方的方法求解呢?

(學(xué)生分組討論)

老師點(diǎn)評(píng):回答是肯定的,把2t+1變?yōu)樯厦娴膞,那么2t+1=±3

即2t+1=3,2t+1=-3

方程的兩根為t1=1,t2=-2

例1解方程:(1)x2+4x+4=1(2)x2+6x+9=2

分析:(1)x2+4x+4是一個(gè)完全平方公式,那么原方程就轉(zhuǎn)化為(x+2)2=1.

(2)由已知,得:(x+3)2=2

直接開平方,得:x+3=±2

即x+3=2,x+3=-2

所以,方程的兩根x1=-3+2,x2=-3-2

解:略.

例2市政府計(jì)劃2年內(nèi)將人均住房面積由現(xiàn)在的10 m2提高到14.4 m2,求每年人均住房面積增長率.

分析:設(shè)每年人均住房面積增長率為x,一年后人均住房面積就應(yīng)該是10+10x=10(1+x);二年后人均住房面積就應(yīng)該是10(1+x)+10(1+x)x=10(1+x)2

解:設(shè)每年人均住房面積增長率為x,

則:10(1+x)2=14.4

(1+x)2=1.44

直接開平方,得1+x=±1.2

即1+x=1.2,1+x=-1.2

所以,方程的兩根是x1=0.2=20%,x2=-2.2

因?yàn)槊磕耆司》棵娣e的增長率應(yīng)為正的,因此,x2=-2.2應(yīng)舍去.

所以,每年人均住房面積增長率應(yīng)為20%.

(學(xué)生小結(jié))老師引導(dǎo)提問:解一元二次方程,它們的共同特點(diǎn)是什么?

共同特點(diǎn):把一個(gè)一元二次方程“降次”,轉(zhuǎn)化為兩個(gè)一元一次方程.我們把這種思想稱為“降次轉(zhuǎn)化思想”.

三、鞏固練習(xí)

教材第6頁練習(xí).

四、課堂小結(jié)

本節(jié)課應(yīng)掌握:由應(yīng)用直接開平方法解形如x2=p(p≥0)的方程,那么x=±p轉(zhuǎn)化為應(yīng)用直接開平方法解形如(mx+n)2=p(p≥0)的方程,那么mx+n=±p,達(dá)到降次轉(zhuǎn)化之目的.若p<0則方程無解.

五、作業(yè)布置

配方法的基本形式

理解間接即通過變形運(yùn)用開平方法降次解方程,并能熟練應(yīng)用它解決一些具體問題.

通過復(fù)習(xí)可直接化成x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程的解法,引入不能直接化成上面兩種形式的一元二次方程的解題步驟.

重點(diǎn)

講清直接降次有困難,如x2+6x-16=0的一元二次方程的解題步驟.

難點(diǎn)

將不可直接降次解方程化為可直接降次解方程的“化為”的轉(zhuǎn)化方法與技巧.

一、復(fù)習(xí)引入

(學(xué)生活動(dòng))請同學(xué)們解下列方程:

(1)3x2-1=5(2)4(x-1)2-9=0(3)4x2+16x+16=9(4)4x2+16x=-7

老師點(diǎn)評(píng):上面的方程都能化成x2=p或(mx+n)2=p(p≥0)的形式,那么可得

x=±p或mx+n=±p(p≥0).

如:4x2+16x+16=(2x+4)2,你能把4x2+16x=-7化成(2x+4)2=9嗎?

二、探索新知

列出下面問題的方程并回答:

(1)列出的經(jīng)化簡為一般形式的方程與剛才解題的方程有什么不同呢?

(2)能否直接用上面前三個(gè)方程的解法呢?

問題:要使一塊矩形場地的長比寬多6 m,并且面積為16 m2,求場地的長和寬各是多少?

(1)列出的經(jīng)化簡為一般形式的方程與前面講的三道題不同之處是:前三個(gè)左邊是含有x的完全平方式而后二個(gè)不具有此特征.

(2)不能.

既然不能直接降次解方程,那么,我們就應(yīng)該設(shè)法把它轉(zhuǎn)化為可直接降次解方程的方程,下面,我們就來講如何轉(zhuǎn)化:

x2+6x-16=0移項(xiàng)→x2+6x=16

兩邊加(6/2)2使左邊配成x2+2bx+b2的形式→x2+6x+32=16+9

左邊寫成平方形式→(x+3)2=25降次→x+3=±5即x+3=5或x+3=-5

解一次方程→x1=2,x2=-8

可以驗(yàn)證:x1=2,x2=-8都是方程的根,但場地的寬不能是負(fù)值,所以場地的寬為2 m,長為8 m.

