2023年高中數(shù)學(xué)經(jīng)典教案(通用14篇)

格式:DOC 上傳日期:2023-11-12 12:33:12
2023年高中數(shù)學(xué)經(jīng)典教案(通用14篇)
時(shí)間:2023-11-12 12:33:12     小編:字海

教案的編寫還應(yīng)考慮學(xué)生的學(xué)習(xí)特點(diǎn)和個(gè)體差異。教案中的教學(xué)活動(dòng)應(yīng)該具備多樣性,以培養(yǎng)學(xué)生的綜合能力。教案范文庫中包含了豐富多樣的教案樣本,希望能夠激發(fā)大家的教學(xué)創(chuàng)意。

高中數(shù)學(xué)經(jīng)典教案篇一

1.知識(shí)與技能:掌握畫三視圖的基本技能,豐富學(xué)生的空間想象力。

2.過程與方法:通過學(xué)生自己的親身實(shí)踐,動(dòng)手作圖,體會(huì)三視圖的作用。

3.情感態(tài)度與價(jià)值觀:提高學(xué)生空間想象力,體會(huì)三視圖的作用。

難點(diǎn):識(shí)別三視圖所表示的空間幾何體。

觀察、動(dòng)手實(shí)踐、討論、類比。

(一)創(chuàng)設(shè)情景,揭開課題

展示廬山的風(fēng)景圖——“橫看成嶺側(cè)看成峰,遠(yuǎn)近高低各不同”,這說明從不同的角度看同一物體視覺的效果可能不同,要比較真實(shí)反映出物體,我們可從多角度觀看物體。

(二)講授新課

1、中心投影與平行投影:

中心投影:光由一點(diǎn)向外散射形成的投影;

平行投影:在一束平行光線照射下形成的投影。

正投影:在平行投影中,投影線正對著投影面。

2、三視圖:

正視圖:光線從幾何體的前面向后面正投影,得到的投影圖;

側(cè)視圖:光線從幾何體的左面向右面正投影,得到的投影圖;

俯視圖:光線從幾何體的上面向下面正投影,得到的投影圖。

三視圖:幾何體的正視圖、側(cè)視圖和俯視圖統(tǒng)稱為幾何體的三視圖。

三視圖的畫法規(guī)則:長對正,高平齊,寬相等。

長對正:正視圖與俯視圖的長相等,且相互對正;

高平齊:正視圖與側(cè)視圖的高度相等,且相互對齊;

寬相等:俯視圖與側(cè)視圖的寬度相等。

3、畫長方體的三視圖:

正視圖、側(cè)視圖和俯視圖分別是從幾何體的正前方、正左方和正上方觀察到有幾何體的正投影圖,它們都是平面圖形。

長方體的三視圖都是長方形,正視圖和側(cè)視圖、側(cè)視圖和俯視圖、俯視圖和正視圖都各有一條邊長相等。

4、畫圓柱、圓錐的三視圖:

5、探究:畫出底面是正方形,側(cè)面是全等的三角形的棱錐的三視圖。

(三)鞏固練習(xí)

課本p15練習(xí)1、2;p20習(xí)題1.2[a組]2。

(四)歸納整理

請學(xué)生回顧發(fā)表如何作好空間幾何體的三視圖

(五)布置作業(yè)

課本p20習(xí)題1.2[a組]1。

高中數(shù)學(xué)經(jīng)典教案篇二

了解雙曲線的定義,幾何圖形和標(biāo)準(zhǔn)方程,知道它的簡單性質(zhì)。

【自學(xué)質(zhì)疑】

漸近線方程是 ,離心率 ,若點(diǎn) 是雙曲線上的點(diǎn),則 , 。

2.又曲線 的左支上一點(diǎn)到左焦點(diǎn)的距離是7,則這點(diǎn)到雙曲線的右焦點(diǎn)的距離是

3.經(jīng)過兩點(diǎn) 的雙曲線的標(biāo)準(zhǔn)方程是 。

4.雙曲線的漸近線方程是 ,則該雙曲線的離心率等于 。

5.與雙曲線 有公共的漸近線,且經(jīng)過點(diǎn) 的雙曲線的方程為

【例題精講】

1.雙曲線的離心率等于 ,且與橢圓 有公共焦點(diǎn),求該雙曲線的方程。

2.已知橢圓具有性質(zhì):若 是橢圓 上關(guān)于原點(diǎn)對稱的兩個(gè)點(diǎn),點(diǎn) 是橢圓上任意一點(diǎn),當(dāng)直線 的斜率都存在,并記為 時(shí),那么 之積是與點(diǎn) 位置無關(guān)的定值,試對雙曲線 寫出具有類似特性的性質(zhì),并加以證明。

