高中數學必修教案人教版范文(19篇)

格式:DOC 上傳日期:2023-11-10 13:14:05
高中數學必修教案人教版范文(19篇)
時間:2023-11-10 13:14:05     小編:影墨

編寫教案時,要根據不同學生的差異性和個體差異進行靈活調整。教案的內容要與教材緊密結合,注意培養(yǎng)學生的綜合能力和實際運用能力。教案范文雖然可以作為參考,但請教師根據自己的實際情況進行相應的調整和適應。

高中數學必修教案人教版篇一

集合這部分的主要內容是集合的概念、表示方法和集合之間的關系和運算??v觀近幾年高考題,集合的考查以選擇題、填空題為主要題型。集合的概念和基本運算是本章的重點內容,也是高考的必考內容。復習中首先要把握基礎知識,深刻理解本章的基礎知識點,重點掌握集合的概念和運算。

本章常用的數學思想方法主要有:數形結合的思想,如常借助于維恩圖、數軸解決問題;分類討論的思想,如一元二次方程根的討論、集合的包含關系等。復習時要重視對基本思想方法的滲透,逐步培養(yǎng)用數學思想方法來分析問題、解決問題的能力。

函數。

函數是高中數學的核心內容,函數的思想方法貫穿了高中數學的始終。近幾年高考試題函數熱點之一是考查函數的定義域、值域、單調性、奇偶性以及函數的圖象。函數、方程、不等式關系密切,要學會對具體問題抽象概括、分析探索、透徹理解,從而構造函數,借助方程、不等式的知識,最終解決問題。實現(xiàn)函數、方程、不等式的溝通與轉化,是高考的又一熱點。考查函數內容的同時,用函數的思想觀點研究問題,以及數形結合思想、分類討論思想的靈活熟練應用,也是高考的一個重點。

規(guī)律方法總結。

求函數解析式時,針對條件的特點可選用換元法、待定系數法、湊項法、列方程組法等進行求解。其中換元法是常用的方法,但要特別注意正確確定中間變量的取值范圍,否則就不能正確確定函數的定義域。判斷函數單調性主要的方法有定義法、導數法、圖象法。

高中數學必修教案人教版篇二

在復習時,由于解題的量很大,就更要求我們將解題活動組織得生動活潑、情趣盎然。讓學生領略到數學的優(yōu)美、奇異和魅力,這樣才能變苦役為享受,有效地防止智力疲勞,保持解題的“好胃口”。一道好的數學題,即便具有相當的難度,它卻像一段引人入勝的故事,又像一部情節(jié)曲折的電視劇,那迭起的懸念、叢生的疑竇正是它的誘人之處。

“山重水復”的困惑被“柳暗花明”的喜悅取代之后,學生又怎能不贊嘆自己智能的威力?我們要使學生由“要我學”轉化為“我要學”,課堂上要想方設法調動學生的學習積極性,創(chuàng)設情境,激發(fā)熱情,有這樣一些比較成功的做法:一是運用情感原理,喚起學生學習數學的熱情;二是運用成功原理,變苦學為樂學;三是在學法上教給學生“點金術”,等等。

在課堂教學結構上,更新教育觀念,始終堅持以學生為主體,以教師為主導的教學原則。

教育家蘇霍姆林斯基曾經告誡我們:“希望你們要警惕,在課堂上不要總是教師在講,這種做法不好……讓學生通過自己的努力去理解的東西,才能成為自己的東西,才是他真正掌握的東西。”按我們的說法就是:師傅的任務在于度,徒弟的任務在于悟。數學課堂教學必須廢除“注入式”“滿堂灌”的教法。復習課也不能由教師包講,更不能成為教師展示自己解題“高難動作”的“絕活表演”,而要讓學生成為學習的主人,讓他們在主動積極的探索活動中實現(xiàn)創(chuàng)新、突破,展示自己的才華智慧,提高數學素養(yǎng)和悟性。

作為教學活動的組織者,教師的任務是點撥、啟發(fā)、誘導、調控,而這些都應以學生為中心。復習課上有一個突出的矛盾,就是時間太緊,既要處理足量的題目,又要充分展示學生的思維過程,二者似乎是很難兼顧。我們可采用“焦點訪談”法較好地解決這個問題,因大多數題目是“入口寬,上手易”,但在連續(xù)探究的過程中,常在某一點或某幾點上擱淺受阻,這些點被稱為“焦點”,其余的則被稱為“外圍”。我們大可不必在外圍處花精力去進行淺表性的啟發(fā)誘導,好鋼要用在刀刃上,而只要在焦點處發(fā)動學生探尋突破口,通過訪談,集中學生的智慧,讓學生的思維在關鍵處閃光,能力在要害處增長,弱點在隱蔽處暴露,意志在細微處磨礪。通過訪談實現(xiàn)學生間、師生間智慧和能力的互補,促進相互的心靈和感情的溝通。

高中數學必修教案人教版篇三

對重點內容應重點復習.首先擬出主要內容,然后有目的有針對性地做相關內容的題目,著重收集主要題型和技巧解法,像小論文式地重組知識,不要盲目地做題,要有針對性地選題,回味練習.