像上面的解題方法,通過配成完全平方形式來解一元二次方程的方法,叫配方法.

可以看出,配方法是為了降次,把一個(gè)一元二次方程轉(zhuǎn)化為兩個(gè)一元一次方程來解.

例1用配方法解下列關(guān)于x的方程:

(1)x2-8x+1=0(2)x2-2x-12=0

分析:(1)顯然方程的左邊不是一個(gè)完全平方式,因此,要按前面的方法化為完全平方式;(2)同上.

解:略.

三、鞏固練習(xí)

教材第9頁練習(xí)1,2.(1)(2).

四、課堂小結(jié)

本節(jié)課應(yīng)掌握:

左邊不含有x的完全平方形式的一元二次方程化為左邊是含有x的完全平方形式,右邊是非負(fù)數(shù),可以直接降次解方程的方程.

五、作業(yè)布置

理解一元二次方程“降次”——轉(zhuǎn)化的數(shù)學(xué)思想,并能應(yīng)用它解決一些具體問題.

提出問題,列出缺一次項(xiàng)的一元二次方程ax2+c=0,根據(jù)平方根的意義解出這個(gè)方程,然后知識(shí)遷移到解a(ex+f)2+c=0型的一元二次方程.

重點(diǎn)

運(yùn)用開平方法解形如(x+m)2=n(n≥0)的方程,領(lǐng)會(huì)降次——轉(zhuǎn)化的數(shù)學(xué)思想.

難點(diǎn)

通過根據(jù)平方根的意義解形如x2=n的方程,將知識(shí)遷移到根據(jù)平方根的意義解形如(x+m)2=n(n≥0)的方程.

一、復(fù)習(xí)引入

學(xué)生活動(dòng):請同學(xué)們完成下列各題.

問題1:填空

(1)x2-8x+________=(x-________)2;(2)9x2+12x+________=(3x+________)2;(3)x2+px+________=(x+________)2.

解:根據(jù)完全平方公式可得:(1)164;(2)42;(3)(p2)2p2.

問題2:目前我們都學(xué)過哪些方程?二元怎樣轉(zhuǎn)化成一元?一元二次方程與一元一次方程有什么不同?二次如何轉(zhuǎn)化成一次?怎樣降次?以前學(xué)過哪些降次的方法?

二、探索新知

上面我們已經(jīng)講了x2=9,根據(jù)平方根的意義,直接開平方得x=±3,如果x換元為2t+1,即(2t+1)2=9,能否也用直接開平方的方法求解呢?

(學(xué)生分組討論)

老師點(diǎn)評(píng):回答是肯定的,把2t+1變?yōu)樯厦娴膞,那么2t+1=±3

即2t+1=3,2t+1=-3

方程的兩根為t1=1,t2=-2

例1解方程:(1)x2+4x+4=1(2)x2+6x+9=2

分析:(1)x2+4x+4是一個(gè)完全平方公式,那么原方程就轉(zhuǎn)化為(x+2)2=1.

(2)由已知,得:(x+3)2=2

直接開平方,得:x+3=±2

即x+3=2,x+3=-2

所以,方程的兩根x1=-3+2,x2=-3-2

解:略.

例2市政府計(jì)劃2年內(nèi)將人均住房面積由現(xiàn)在的10 m2提高到14.4 m2,求每年人均住房面積增長率.

分析:設(shè)每年人均住房面積增長率為x,一年后人均住房面積就應(yīng)該是10+10x=10(1+x);二年后人均住房面積就應(yīng)該是10(1+x)+10(1+x)x=10(1+x)2

解:設(shè)每年人均住房面積增長率為x,

則:10(1+x)2=14.4

(1+x)2=1.44

直接開平方,得1+x=±1.2

即1+x=1.2,1+x=-1.2

所以,方程的兩根是x1=0.2=20%,x2=-2.2

因?yàn)槊磕耆司》棵娣e的增長率應(yīng)為正的,因此,x2=-2.2應(yīng)舍去.

所以,每年人均住房面積增長率應(yīng)為20%.

(學(xué)生小結(jié))老師引導(dǎo)提問:解一元二次方程,它們的共同特點(diǎn)是什么?