3.設(shè)雙曲線 的半焦距為 ,直線 過 兩點(diǎn),已知原點(diǎn)到直線 的距離為 ,求雙曲線的離心率。

【矯正鞏固】

1.雙曲線 上一點(diǎn) 到一個(gè)焦點(diǎn)的距離為 ,則它到另一個(gè)焦點(diǎn)的距離為 。

2.與雙曲線 有共同的漸近線,且經(jīng)過點(diǎn) 的雙曲線的一個(gè)焦點(diǎn)到一條漸近線的距離是 。

3.若雙曲線 上一點(diǎn) 到它的右焦點(diǎn)的距離是 ,則點(diǎn) 到 軸的距離是

4.過雙曲線 的左焦點(diǎn) 的直線交雙曲線于 兩點(diǎn),若 。則這樣的直線一共有 條。

【遷移應(yīng)用】

2. 已知雙曲線 的焦點(diǎn)為 ,點(diǎn) 在雙曲線上,且 ,則點(diǎn) 到 軸的距離為 。

3. 雙曲線 的焦距為

4. 已知雙曲線 的一個(gè)頂點(diǎn)到它的一條漸近線的距離為 ,則

5. 設(shè) 是等腰三角形, ,則以 為焦點(diǎn)且過點(diǎn) 的雙曲線的離心率為 .

高中數(shù)學(xué)經(jīng)典教案篇三

三角函數(shù)的誘導(dǎo)公式是普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(人教b版)數(shù)學(xué)必修四,第一章第二節(jié)內(nèi)容,其主要內(nèi)容是公式(一)至公式(四)。本節(jié)課是第二課時(shí),教學(xué)內(nèi)容是公式(三)。教材要求通過學(xué)生在已經(jīng)掌握的任意角的三角函數(shù)定義和公式(一)(二)的基礎(chǔ)上,發(fā)現(xiàn)他們與單位圓的交點(diǎn)坐標(biāo)之間關(guān)系,進(jìn)而發(fā)現(xiàn)三角函數(shù)值的關(guān)系。同時(shí)教材滲透了轉(zhuǎn)化與化歸等數(shù)學(xué)思想方法。

通過學(xué)生在已經(jīng)掌握的任意角的三角函數(shù)定義和公式(一)(二)的基礎(chǔ)上,發(fā)現(xiàn)他們與單位圓的交點(diǎn)坐標(biāo)之間關(guān)系,進(jìn)而發(fā)現(xiàn)三角函數(shù)值的關(guān)系。同時(shí)教材滲透了轉(zhuǎn)化與化歸等數(shù)學(xué)思想方法,為培養(yǎng)學(xué)生養(yǎng)成良好的學(xué)習(xí)習(xí)慣提出了要求。因此本節(jié)內(nèi)容在三角函數(shù)中占有非常重要的地位.

以學(xué)生為主題,以發(fā)現(xiàn)為主線,盡力滲透類比、化歸、數(shù)形結(jié)合等數(shù)學(xué)思想方法,采用提出問題、啟發(fā)引導(dǎo)、共同探究、綜合應(yīng)用等教學(xué)模式。

借助單位圓探究誘導(dǎo)公式。

能正確運(yùn)用誘導(dǎo)公式將任意角的三角函數(shù)化為銳角三角函數(shù)。

誘導(dǎo)公式(三)的推導(dǎo)及應(yīng)用。

誘導(dǎo)公式的應(yīng)用。

多媒體。

1. 誘導(dǎo)公式(一)(二)。

2. 角 (終邊在一條直線上)

3. 思考:下列一組角有什么特征?( )能否用式子來表示?