高考數學命題除了著重考查基礎知識外,還十分重視對數學方法的考查,如配方法、換元法、分離常數法等操作性較強的數學方法.同學們在復習時應對每一種方法的實質,它所適應的題型,包括解題步驟都熟練掌握.其次應重視對數學思想的理解及運用,如函數思想、數形結合思想.

應注意實際問題的解決和探索性試題的研究。

現(xiàn)在各地風行素質教育,呼吁改革考試命題.增強運用數學知識解決實際問題的試題,在其他省市的高考命題中已經體現(xiàn),而且難度較大,這一部分尤其是探索性命題在平時學習中較少涉及,希望同學們把近幾年其他省、市高考試題中有關此內容的題目集中研究一下,有備無患.這一階段,重點是提高學生的綜合解題能力,訓練學生的解題策略,加強解題指導,提高應試能力.

高中數學必修教案人教版篇四

初中新課程中數學知識點刪了很多要求,如“立方和、立方差”公式,“韋達定理”,“十字相乘法分解因式”等。雖然初中新課程對這些知識點不作要求,但是從高中數學教學的實踐來看,學生掌握了這些知識點對學習新的知識有一定的促進作用,因此,建議教師可根據學生和教學的實際情況,做適當的補充,同時,初中學習的有理數乘方及運算性質和二次函數,這些知識也要進行必要的復習等,這樣有利于后期的教學。

2、思維能力和運算能力的進一步強化。

初中新課程的內容傾向于基礎性、普及性、應用性和直觀性,學生的實踐能力很強,但學生的數學思維能力有所欠缺,尤其是抽象思維能力較弱,這對高中數學學習的影響很大。因此,教師要逐漸培養(yǎng)學生的抽象思維能力。同時,由于初中大量使用計算器,學生的計算能力很弱,這與高中數學要求學生要有較強的化簡、變形、推理及運算能力有一定的差距,從教學的實踐來看,學生作業(yè)中出現(xiàn)的大量錯誤與計算能力較弱有很大關系。因此,建議教師可根據學生的實際情況,從高一開始就要切實提高學生的運算能力。

3、抓住學科特點,做好順利過渡。

高中數學知識量大,理論性、綜合性強,同時高中課時少,學生基礎差等,知識的難度和對學生能力的要求和初中相比都有較大的提高(如“集合”、“映射”、“函數”等都比較抽象,難度大,“函數”等知識綜合性較強)。學好高中數學需要學生具有較強的閱讀能力、運算能力、邏輯推理能力、抽象思維能力及分析問題、解決問題的綜合能力,這與初中數學知識點較少,難度較低,形成較大的差距。因此,教師要能夠根據實際情況及時調整教學方法和教學過程,使學生能順利進入高中并能盡快適應高中的數學學習。

高中數學必修教案人教版篇五

函數作為初等數學的核心內容,貫穿于整個初等數學體系之中。函數這一章在高中數學中,起著承上啟下的作用,它是對初中函數概念的承接與深化。在初中,只停留在具體的幾個簡單類型的函數上,把函數看成變量之間的依賴關系,而高中階段不僅把函數看成變量之間的依賴關系,更是從“變量說”到“對應說”,這是對函數本質特征的進一步認識,也是學生認識上的一次飛躍。這一章內容滲透了函數的思想,集合的思想以及數學建模的思想等內容,這些內容的學習,無疑對學生今后的學習起著深刻的影響。

本節(jié)《函數的概念》是函數這一章的起始課。概念是數學的基礎,只有對概念做到深刻理解,才能正確靈活地加以應用。本課從集合間的對應來描繪函數概念,起到了上承集合,下引函數的作用。也為進一步學習函數這一章的其它內容提供了方法和依據。

二、重難點分析。

根據對上述對教材的分析及新課程標準的要求,確定函數的概念既是本節(jié)課的重點,也應該是本章的難點。

三、學情分析。

1、有利因素:一方面學生在初中已經學習了變量觀點下的函數定義,并具體研究了幾類最簡單的函數,對函數已經有了一定的感性認識;另一方面在本書第一章學生已經學習了集合的概念,這為學習函數的現(xiàn)代定義打下了基礎。

2、不利因素:函數在初中雖已講過,不過較為膚淺,本課主要是從兩個集合間對應來描繪函數概念,是一個抽象過程,要求學生的抽象、分析、概括的能力比較高,學生學起來有一定的難度。

四、目標分析。

1、理解函數的概念,會用函數的定義判斷函數,會求一些最基本的函數的定義域、值域。

2、通過對實際問題分析、抽象與概括,培養(yǎng)學生抽象、概括、歸納知識以及邏輯思維、建模等方面的能力。

3、通過對函數概念形成的探究過程,培養(yǎng)學生發(fā)現(xiàn)問題,探索問題,不斷超越的創(chuàng)新品質。

五、教法學法。

本節(jié)課的教學以學生為主體、教師是數學課堂活動的組織者、引導者和參與者,我一方面精心設計問題情景,引導學生主動探索。另一方面,依據本節(jié)為概念學習的特點,以問題的提出、問題的解決為主線,始終在學生知識的“最近發(fā)展區(qū)”設置問題,倡導學生主動參與,通過不斷探究、發(fā)現(xiàn),在師生互動、生生互動中,讓學習過程成為學生心靈愉悅的主動認知過程。