共同特點(diǎn):把一個(gè)一元二次方程“降次”,轉(zhuǎn)化為兩個(gè)一元一次方程.我們把這種思想稱為“降次轉(zhuǎn)化思想”.

三、鞏固練習(xí)

教材第6頁練習(xí).

四、課堂小結(jié)

本節(jié)課應(yīng)掌握:由應(yīng)用直接開平方法解形如x2=p(p≥0)的方程,那么x=±p轉(zhuǎn)化為應(yīng)用直接開平方法解形如(mx+n)2=p(p≥0)的方程,那么mx+n=±p,達(dá)到降次轉(zhuǎn)化之目的.若p<0則方程無解.

五、作業(yè)布置

教材第16頁復(fù)習(xí)鞏固1.第2課時(shí)配方法的基本形式

理解間接即通過變形運(yùn)用開平方法降次解方程,并能熟練應(yīng)用它解決一些具體問題.

通過復(fù)習(xí)可直接化成x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程的解法,引入不能直接化成上面兩種形式的一元二次方程的解題步驟

1.通過類比一元一次方程,了解一元二次方程的概念及一般式ax2+bx+c=0(a≠0),分清二次項(xiàng)及其系數(shù)、一次項(xiàng)及其系數(shù)與常數(shù)項(xiàng)等概念.

2.了解一元二次方程的解的概念,會(huì)檢驗(yàn)一個(gè)數(shù)是不是一元二次方程的解.

重點(diǎn)

通過類比一元一次方程,了解一元二次方程的概念及一般式ax2+bx+c=0(a≠0)和一元二次方程的解等概念,并能用這些概念解決簡單問題.

難點(diǎn)

一元二次方程及其二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)和常數(shù)項(xiàng)的識(shí)別.

活動(dòng)1復(fù)習(xí)舊知

1.什么是方程?你能舉一個(gè)方程的例子嗎?

2.下列哪些方程是一元一次方程?并給出一元一次方程的概念和一般形式.

(1)2x-1(2)mx+n=0(3)1x+1=0(4)x2=1

3.下列哪個(gè)實(shí)數(shù)是方程2x-1=3的解?并給出方程的解的概念.

a.0b.1c.2d.3

活動(dòng)2探究新知

根據(jù)題意列方程.

1.教材第2頁問題1.

提出問題:

(1)正方形的大小由什么量決定?本題應(yīng)該設(shè)哪個(gè)量為未知數(shù)?

(2)本題中有什么數(shù)量關(guān)系?能利用這個(gè)數(shù)量關(guān)系列方程嗎?怎么列方程?

(3)這個(gè)方程能整理為比較簡單的形式嗎?請說出整理之后的方程.

2.教材第2頁問題2.

提出問題:

(1)本題中有哪些量?由這些量可以得到什么?

(2)比賽隊(duì)伍的數(shù)量與比賽的場次有什么關(guān)系?如果有5個(gè)隊(duì)參賽,每個(gè)隊(duì)比賽幾場?一共有20場比賽嗎?如果不是20場比賽,那么究竟比賽多少場?

(3)如果有x個(gè)隊(duì)參賽,一共比賽多少場呢?

3.一個(gè)數(shù)比另一個(gè)數(shù)大3,且兩個(gè)數(shù)之積為0,求這兩個(gè)數(shù).

提出問題:

本題需要設(shè)兩個(gè)未知數(shù)嗎?如果可以設(shè)一個(gè)未知數(shù),那么方程應(yīng)該怎么列?

4.一個(gè)正方形的面積的2倍等于25,這個(gè)正方形的邊長是多少?

活動(dòng)3歸納概念

提出問題:

(1)上述方程與一元一次方程有什么相同點(diǎn)和不同點(diǎn)?

(2)類比一元一次方程,我們可以給這一類方程取一個(gè)什么名字?

(3)歸納一元二次方程的概念.

1.一元二次方程:只含有________個(gè)未知數(shù),并且未知數(shù)的次數(shù)是________,這樣的________方程,叫做一元二次方程.

2.一元二次方程的一般形式是ax2+bx+c=0(a≠0),其中ax2是二次項(xiàng),a是二次項(xiàng)系數(shù);bx是一次項(xiàng),b是一次項(xiàng)系數(shù);c是常數(shù)項(xiàng).

提出問題:

(1)一元二次方程的一般形式有什么特點(diǎn)?等號(hào)的左、右分別是什么?