已知 由

可知

而 (課件演示,學(xué)生發(fā)現(xiàn))

所以

于是可得: (三)

設(shè)計(jì)意圖:結(jié)合幾何畫板的演示利用同一點(diǎn)的坐標(biāo)變換,導(dǎo)出公式。

由公式(一)(三)可以看出,角 角 相等。即:

.

公式(一)(二)(三)都叫誘導(dǎo)公式。利用誘導(dǎo)公式可以求三角函數(shù)式的值或化簡三角函數(shù)式。

設(shè)計(jì)意圖:結(jié)合學(xué)過的公式(一)(二),發(fā)現(xiàn)特點(diǎn),總結(jié)公式。

1. 練習(xí)

(1)

設(shè)計(jì)意圖:利用公式解決問題,發(fā)現(xiàn)新問題,小組研究討論,得到新公式。

(學(xué)生板演,老師點(diǎn)評,用彩色粉筆強(qiáng)調(diào)重點(diǎn),引導(dǎo)學(xué)生總結(jié)公式。)

例3:求下列各三角函數(shù)值:

(1)

(2)

(3)

(4)

設(shè)計(jì)意圖:利用公式解決問題。

練習(xí):

(1)

(2) (學(xué)生板演,師生點(diǎn)評)

設(shè)計(jì)意圖:觀察公式特點(diǎn),選擇公式解決問題。

四.課堂小結(jié):將任意角三角函數(shù)轉(zhuǎn)化為銳角三角函數(shù),體現(xiàn)轉(zhuǎn)化化歸,數(shù)形結(jié)合思想的應(yīng)用,培養(yǎng)了學(xué)生分析問題、解決問題的能力,熟練應(yīng)用解決問題。

很榮幸大家來聽我的課,通過這課,我學(xué)習(xí)到如下的東西:

1.要認(rèn)真的研讀新課標(biāo),對教學(xué)的目標(biāo),重難點(diǎn)把握要到位

2.注意板書設(shè)計(jì),注重細(xì)節(jié)的東西,語速需要改正

3.進(jìn)一步的學(xué)習(xí)網(wǎng)頁制作,讓你的網(wǎng)頁更加的完善,學(xué)生更容易操作

5.上課的生動(dòng)化,形象化需要加強(qiáng)

1.評議者:網(wǎng)絡(luò)輔助教學(xué),起到了很好的效果;教態(tài)大方,作為新教師,開設(shè)校際課,勇氣可嘉!建議:感覺到老師有點(diǎn)緊張,其實(shí)可以放開點(diǎn)的,相信效果會(huì)更好的!重點(diǎn)不夠清晰,有引導(dǎo)數(shù)學(xué)時(shí),最好值有個(gè)側(cè)重點(diǎn);網(wǎng)絡(luò)設(shè)計(jì)上,網(wǎng)頁上公開的推導(dǎo)公式為上,留有更大的空間讓學(xué)生來思考。

2.評議者:網(wǎng)絡(luò)教學(xué)效果良好,給學(xué)生自主思考,學(xué)習(xí)的空間發(fā)揮,教學(xué)設(shè)計(jì)得好;建議:課堂講課聲音,語調(diào)可以更有節(jié)奏感一些,抑揚(yáng)頓挫應(yīng)注意課堂例題練習(xí)可以多兩題。

3.評議者:學(xué)科網(wǎng)絡(luò)平臺(tái)的使用;建議:應(yīng)重視引導(dǎo)學(xué)生將一些唾手可得的有用結(jié)論總結(jié)出來,并形成自我的經(jīng)驗(yàn)。