學法方面,學生通過對新舊兩種函數定義的對比,在集合論的觀點下初步建構出函數的概念。在理解函數概念的基礎上,建構出函數的定義域、值域的概念,并初步掌握它們的求法。

2、設計理念。

3、教學目標。

情感態(tài)度與價值觀目標:引導學生學會閱讀數學教材,學會發(fā)現(xiàn)和欣賞數學的理性之美、

4、重點難點。

重點:任意角三角函數的定義、

難點:任意角三角函數這一概念的理解(函數模型的建立)、類比與化歸思想的滲透、

5、學情分析。

6、教法分析。

7、學法分析。

本課時先通過“閱讀”學習法,引導學生改造已有的認知結構,再通過類比學習法引導學生形成“任意角的三角函數的定義”,最后引導學生運用類比學習法,來研究三角函數一些基本性質和符號問題,從而使學生形成新的認識結構,達成教學目標。

高中數學必修教案人教版篇六

數學教學的宗旨是讓學生在主動參與中學會學習。中學生的身體、心理發(fā)展正趨于成熟期,對事物充滿著好奇,又有自己的想法,有時想表達自己的想法但又不愿在公開場合表達。根據這些特點,教師應設置有效的三維目標激發(fā)提升,設置貼近學生的情境激發(fā)興趣,設置有懸念的問題激發(fā)參與,設置開放的問題激發(fā)討論,設置有挑戰(zhàn)的問題激發(fā)獨立思考,設置抽象的問題激發(fā)理解。

進行這些設置,教師必須了解學生的現(xiàn)有水平和可能的發(fā)展水平,準確定位有效的教學目標;精心設置導入,在盡量短的時間內吸引學生的注意力;正確把握問題的難度、坡度和密度,讓學生努力后能接近或達成目標;以適當的調控營造和諧的課堂氣氛,提高學生參與的積極性。

利用信息技術拓寬學習資源。

并善于獨立思考,學會分析問題和創(chuàng)造性地解決問題”。例如,筆者在講解解析幾何內容時,就通過課件“奇妙的坐標系”向學生展示了坐標系的誕生、完善及應用過程,使數學教學成為了再創(chuàng)造、再發(fā)現(xiàn)的教學。

高中數學必修教案人教版篇七

函數思想在解題中的應用主要表現(xiàn)在兩個方面:一是借助有關初等函數的性質,解有關求值、解(證)不等式、解方程以及討論參數的取值范圍等問題:二是在問題的研究中,通過建立函數關系式或構造中間函數,把所研究的問題轉化為討論函數的有關性質,達到化難為易,化繁為簡的目的。函數與方程的思想是中學數學的基本思想,也是歷年高考的重點。

1.函數的思想,是用運動和變化的觀點,分析和研究數學中的數量關系,建立函數關系或構造函數,運用函數的圖像和性質去分析問題、轉化問題,從而使問題獲得解決。

3.函數方程思想的幾種重要形式。

(1)函數和方程是密切相關的,對于函數y=f(x),當y=0時,就轉化為方程f(x)=0,也可以把函數式y(tǒng)=f(x)看做二元方程y-f(x)=0。

(6)立體幾何中有關線段、角、面積、體積的計算,經常需要運用布列方程或建立函數表達式的方法加以解決。

高中數學必修教案人教版篇八

根據德國心理學家艾賓浩斯繪制的遺忘曲線,學生對知識的遺忘遵從先快后慢的規(guī)律,有效的回憶可以加深對知識的理解,掌握知識的內在聯(lián)系,延緩知識的遺忘。教師要采用不同的形式,整理階段的基礎知識,使內容條理化、清晰化地呈現(xiàn)在同學的面前,從而完成由厚到薄的過程,對重難點和關鍵點,進行重點的、有針對性的講解。配以適當的練習,提高學生對基本知識和基本方法的深刻性和準確性的理解掌握。促進學生科學合理的知識結構的形成,使知識系統(tǒng)化和網絡化。

舊知檢測。

要想有效的提高課堂的復習效率,就須克服“眼高手低”的毛病。很多同學上課時處于一種混沌的狀態(tài),一聽就懂,一做就錯;一聽就會,一到自己做就不會了。為避免這樣的情況,就必須讓學生更好地了解自己知識的掌握情況。可以設置幾個基礎的填空和一個左右的解答題,通過解答的過程讓學生“自知自明”。激發(fā)起興趣,有效地提高復習的效率。

精選精講。

精心的選擇適量的典型例題,分析解決這些問題應該是一堂復習課的核心內容。解題的目的絕不是僅僅解決這個問題本身,而是要給出通性通法,揭示解決問題的一般規(guī)律,熟練掌握數學思想方法,提高學生分析問題、解決問題的能力。

高中數學必修教案人教版篇九

曾經有同學問我,你是怎么學數學的,也沒見你做多少的練習題,可數學的成績不錯。我覺得課堂的學習是關鍵,要緊緊抓住課堂的45分鐘的時間。在這有限的時間內,是教師與學生的交流,這時候,作為學生你的思維要跟得上老師的變化,這個知識點的關鍵點在那兒,前后的聯(lián)系是什么,在聽課的過程中不能分心、走神,提高聽課的效率。為此,在每一堂課前,我都要做好以下幾項工作。