(2)為什么要限制a≠0,b,c可以為0嗎?

(3)2x2-x+1=0的一次項(xiàng)系數(shù)是1嗎?為什么?

3.一元二次方程的解(根):使一元二次方程左右兩邊相等的未知數(shù)的值叫做一元二次方程的解(根).

活動(dòng)4例題與練習(xí)

例1在下列方程中,屬于一元二次方程的是________.

(1)4x2=81;(2)2x2-1=3y;(3)1x2+1x=2;

(4)2x2-2x(x+7)=0.

總結(jié):判斷一個(gè)方程是否是一元二次方程的依據(jù):(1)整式方程;(2)只含有一個(gè)未知數(shù);(3)含有未知數(shù)的項(xiàng)的次數(shù)是2.注意有些方程化簡前含有二次項(xiàng),但是化簡后二次項(xiàng)系數(shù)為0,這樣的方程不是一元二次方程.

例2教材第3頁例題.

例3以-2為根的一元二次方程是()

a.x2+2x-1=0 b.x2-x-2=0

c.x2+x+2=0 d.x2+x-2=0

總結(jié):判斷一個(gè)數(shù)是否為方程的解,可以將這個(gè)數(shù)代入方程,判斷方程左、右兩邊的值是否相等.

練習(xí):

1.若(a-1)x2+3ax-1=0是關(guān)于x的一元二次方程,那么a的取值范圍是________.

2.將下列一元二次方程化為一般形式,并分別指出它們的二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)和常數(shù)項(xiàng).

(1)4x2=81;(2)(3x-2)(x+1)=8x-3.

3.教材第4頁練習(xí)第2題.

4.若-4是關(guān)于x的一元二次方程2x2+7x-k=0的一個(gè)根,則k的值為________.

答案:1.a≠1;2.略;3.略;4.k=4.

活動(dòng)5課堂小結(jié)與作業(yè)布置

課堂小結(jié)

我們學(xué)習(xí)了一元二次方程的哪些知識(shí)?一元二次方程的一般形式是什么?一般形式中有什么限制?你能解一元二次方程嗎?

作業(yè)布置

教材第4頁習(xí)題21.1第1~7題.21.2解一元二次方程

21.2.1配方法(3課時(shí))

新人教版九年級(jí)數(shù)學(xué)概率教案最新范文

九年級(jí)數(shù)學(xué)樹狀圖教案2021范文

九年級(jí)數(shù)學(xué)相似三角形作業(yè)講評(píng)課教案5篇最新

青島版九年級(jí)數(shù)學(xué)二次函數(shù)有哪些

北師大版一年級(jí)數(shù)學(xué)教案及說課稿范文5篇

九年級(jí)數(shù)學(xué)教學(xué)反思5篇

九年級(jí)數(shù)學(xué)投影教案2021模板

2021最新北師大版九年級(jí)數(shù)學(xué)上冊教案

九年級(jí)數(shù)學(xué)上冊二次函數(shù)教案2021模板

九年級(jí)數(shù)學(xué)備課組教學(xué)工作總結(jié)五篇

九上數(shù)學(xué)說課稿篇六

1.通過類比一元一次方程,了解一元二次方程的概念及一般式ax2+bx+c=0(a≠0),分清二次項(xiàng)及其系數(shù)、一次項(xiàng)及其系數(shù)與常數(shù)項(xiàng)等概念.

2.了解一元二次方程的解的概念,會(huì)檢驗(yàn)一個(gè)數(shù)是不是一元二次方程的解.

重點(diǎn)

通過類比一元一次方程,了解一元二次方程的概念及一般式ax2+bx+c=0(a≠0)和一元二次方程的解等概念,并能用這些概念解決簡單問題.

難點(diǎn)

一元二次方程及其二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)和常數(shù)項(xiàng)的識(shí)別.

活動(dòng)1復(fù)習(xí)舊知

1.什么是方程?你能舉一個(gè)方程的例子嗎?

2.下列哪些方程是一元一次方程?并給出一元一次方程的概念和一般形式.

(1)2x-1(2)mx+n=0(3)1x+1=0(4)x2=1

3.下列哪個(gè)實(shí)數(shù)是方程2x-1=3的解?并給出方程的解的概念.

a.0b.1c.2d.3

活動(dòng)2探究新知

根據(jù)題意列方程.

1.教材第2頁問題1.

提出問題:

(1)正方形的大小由什么量決定?本題應(yīng)該設(shè)哪個(gè)量為未知數(shù)?