4.評議者:引導(dǎo)學(xué)生通過網(wǎng)絡(luò)進(jìn)行探究。

建議:課件制作在線測評部分,建議不能重復(fù)選擇,應(yīng)全部做完后,顯示結(jié)果,再重復(fù)測試;多提問學(xué)生。

( 1)給學(xué)生思考的時(shí)間較長,語調(diào)相對平緩,總結(jié)時(shí),給學(xué)生一些激勵(lì)的語言更好

( 2)這樣子的教學(xué)可以提高上課效率,讓學(xué)生更多的時(shí)間思考

( 4)給學(xué)生答案,這個(gè)網(wǎng)頁要進(jìn)一步的修正,答案能否不要一點(diǎn)就出來

( 5)1.板書設(shè)計(jì)要進(jìn)一步的加強(qiáng),2.語速相對是比較快的3.練習(xí)量比較少

( 6)讓學(xué)生多探究,課堂會(huì)更熱鬧

( 7)注意引入的過程要帶有目的,帶著問題來教學(xué),學(xué)生帶著問題來學(xué)習(xí)

( 8)教學(xué)模式相對簡單重復(fù)

( 9)思路較為清晰,規(guī)范化的推理

高中數(shù)學(xué)經(jīng)典教案篇四

1、使學(xué)生初步學(xué)會(huì)看鐘表上的整時(shí)、幾時(shí)半.

2、初步認(rèn)識(shí)時(shí)針與分針的作用。

3、向?qū)W生滲透合理利用時(shí)間、珍惜時(shí)間的觀念。

認(rèn)識(shí)“整時(shí)數(shù)”和“幾時(shí)半”。

認(rèn)識(shí)幾時(shí)半。

一、導(dǎo)入新課。

你看,小明學(xué)會(huì)分類以后把自己的房間收拾得干干凈凈。媽媽獎(jiǎng)勵(lì)他一個(gè)鐘表,小明可喜歡它了!今天,咱們就和小明一起學(xué)習(xí)認(rèn)識(shí)鐘表吧!

二、新授。

1、認(rèn)識(shí)鐘面。

(1)仔細(xì)觀察鐘面上都有什么?

(2)觀察這些小格的大小是否相同?數(shù)一數(shù)有多少個(gè)這樣的小格?

(3)這兩根針有什么特點(diǎn)?

(4)師演示實(shí)物:這根又細(xì)又長的針叫分針,針根又粗又短的針叫時(shí)針;鐘面上有1~12這12個(gè)數(shù),還有大小相等的12個(gè)小格。

2、認(rèn)識(shí)整時(shí)。

(1)我們已經(jīng)認(rèn)識(shí)了鐘面,那鐘有什么用呢?

(2)你認(rèn)識(shí)鐘面上的時(shí)刻是幾時(shí)嗎?你是怎么知道的?(分針指著12,時(shí)針指著2就是2時(shí)。)。

(3)學(xué)生總結(jié):分針指著12,時(shí)針指著幾就是幾時(shí)。

(4)認(rèn)識(shí)了這么多時(shí)間,你能說說怎樣認(rèn)識(shí)整時(shí)嗎?

(5)小結(jié):分針長長指12,時(shí)針指幾就是幾時(shí)。

3、認(rèn)識(shí)電子鐘:

(1)你在哪兒見過這樣的鐘?

(2)電子鐘是幾時(shí),你是怎么知道的?

(3)小結(jié):小圓點(diǎn)后面是兩個(gè)零,前面是幾就是幾時(shí)。

(4)找朋友:頭飾上時(shí)間相同的才是好朋友。

4、認(rèn)識(shí)半時(shí)。

(1)、出示課件:你能說說是什么時(shí)刻嗎?

(2)、同桌交流、匯報(bào)。

(3)、你們發(fā)現(xiàn)了什么?(分針都指向6。)。

(4)、半時(shí)與整時(shí)分針指的位置有什么不同?(整時(shí)分針轉(zhuǎn)一圈,都指向12;半時(shí)分針轉(zhuǎn)半圈,指向6。)。

(5)、小結(jié):幾時(shí)半的時(shí)候,分針總是指向6,時(shí)針總是指在兩個(gè)數(shù)的中間。

5、認(rèn)識(shí)電子鐘:

(1)觀察半時(shí)的寫法,討論。

(2)小結(jié):電子表的半時(shí)用“30”表示。點(diǎn)左邊是幾,點(diǎn)右邊是“30”,就表示幾時(shí)半。

(3)根據(jù)時(shí)間在鐘面上畫出分針和時(shí)針。

三、練習(xí)鞏固:

根據(jù)學(xué)校的作息時(shí)間表,練習(xí)會(huì)認(rèn)、會(huì)讀、會(huì)撥整時(shí)和半時(shí)。

四、本課小結(jié):

今天我們學(xué)會(huì)了認(rèn)識(shí)鐘表,知道時(shí)間是最寶貴的,希望你們做一個(gè)遵守時(shí)間和珍惜時(shí)間的好孩子。

五、實(shí)踐作業(yè):為自己設(shè)計(jì)一個(gè)快樂的星期天。

高中數(shù)學(xué)經(jīng)典教案篇五

了解雙曲線的定義,幾何圖形和標(biāo)準(zhǔn)方程,知道它的簡單性質(zhì)。

漸近線方程是,離心率,若點(diǎn)是雙曲線上的點(diǎn),則,。

2、又曲線的左支上一點(diǎn)到左焦點(diǎn)的距離是7,則這點(diǎn)到雙曲線的右焦點(diǎn)的距離是

3、經(jīng)過兩點(diǎn)的雙曲線的標(biāo)準(zhǔn)方程是。

4、雙曲線的漸近線方程是,則該雙曲線的離心率等于。

5、與雙曲線有公共的漸近線,且經(jīng)過點(diǎn)的雙曲線的方程為

1、雙曲線的離心率等于,且與橢圓有公共焦點(diǎn),求該雙曲線的方程。

2、已知橢圓具有性質(zhì):若是橢圓上關(guān)于原點(diǎn)對稱的兩個(gè)點(diǎn),點(diǎn)是橢圓上任意一點(diǎn),當(dāng)直線的斜率都存在,并記為時(shí),那么之積是與點(diǎn)位置無關(guān)的定值,試對雙曲線寫出具有類似特性的性質(zhì),并加以證明。

3、設(shè)雙曲線的半焦距為,直線過兩點(diǎn),已知原點(diǎn)到直線的距離為,求雙曲線的離心率。

1、雙曲線上一點(diǎn)到一個(gè)焦點(diǎn)的距離為,則它到另一個(gè)焦點(diǎn)的距離為。

2、與雙曲線有共同的漸近線,且經(jīng)過點(diǎn)的雙曲線的一個(gè)焦點(diǎn)到一條漸近線的距離是。

3、若雙曲線上一點(diǎn)到它的右焦點(diǎn)的距離是,則點(diǎn)到軸的距離是

4、過雙曲線的左焦點(diǎn)的直線交雙曲線于兩點(diǎn),若。則這樣的'直線一共有條。

1、已知雙曲線的焦點(diǎn)到漸近線的距離是其頂點(diǎn)到漸近線距離的2倍,則該雙曲線的離心率

2、已知雙曲線的焦點(diǎn)為,點(diǎn)在雙曲線上,且,則點(diǎn)到軸的距離為。

3、雙曲線的焦距為

4、已知雙曲線的一個(gè)頂點(diǎn)到它的一條漸近線的距離為,則

5、設(shè)是等腰三角形,,則以為焦點(diǎn)且過點(diǎn)的雙曲線的離心率為。

高中數(shù)學(xué)經(jīng)典教案篇六

2. 你尊敬老師、團(tuán)結(jié)同學(xué)、熱愛勞動(dòng)、關(guān)心集體,所以大家都喜歡你。能嚴(yán)格遵守學(xué)校的各項(xiàng)規(guī)章制度。學(xué)習(xí)不夠刻苦,有畏難情緒。學(xué)習(xí)方法有待改進(jìn),掌握知識(shí)不夠牢固,思維能力要進(jìn)一步培養(yǎng)和提高。學(xué)習(xí)成績比上學(xué)期有一定的進(jìn)步。平時(shí)能積極參加體育鍛煉和有益的文娛活動(dòng)。今后如果能注意分配好學(xué)習(xí)時(shí)間,各科全面發(fā)展,均衡提高,相信一定會(huì)成為一名更加出色的學(xué)生。