1、課前預習是關鍵。

相信我們學生都聽到過老師對我們的要求,要進行課前預習,不論什么課,這是所有的老師都會提的一個要求,可真正進行課前預習的學生有多少呢,班里面我們也沒有統(tǒng)計過,不過我覺得有一半的學生預習了,就是不錯的了,另外,既使有的學生也預習了,只是走馬觀花的看一下書,那效果可想而知。

預習也要講究方法,在預習中發(fā)現(xiàn)了難點,出現(xiàn)了自己解決不了的問題,這個就是聽課中的重點,要做好標記;通過預習還能發(fā)現(xiàn)自己沒有掌握住的舊知識,起到溫故而知新的作用,可以對知識起到查漏補缺的效果;另外,預習的過程也是一個自學的過程,有助于提高自己分析問題、解決問題的能力,將自己在預習中的理解和老師講解的進行對照,不斷進行改進,可以起到提高自己思維水平的作用。

2、科學聽課是保障。

所謂科學聽課也就是說在教師授課的過程中學生的表現(xiàn),是不是為這節(jié)課做好了準備工作。在聽課的過程中要調動眼、耳、心、口、手等各個器官,全身心的投入到課堂學習中去,在聽課的過程中遇到重要的知識點同時又要做好筆記,但是不能因為筆記的原因而影響到聽課,所以,這里面有一個科學合理安排聽課時間的問題。聽課的過程中是一個高度集中注意力的過程,但同時也是有張有弛;聽課的過程中也的聽的技巧,聽教師如何分析?如何歸納總結?如何突破難點,結合自己在預習時又是如何理解的,相互比較,同時要用心思考,跟上教師的教學思路,能在教師的啟發(fā)和點撥下有所得,這是這一堂課最根本的關節(jié)所在。

3、做一定量的習題。

在數學的學習過程中,對于做多少習題并沒有確切的數據,但有兩種傾向:一種是做大量的習題;另一種是做適當的習題。做大量的習題的做法來源于題海戰(zhàn)術,曾經有一種說法,做題吧,在做題的過程中你就掌握了知識點,誠然,多做題對于掌握知識是有好處的,但并不是題做的越多越好。在高中的學習過程中,時間非常緊,在有限的時間內要學習好幾門知識,你數學題做的多了,難免會在其他科目上用時不夠,會對其他科目的學習造成影響。因此,大量的做題是不可取的。

在學習的過程中,我崇尚做適當的習題,而且在實際的學習過程中我也是這樣做的。做題的過程中是一個舉一反三的過程,做會這一道題就掌握了這一類題目的做法,關鍵的問題是在做完這道題后的分析總結,數學的題目太多了,你是不可能做完所有的題的,因此,我們在掌握知識點的時候是一類一類的掌握,所謂的舉一反三,觸類旁通。每當做完一道題后尤其是難度大的題目,我會靜下心來再從頭看一遍,把其中的關鍵點再熟悉一遍,雖然當時看起來是費了一點時間,但那收獲是很大的。以后再遇到這類題目的時候,解決起來就相對容易的多。

高中數學必修教案人教版篇十

集合這部分的主要內容是集合的概念、表示方法和集合之間的關系和運算??v觀近幾年高考題,集合的考查以選擇題、填空題為主要題型。集合的概念和基本運算是本章的重點內容,也是高考的必考內容。復習中首先要把握基礎知識,深刻理解本章的基礎知識點,重點掌握集合的概念和運算。本章常用的數學思想方法主要有:數形結合的思想,如常借助于維恩圖、數軸解決問題;分類討論的思想,如一元二次方程根的討論、集合的包含關系等。復習時要重視對基本思想方法的滲透,逐步培養(yǎng)用數學思想方法來分析問題、解決問題的能力。

(二)規(guī)律方法總結。

1、集合中元素的互異性是集合概念的重點考查內容。一般給出兩個集合,并告知兩個集合之間的關系,求集合中某個參數的范圍或值的時候,要特別驗證是否符合元素之間互異性。2、考查集合的運算和包含關系,解題中常用到分類討論思想,分類時注意不重不漏,尤其注意討論集合為空集的情況。3、新定義的集合運算問題是以已知的集合或運算為背景,引出新的集合概念或運算,仔細審題,弄清新定義的意義才是關鍵。

基本初等函數。

基本初等函數的內容是函數的基礎,也是研究其他較復雜函數的轉化目標,掌握基本初等函數的圖象和性質是學習函數知識的必要的一步。與指數函數、對數函數有關的試題,大多以考查基本初等函數的性質為依托,結合運算推理來解題。所以這部分內容更注重通過函數圖象讀取各種信息,從而研究函數的性質,熟練掌握函數圖象的各種變換方式,培養(yǎng)運用數形結合思想來解題的能力。

(二)規(guī)律方法總結。

1、指數函數多與一次函數、二次函數、反比例函數等知識結合考查綜合應用知識解決函數問題的能力。指數方程的求解常利用換元法轉化為一元二次方程求解。由指數函數和二次函數、反比例函數結合成的函數的單調性的判定注意底數與1的關系的判定。

2、解對數方程(或不等式)就是將對數方程(或不等式)化為有理方程(或不等式)。要注意轉化必須是等價的,特別要考慮到對數函數定義域。

高中數學必修教案人教版篇十一

了解現(xiàn)實世界和日常生活中的不等關系,了解不等式(組)的實際背景.