(2)本題中有什么數(shù)量關(guān)系?能利用這個(gè)數(shù)量關(guān)系列方程嗎?怎么列方程?

(3)這個(gè)方程能整理為比較簡單的形式嗎?請說出整理之后的方程.

2.教材第2頁問題2.

提出問題:

(1)本題中有哪些量?由這些量可以得到什么?

(2)比賽隊(duì)伍的數(shù)量與比賽的場次有什么關(guān)系?如果有5個(gè)隊(duì)參賽,每個(gè)隊(duì)比賽幾場?一共有20場比賽嗎?如果不是20場比賽,那么究竟比賽多少場?

(3)如果有x個(gè)隊(duì)參賽,一共比賽多少場呢?

3.一個(gè)數(shù)比另一個(gè)數(shù)大3,且兩個(gè)數(shù)之積為0,求這兩個(gè)數(shù).

提出問題:

本題需要設(shè)兩個(gè)未知數(shù)嗎?如果可以設(shè)一個(gè)未知數(shù),那么方程應(yīng)該怎么列?

4.一個(gè)正方形的面積的2倍等于25,這個(gè)正方形的邊長是多少?

活動(dòng)3歸納概念

提出問題:

(1)上述方程與一元一次方程有什么相同點(diǎn)和不同點(diǎn)?

(2)類比一元一次方程,我們可以給這一類方程取一個(gè)什么名字?

(3)歸納一元二次方程的概念.

1.一元二次方程:只含有________個(gè)未知數(shù),并且未知數(shù)的次數(shù)是________,這樣的________方程,叫做一元二次方程.

2.一元二次方程的一般形式是ax2+bx+c=0(a≠0),其中ax2是二次項(xiàng),a是二次項(xiàng)系數(shù);bx是一次項(xiàng),b是一次項(xiàng)系數(shù);c是常數(shù)項(xiàng).

提出問題:

(1)一元二次方程的一般形式有什么特點(diǎn)?等號(hào)的左、右分別是什么?

(2)為什么要限制a≠0,b,c可以為0嗎?

(3)2x2-x+1=0的一次項(xiàng)系數(shù)是1嗎?為什么?

3.一元二次方程的解(根):使一元二次方程左右兩邊相等的未知數(shù)的值叫做一元二次方程的解(根).

活動(dòng)4例題與練習(xí)

例1在下列方程中,屬于一元二次方程的是________.

(1)4x2=81;(2)2x2-1=3y;(3)1x2+1x=2;

(4)2x2-2x(x+7)=0.

總結(jié):判斷一個(gè)方程是否是一元二次方程的依據(jù):(1)整式方程;(2)只含有一個(gè)未知數(shù);(3)含有未知數(shù)的項(xiàng)的次數(shù)是2.注意有些方程化簡前含有二次項(xiàng),但是化簡后二次項(xiàng)系數(shù)為0,這樣的方程不是一元二次方程.

例2教材第3頁例題.

例3以-2為根的一元二次方程是()

a.x2+2x-1=0 b.x2-x-2=0

c.x2+x+2=0 d.x2+x-2=0

總結(jié):判斷一個(gè)數(shù)是否為方程的解,可以將這個(gè)數(shù)代入方程,判斷方程左、右兩邊的值是否相等.

練習(xí):

1.若(a-1)x2+3ax-1=0是關(guān)于x的一元二次方程,那么a的取值范圍是________.

2.將下列一元二次方程化為一般形式,并分別指出它們的二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)和常數(shù)項(xiàng).

(1)4x2=81;(2)(3x-2)(x+1)=8x-3.

3.教材第4頁練習(xí)第2題.

4.若-4是關(guān)于x的一元二次方程2x2+7x-k=0的一個(gè)根,則k的值為________.

答案:1.a≠1;2.略;3.略;4.k=4.

活動(dòng)5課堂小結(jié)與作業(yè)布置

課堂小結(jié)

我們學(xué)習(xí)了一元二次方程的哪些知識(shí)?一元二次方程的一般形式是什么?一般形式中有什么限制?你能解一元二次方程嗎?

作業(yè)布置

教材第4頁習(xí)題21.1第1~7題.21.2解一元二次方程

21.2.1配方法(3課時(shí))

【本文地址:http://aiweibaby.com/zuowen/2095823.html】

全文閱讀已結(jié)束,如果需要下載本文請點(diǎn)擊

下載此文檔