3. 你性格活潑開朗,總是帶著甜甜的笑容,你能與同學(xué)友愛相處,待人有禮,能虛心接受老師的教導(dǎo)。大多數(shù)的時(shí)候你都能遵守紀(jì)律,偶爾會(huì)犯一些小錯(cuò)誤。有時(shí)上課不夠留心,還有些小動(dòng)作,你能想辦法控制自己嗎?一開學(xué)老師就發(fā)現(xiàn)你的作業(yè)干凈又整齊,你的字清秀又漂亮。但學(xué)習(xí)成績不容樂觀,需努力提高學(xué)習(xí)成績。希望能從根本上認(rèn)識(shí)到自己的不足,在課堂上能認(rèn)真聽講,開動(dòng)腦筋,遇到問題敢于請教。

4. 你熱情大方,為人豪爽,身上透露出女生少有的霸氣,作為班干部,你會(huì)提醒同學(xué)們及時(shí)安靜,對學(xué)習(xí)態(tài)度端正,及時(shí)完成作業(yè),但是少了點(diǎn)耐心,試著把心沉下來,上課集中注意力,跟著老師的思路走,一步一個(gè)腳印,一定能走出你自己絢麗的人生!

5. 學(xué)習(xí)態(tài)度端正,效率高,合理分配時(shí)間,學(xué)習(xí)生活兩不誤,善良熱情,熱愛生活,樂于助人,與周圍同學(xué)相處關(guān)系融洽。能嚴(yán)格遵守學(xué)校的各項(xiàng)規(guī)章制度。上課能專心聽講,認(rèn)真做好筆記,課后能按時(shí)完成作業(yè)。記憶力好,自學(xué)能力較強(qiáng)。希望你能更主動(dòng)地學(xué)習(xí),多思,多問,多練,大膽向老師和同學(xué)請教,注意采用科學(xué)的學(xué)習(xí)方法,提高學(xué)習(xí)效率,一定能取得滿意的成績!

6. 作為本班的班長,你對待班級工作能夠認(rèn)真負(fù)責(zé),積極配合老師和班委工作,集體榮譽(yù)感很強(qiáng),人際關(guān)系很好,待人真誠,熱心幫助人,老師十分欣賞你的善良和聰明,希望在以后能夠積極發(fā)揮自己的所長,帶領(lǐng)全班不僅在班級管理上有進(jìn)步,而且能在學(xué)習(xí)上也能成為全班的領(lǐng)頭雁,在下學(xué)期能取得更大的進(jìn)步!

7. 身為班委的你,對工作認(rèn)真負(fù)責(zé),以身作則,性格和善,與同學(xué)關(guān)系融洽,積極參加各項(xiàng)活動(dòng),不太張揚(yáng)的你顯得穩(wěn)重和踏實(shí),在學(xué)習(xí)上,你認(rèn)真聽課,及時(shí)完成各科作業(yè),但是我總覺得你的學(xué)習(xí)還不夠主動(dòng),沒有形成自己的一套方法,若從被動(dòng)的學(xué)習(xí)中解脫出來,應(yīng)該穩(wěn)定在班級前五名啊!加油!

8. 你是個(gè)懂禮貌明事理的孩子,你能嚴(yán)格遵守班級紀(jì)律,熱愛集體,對待學(xué)習(xí)態(tài)度端正,上課能夠?qū)P穆犞v,課下能夠認(rèn)真完成作業(yè)。你的學(xué)習(xí)方法有待改進(jìn),若能做到學(xué)習(xí)時(shí)心無旁騖就好了,掌握知識(shí)也不夠牢固,思維能力要進(jìn)一步培養(yǎng)和提高。只要有恒心,有毅力,老師相信你會(huì)在各方面取得長足進(jìn)步!

9. 你為人熱情大方,能和同學(xué)友好相處。你為人正直誠懇,尊敬老師,關(guān)心班集體,待人有禮,能認(rèn)真聽從老師的教導(dǎo),自覺遵守學(xué)校的各項(xiàng)規(guī)章制度,抵制各種不良思想。有集體榮譽(yù)感,樂于為集體做事。學(xué)習(xí)刻苦,成績有所提高。上課能專心聽講,思維活躍,積極回答問題,積極思考,認(rèn)真做好筆記。今后如果能注意分配好學(xué)習(xí)時(shí)間,各科全面發(fā)展,均衡提高,相信一定會(huì)成為一名更加出色的學(xué)生。