(2)一元二次不等式。

會從實際情境中抽象出一元二次不等式模型.

通過函數圖象了解一元二次不等式與相應的二次函數、一元二次方程的聯(lián)系.

會解一元二次不等式,對給定的一元二次不等式,會設計求解的程序框圖.

(3)二元一次不等式組與簡單線性規(guī)劃問題。

會從實際情境中抽象出二元一次不等式組.

了解二元一次不等式的幾何意義,能用平面區(qū)域表示二元一次不等式組.

會從實際情境中抽象出一些簡單的二元線性規(guī)劃問題,并能加以解決.

(4)基本不等式:

了解基本不等式的證明過程.

高中數學必修教案人教版篇十二

一)、培養(yǎng)良好的學習興趣。

1、課前預習,對所學知識產生疑問,產生好奇心。

2、聽課中要配合老師講課,滿足感官的興奮性。聽課中重點解決預習中疑問,把老師課堂的提問、停頓、教具和模型的演示都視為欣賞音樂,及時回答老師課堂提問,培養(yǎng)思考與老師同步性,提高精神,把老師對你的提問的評價,變?yōu)楸薏邔W習的動力。

3、思考問題注意歸納,挖掘你學習的潛力。

5、把概念回歸自然。所有學科都是從實際問題中產生歸納的,數學概念也回歸于現(xiàn)實生活,如角的概念、直角坐標系的產生、極坐標系的產生都是從實際生活中抽象出來的。只有回歸現(xiàn)實才能對概念的理解切實可靠,在應用概念判斷、推理時會準確。

二)、建立良好的學習數學習慣。

習慣是經過重復練習而鞏固下來的穩(wěn)重持久的條件反射和自然需要。建立良好的學習數學習慣,會使自己學習感到有序而輕松。高中數學的良好習慣應是:多質疑、勤思考、好動手、重歸納、注意應用。良好的學習數學習慣還包括課前自學、專心上課、及時復習、獨立作業(yè)、解決疑難、系統(tǒng)小結和課外學習幾個方面。學生在學習數學的過程中,要把教師所傳授的知識翻譯成為自己的特殊語言,并永久記憶在自己的腦海中。另外還要保證每天有一定的自學時間,以便加寬知識面和培養(yǎng)自己再學習能力。

三)、有意識培養(yǎng)自己的各方面能力。

數學能力包括:邏輯推理能力、抽象思維能力、計算能力、空間想象能力和分析解決問題能力共五大能力。這些能力是在不同的數學學習環(huán)境中得到培養(yǎng)的。在平時學習中要注意開發(fā)不同的學習場所,參與一切有益的學習實踐活動,如數學第二課堂、數學競賽、智力競賽等活動。平時注意觀察,比如,空間想象能力是通過實例凈化思維,把空間中的實體高度抽象在大腦中,并在大腦中進行分析推理。其它能力的培養(yǎng)都必須學習、理解、訓練、應用中得到發(fā)展。特別是,教師為了培養(yǎng)這些能力,會精心設計“智力課”和“智力問題”比如對習題的解答時的一題多解、舉一反三的訓練歸類,應用模型、電腦等多媒體教學等,都是為數學能力的培養(yǎng)開設的好課型,在這些課型中,學生務必要用全身心投入、全方位智力參與,最終達到自己各方面能力的全面發(fā)展。

高中數學必修教案人教版篇十三

本節(jié)課力的合成,是在學生了解力的基本性質和常見幾種力的基礎上,通過等效替代思想,研究多個力的合成方法,是對前幾節(jié)內容的深化。

本節(jié)重點介紹力的合成法則——平行四邊形定則,但實際這是所有矢量運算的共同工具,為學習其他矢量的運算奠定了基礎。

更重要的是,力的合成是解決力學問題的基礎,對今后牛頓運動定律、平衡問題、動量與能量問題的理解和應用都會產生重要影響。

因此,這節(jié)課承前啟后,在整個高中物理學習中占據著非常重要的地位。

二、教學目標定位。

為了讓學生充分進行實驗探究,體驗獲取知識的過程,本節(jié)內容分兩課時來完成,今天我說課的內容為本節(jié)內容的第一課時。根據上述教材分析,考慮到學生的實際情況,在本節(jié)課的教學過程中,我制定了如下教學目標:。

一、知識與技能。

理解合力、分力、力的合成的概念理解力的合成本質上是從等效的角度進行力的替代。

探究求合力的方法——力的平行四邊形定則,會用平行四邊形定則求合力。

二、過程與方法。

通過學習合力和分力的概念,了解物理學常用的方法——等效替代法。

通過實驗探究方案的設計與實施,體驗科學探究的過程。

三、情感態(tài)度與價值觀。

培養(yǎng)學生的合作精神,激發(fā)學生學習興趣,形成良好的學習方法和習慣。

培養(yǎng)認真細致、實事求是的實驗態(tài)度。

根據以上分析確定本節(jié)課的重點與難點如下:

一、重點。

合力和分力的概念以及它們的關系。

實驗探究力的合成所遵循的法則。

二、難點。

平行四邊形定則的理解和運用。

三、重、難點突破方法——教法簡介。

本堂課的重、難點為實驗探究力的合成所遵循的法則——平行四邊形定則,為了實現(xiàn)重難點的突破,讓學生真正理解平行四邊形定則,就要讓學生親自體驗規(guī)律獲得的過程。

因此,本堂課在學法上采用學生自主探究的實驗歸納法——通過重現(xiàn)獲取知識和方法的思維過程,讓學生親自去體驗、探究、歸納總結。體現(xiàn)學生主體性。

實驗歸納法的步驟如下。這樣設計讓學生不僅能知其然,更能知其所以然,這也是本堂課突破重點和難點的重要手段。

本堂課在教法上采用啟發(fā)式教學——通過設置問題,引導啟發(fā)學生,激發(fā)學生思維。體現(xiàn)教師主導作用。

四、教學過程設計。

采用六環(huán)節(jié)教學法,教學過程共有六個步驟。

教學過程第一環(huán)節(jié)、創(chuàng)設情景導入新課:

第二環(huán)節(jié)、新課教學:

展示合力與分力以及力的合成的概念,強調等效替代法。舉例說明等效替代法是一種重要的物理方法。

第三環(huán)節(jié)、合作探究:

首先,教師展示實驗儀器,讓學生思考如何設計實驗,,如何進行實驗呢?學生面對器材可能會覺得無從下手。再次設置問題引導學生思維,讓學生面對儀器分組討論以下四個問題。

問題1要用動畫輔助說明。在問題2中,教師要強調結點的問題,用動畫說明。問題3中,直觀簡潔的描述力必須用力的圖示,用圖片說明。問題4讓學生注意測力計的使用,減小實驗誤差。通過對這四個問題的討論,再結合多媒體動畫的展示,使學生對探究的步驟清晰明了。

然后,學生分組實驗,合作探究,記錄合力與兩分力的大小和方向,作出力的圖示。實驗完成后請學生展示實驗結果,應該立即可得出結論一:比較分力與合力的大小,可得互成角度的兩個力的合成,不能簡單地利用代數方法相加減.

那合力與分力到底滿足什么關系呢?

此時要引導學生思考:既然從數字上找不到關系,哪可不可以從幾何上找找關系呢?學生會立即猜想出o、a、c、b像是一個平行四邊形的四個頂點,ob可能是這個平行四邊形的對角線.哪么猜想是否正確呢?親自實踐才有發(fā)言權,學生動手作圖:以oa、oc為鄰邊作平行四邊形oacb,看平行四邊形的對角線與ob是否重合。

學生作圖后發(fā)現(xiàn)對角線與合力很接近。教師說明實驗的誤差是不可避免的,科學家經過很多次的、精細的實驗,最后確認對角線的長度、方向,跟合力的大小、方向一致,說明對角線就表示f1和f2的合力.由此得到結論二:力的合成法則——平行四邊形定則。

進入。

第四環(huán)節(jié):歸納總結。

將本文的word文檔下載到電腦,方便收藏和打印。

高中數學必修教案人教版篇十四

1. 掌握數軸的三要素,能正確畫出數軸。

2、會用數軸上的點表示有理數;;會求一個有理數的相反數;能利用數軸比較有理數的大小。

【過程與方法】 經歷從現(xiàn)實情景抽象出數軸的過程,體會數學與現(xiàn)實生活的聯(lián)系

【情感態(tài)度與價值觀】 感受數形結合的思想方法;

【教學重點】會說出數軸上已知點所表示的數,能將已知數在數軸上表示出來。

【教學難點】利用數軸比較有理數的大小。

(一)創(chuàng)設情境,引入課題

(1)(出示投影1)問題:三個溫度計所表示的溫度是多少?

學生回答.

(2)在一條東西向的馬路上,有一個汽車站,汽車站東3m和7.5m處分別有一棵柳樹和一棵楊樹,汽車站西3m和4.8m處分別有一棵槐樹和一根電線桿,試畫圖表示這一情境.

這種表示數的圖形就是今天我們要學的內容―數軸(板書課題)

(二)得出定義,揭示內涵

與溫度計類似,我們也可以在一條直線上畫出刻度,標上讀數,用直線上的點表示正數、負數和零.具體方法如下(教師示范畫數軸,邊說邊畫):

(1)畫直線,取原點

(2)標正方向

(3)選取單位長度,標數(強調:負數從0向左寫起)。

概念:規(guī)定了原點、正方向和單位長度的直線叫做數軸。

(三)強化概念,深入理解

1、下列圖形哪些是數軸,哪些不是,為什么?

學生回答,相互糾正,理解數軸三要素,鞏固數軸概念。

2、學生自己在練習本上畫一個數軸。教師在黑板上畫

(四)動手練習,歸納總結

1、在數軸上的點表示有理數。

一個學生在黑板上完成,其他同學在自己所畫數軸上完成。

明確“任何一個有理數都可以用數軸上的一個點來表示”

2.指出數軸上a,b,c,d各點分別表示什么數。@師愿教育

3、通過數軸比較有理數的大小。觀察類比溫度計回答問題

(1)在數軸上表示的兩個數,(右 ) 邊的數總比 ( 左)邊的數大;

(2)正數都(大于 )0,負數都(小于)0;正數(大于)一切負數。

例1、比較下列各數的.大小: -1.5 , 0.6, -3, -2

鞏固所學知識

(五)、歸納小結,強化思想

師生總結本課內容。

1、數軸的概念,數軸的三要素

2、數軸上兩個不同的點所表示的兩個有理數大小關系

3、所有的有理數都可以用數軸上的點來表示

師:你感到自己今天的表現(xiàn)怎樣?

習題2.2 1、2、3

選作第4題

高中數學必修教案人教版篇十五

要學好數學,最關鍵的是要有一個好的基礎。只有打牢數學基礎,才能夠把高中數學好,同樣只有打好基礎,才能夠數學取得高分。打好基礎是最關鍵的!比如:建一棟大樓,如果地基不穩(wěn),不管大樓有多么豪華,都只是華而不實。

想學好數學,對數學感興趣。

其實學好數學最好的辦法就是發(fā)自內心由衷的想要學習,渴望學習,才能體會到從學習中所收獲的樂趣。自己的成就感提升,對于學習數學的積極性也就提高了,覺得數學并沒有那么難,就愿意去多接觸了。

多做題反復做,有題感。

其實學好數學辦法就是要大量做題,反復去做,題做多了就知道哪些方面需要自己去加強學習,還有就是同樣做數學題做多了就會有題感。有些題,它的類型都是一樣的,題做多了之后,即使你不會做,你也會找到一些解題的思路和技巧。

高中數學必修教案人教版篇十六

立體幾何的證明是數學學科中任一分之也替代不了的。因此,歷年高考中都有立體幾何論證的考察。論證時,首先要保持嚴密性,對任何一個定義、定理及推論的理解要做到準確無誤。符號表示與定理完全一致,定理的所有條件都具備了,才能推出相關結論。切忌條件不全就下結論。其次,在論證問題時,思考應多用分析法,即逐步地找到結論成立的充分條件,向已知靠攏,然后用綜合法(“推出法”)形式寫出。

二、立足課本,夯實基礎。

學習立體幾何的一個捷徑就是認真學習課本中定理的證明,尤其是一些很關鍵的定理的證明。定理的內容都很簡單,就是線與線,線與面,面與面之間的聯(lián)系的闡述。但定理的證明在初學的時候一般都很復雜,甚至很抽象。深刻掌握定理的內容,明確定理的作用是什么,多用在那些地方,怎么用。

三、培養(yǎng)空間想象力。

為了培養(yǎng)空間想象力,可以在剛開始學習時,動手制作一些簡單的模型用以幫助想象。例如:正方體或長方體。在正方體中尋找線與線、線與面、面與面之間的關系。通過模型中的點、線、面之間的位置關系的觀察,逐步培養(yǎng)自己對空間圖形的想象能力和識別能力。其次,要培養(yǎng)自己的畫圖能力??梢詮暮唵蔚膱D形(如:直線和平面)、簡單的幾何體(如:正方體)開始畫起。最后要做的就是樹立起立體觀念,做到能想象出空間圖形并把它畫在一個平面(如:紙、黑板)上,還要能根據畫在平面上的“立體”圖形,想象出原來空間圖形的真實形狀??臻g想象力并不是漫無邊際的胡思亂想,而是以提設為根據,以幾何體為依托,這樣就會給空間想象力插上翱翔的翅膀。

四、“轉化”思想的應用。

解立體幾何的問題,主要是充分運用“轉化”這種數學思想,要明確在轉化過程中什么變了,什么沒變,有什么聯(lián)系,這是非常關鍵的。例如:

(1)兩條異面直線所成的角轉化為兩條相交直線的夾角即過空間任意一點引兩條異面直線的平行線。斜線與平面所成的角轉化為直線與直線所成的角即斜線與斜線在該平面內的射影所成的角。

(2)異面直線的距離可以轉化為直線和與它平行的平面間的距離,也可以轉化為兩平行平面的距離,即異面直線的距離與線面距離、面面距離三者可以相互轉化。而面面距離可以轉化為線面距離,再轉化為點面距離,點面距離又可轉化為點線距離。

(3)面和面平行可以轉化為線面平行,線面平行又可轉化為線線平行。而線線平行又可以由線面平行或面面平行得到,它們之間可以相互轉化。同樣面面垂直可以轉化為線面垂直,進而轉化為線線垂直。

五、建立數學模型。

新課程標準中多次提到“數學模型”一詞,目的是進一步加強數學與現(xiàn)實世界的聯(lián)系。數學模型是把實際問題用數學語言抽象概括,再從數學角度來反映或近似地反映實際問題時,所得出的關于實際問題的描述。數學模型的形式是多樣的,它們可以是幾何圖形,也可以是方程式,函數解析式等等。實際問題越復雜,相應的數學模型也越復雜。

從形狀的角度反映現(xiàn)實世界的物體時,經過抽象得到的空間幾何體就是現(xiàn)實世界物體的幾何模型。由于立體幾何學習的知識內容與學生的聯(lián)系非常密切,空間幾何體是很多物體的幾何模型,這些模型可以描述現(xiàn)實世界中的許多物體。他們直觀、具體、對培養(yǎng)大家的幾何直觀能力有很大的幫助。空間幾何體,特別是長方體,其中的棱與棱、棱與面、面與面之間的位置關系,是研究直線與直線、直線與平面、平面與平面位置關系的直觀載體。學習時,一方面要注意從實際出發(fā),把學習的知識與周圍的實物聯(lián)系起來,另一方面,也要注意經歷從現(xiàn)實的生活抽象空間圖形的過程,注重探索空間圖形的位置關系,歸納、概括它們的判定定理和性質定理。

高中數學必修教案人教版篇十七

掌握三角函數模型應用基本步驟:。

(1)根據圖象建立解析式;。

(2)根據解析式作出圖象;。

(3)將實際問題抽象為與三角函數有關的簡單函數模型.