10. 記得和你說過,你是個(gè)太聰明的孩子,你反應(yīng)敏捷,活潑靈動(dòng)。但是做學(xué)問是需要靜下心來老老實(shí)實(shí)去鉆研的,容不得賣弄小聰明和半點(diǎn)頑皮話。要知道,學(xué)如逆水行舟,不進(jìn)則退;心似平原野馬,易放難收!望你下學(xué)期重新抖擻精神早日進(jìn)入狀態(tài),不辜負(fù)關(guān)愛你的人對你的殷殷期盼。

高中數(shù)學(xué)經(jīng)典教案篇七

:計(jì)算機(jī)

:啟發(fā)引導(dǎo)法,討論法

下面給出教學(xué)實(shí)施過程設(shè)計(jì)的簡要思路:

(一)引入的設(shè)計(jì)

前邊學(xué)習(xí)了如何根據(jù)所給條件求出直線方程的方法,看下面問題:

問:說出過點(diǎn) (2,1),斜率為2的直線的方程,并觀察方程屬于哪一類,為什么?

答:直線方程是 ,屬于二元一次方程,因?yàn)槲粗獢?shù)有兩個(gè),它們的最高次數(shù)為一次.

肯定學(xué)生回答,并糾正學(xué)生中不規(guī)范的表述.再看一個(gè)問題:

問:求出過點(diǎn) , 的直線的方程,并觀察方程屬于哪一類,為什么?

啟發(fā):你在想什么(或你想到了什么)?誰來談?wù)??各小組可以討論討論.

學(xué)生紛紛談出自己的想法,教師邊評價(jià)邊啟發(fā)引導(dǎo),使學(xué)生的認(rèn)識(shí)統(tǒng)一到如下問題:

【問題1】“任意直線的方程都是二元一次方程嗎?”

(二)本節(jié)主體內(nèi)容教學(xué)的設(shè)計(jì)

學(xué)生或獨(dú)立研究,或合作研究,教師巡視指導(dǎo).

經(jīng)過一定時(shí)間的研究,教師組織開展集體討論.首先讓學(xué)生陳述解決思路或解決方案:

思路一:…

思路二:…

……

教師組織評價(jià),確定最優(yōu)方案(其它待課下研究)如下:

按斜率是否存在,任意直線 的位置有兩種可能,即斜率 存在或不存在.

當(dāng) 存在時(shí),直線 的截距 也一定存在,直線 的方程可表示為 ,它是二元一次方程.

當(dāng) 不存在時(shí),直線 的方程可表示為 形式的方程,它是二元一次方程嗎?

學(xué)生有的認(rèn)為是有的認(rèn)為不是,此時(shí)教師引導(dǎo)學(xué)生,逐步認(rèn)識(shí)到把它看成二元一次方程的合理性:

綜合兩種情況,我們得出如下結(jié)論:

同學(xué)們注意:這樣表達(dá)起來是不是很啰嗦,能不能有一個(gè)更好的表達(dá)?

學(xué)生們不難得出:二者可以概括為統(tǒng)一的形式.

這樣上邊的結(jié)論可以表述如下:

啟發(fā):任何一條直線都有這種形式的方程.你是否覺得還有什么與之相關(guān)的問題呢?

【問題2】任何形如 (其中 、 不同時(shí)為0)的二元一次方程都表示一條直線嗎?

師生共同討論,評價(jià)不同思路,達(dá)成共識(shí):

(1)當(dāng) 時(shí),方程可化為

這是表示斜率為 、在 軸上的截距為 的直線.

(2)當(dāng) 時(shí),由于 、 不同時(shí)為0,必有 ,方程可化為

這表示一條與 軸垂直的直線.

因此,得到結(jié)論:

為方便,我們把 (其中 、 不同時(shí)為0)稱作直線方程的一般式是合理的.

【動(dòng)畫演示】

演示“直線各參數(shù)”文件,體會(huì)任何二元一次方程都表示一條直線.