教學重難點。

利用收集到的數據作出散點圖,并根據散點圖進行函數擬合,從而得到函數模型。

教學過程。

一、練習講解:《習案》作業(yè)十三的第3、4題。

(精確到0.001).

米的速度減少,那么該船在什么時間必須停止卸貨,將船駛向較深的水域?

本題的解答中,給出貨船的進、出港時間,一方面要注意利用周期性以及問題的條件,另一方面還要注意考慮實際意義。關于課本第64頁的“思考”問題,實際上,在貨船的安全水深正好與港口水深相等時停止卸貨將船駛向較深的水域是不行的,因為這樣不能保證船有足夠的時間發(fā)動螺旋槳。

練習:教材p65面3題。

三、小結:1、三角函數模型應用基本步驟:。

(1)根據圖象建立解析式;。

(2)根據解析式作出圖象;。

(3)將實際問題抽象為與三角函數有關的簡單函數模型.

2、利用收集到的數據作出散點圖,并根據散點圖進行函數擬合,從而得到函數模型.

四、作業(yè)《習案》作業(yè)十四及十五。

將本文的word文檔下載到電腦,方便收藏和打印。

高中數學必修教案人教版篇十八

2.教學重點。

函數單調性的概念,判斷和證明簡單函數的單調性.。

3.教學難點。

函數單調性概念的生成,證明單調性的代數推理論證.。

1.教學有利因素。

2.教學不利因素。

1.理解函數單調性的相關概念.掌握證明簡單函數單調性的方法.。

為達成課堂教學目標,突出重點,突破難點,我們主要采取以下形式組織學習材料:

(一)創(chuàng)設情境,引入課題。

問題1:觀察下列函數圖象,請你說說這些函數有什么變化趨勢?

設函數的定義域為,區(qū)間.在區(qū)間上,若函數的圖象(從左向右)總是上升的,即隨的增大而增大,則稱函數在區(qū)間上是遞增的,區(qū)間稱為函數的單調增區(qū)間(學生類比定義“遞減”,接著推出下圖,讓學生準確回答單調性.)。

(二)引導探索,生成概念。

問題2:(1)下圖是函數的圖象(以為例),它在定義域r上是遞增的嗎?

(2)函數在區(qū)間上有何單調性?

預設:學生會不置可否,或者憑感覺猜測,可追問判定依據.。

問題3:(1)如何用數學符號描述函數圖象的“上升”特征,即“隨的增大而增大”?

(2)已知,若有.能保證函數在區(qū)間上遞增嗎?

拖動“拖動點”改變函數在區(qū)間上的圖象,可以遞增,可以先增后減,也可以先減后增.。

(3)已知,若有,能保證函數在區(qū)間上遞增嗎?

拖動“拖動點”,觀察函數在區(qū)間上的圖象變化.。

(4)已知,若有。

能保證函數在區(qū)間上遞增嗎?

設計說明:可先請持贊同觀點的同學說明理由,再請持反對意見的學生畫出反駁,然后追問:無數個也不能保證函數遞增,那該怎么辦呢?若學生回答全部取完或任取,追問“總不能一個一個驗證吧?”

問題4:如何用數學語言準確刻畫函數在區(qū)間上遞增呢?

問題5:請你試著用數學語言定義函數在區(qū)間上是遞減的.。

(三)學以致用,理解感悟。

判斷題:你認為下列說法是否正確,請說明理由.(舉例或者畫圖)。

(1)設函數的定義域為,若對任意,都有,則在區(qū)間上遞增;

(2)設函數的定義域為r,若對任意,且,都有,則是遞增的;

(3)反比例函數的單調遞減區(qū)間是.。

例題:判斷并證明函數的單調性.。

高中數學必修教案人教版篇十九

(二)倍角公式。

2cos2α=1+cos2α2sin2α=1-cos2α。

注意:倍角公式揭示了具有倍數關系的兩個角的三角函數的運算規(guī)律,可實現(xiàn)函數式的降冪的變化。

注:(1)兩角和與差的三角函數公式能夠解答的三類基本題型:求值題,化簡題,證明題。

(2)對公式會“正用”,“逆用”,“變形使用”;。

(3)掌握“角的演變”規(guī)律,

(4)將公式和其它知識銜接起來使用。

重點難點。

重點:幾組三角恒等式的應用。

難點:靈活應用和、差、倍角等公式進行三角式化簡、求值、證明恒等式。

【本文地址:http://www.aiweibaby.com/zuowen/10242105.html】

全文閱讀已結束,如果需要下載本文請點擊

下載此文檔