(三)練習(xí)鞏固、總結(jié)提高、板書和作業(yè)等環(huán)節(jié)的設(shè)計(jì)

高中數(shù)學(xué)經(jīng)典教案篇八

(2)理解直線與二元一次方程的關(guān)系及其證明。

:計(jì)算機(jī)。

:啟發(fā)引導(dǎo)法,討論法。

下面給出教學(xué)實(shí)施過程設(shè)計(jì)的簡要思路:

(一)引入的設(shè)計(jì)。

前邊學(xué)習(xí)了如何根據(jù)所給條件求出直線方程的方法,看下面問題:

問:說出過點(diǎn)(2,1),斜率為2的直線的方程,并觀察方程屬于哪一類,為什么?

答:直線方程是,屬于二元一次方程,因?yàn)槲粗獢?shù)有兩個(gè),它們的最高次數(shù)為一次。

肯定學(xué)生回答,并糾正學(xué)生中不規(guī)范的表述.再看一個(gè)問題:

問:求出過點(diǎn),的直線的方程,并觀察方程屬于哪一類,為什么?

答:直線方程是(或其它形式),也屬于二元一次方程,因?yàn)槲粗獢?shù)有兩個(gè),它們的最高次數(shù)為一次。

肯定學(xué)生回答后強(qiáng)調(diào)“也是二元一次方程,都是因?yàn)槲粗獢?shù)有兩個(gè),它們的最高次數(shù)為一次”。

啟發(fā):你在想什么(或你想到了什么)?誰來談?wù)劊扛餍〗M可以討論討論。

學(xué)生紛紛談出自己的想法,教師邊評價(jià)邊啟發(fā)引導(dǎo),使學(xué)生的認(rèn)識(shí)統(tǒng)一到如下問題:

【問題1】“任意直線的方程都是二元一次方程嗎?”

(二)本節(jié)主體內(nèi)容教學(xué)的設(shè)計(jì)。

這是本節(jié)課要解決的第一個(gè)問題,如何解決?自己先研究研究,也可以小組研究,確定解決問題的思路。

學(xué)生或獨(dú)立研究,或合作研究,教師巡視指導(dǎo).。

經(jīng)過一定時(shí)間的研究,教師組織開展集體討論.首先讓學(xué)生陳述解決思路或解決方案:

思路一:…。

思路二:…。

教師組織評價(jià),確定最優(yōu)方案(其它待課下研究)如下:

按斜率是否存在,任意直線的位置有兩種可能,即斜率存在或不存在。

當(dāng)存在時(shí),直線的截距也一定存在,直線的方程可表示為,它是二元一次方程。

當(dāng)不存在時(shí),直線的方程可表示為形式的方程,它是二元一次方程嗎?

學(xué)生有的認(rèn)為是有的認(rèn)為不是,此時(shí)教師引導(dǎo)學(xué)生,逐步認(rèn)識(shí)到把它看成二元一次方程的合理性:

平面直角坐標(biāo)系中直線上點(diǎn)的坐標(biāo)形式,與其它直線上點(diǎn)的坐標(biāo)形式?jīng)]有任何區(qū)別,根據(jù)直線方程的概念,方程解的形式也是二元方程的解的形式,因此把它看成形如的二元一次方程是合理的。

綜合兩種情況,我們得出如下結(jié)論:

在平面直角坐標(biāo)系中,對于任何一條直線,都有一條表示這條直線的關(guān)于、的二元一次方程。

至此,我們的問題1就解決了.簡單點(diǎn)說就是:直線方程都是二元一次方程.而且這個(gè)方程一定可以表示成或的形式,準(zhǔn)確地說應(yīng)該是“要么形如這樣,要么形如這樣的方程”。

同學(xué)們注意:這樣表達(dá)起來是不是很啰嗦,能不能有一個(gè)更好的表達(dá)?

學(xué)生們不難得出:二者可以概括為統(tǒng)一的形式。

這樣上邊的結(jié)論可以表述如下:

在平面直角坐標(biāo)系中,對于任何一條直線,都有一條表示這條直線的形如(其中、不同時(shí)為0)的二元一次方程。

啟發(fā):任何一條直線都有這種形式的方程.你是否覺得還有什么與之相關(guān)的問題呢?

【問題2】任何形如(其中、不同時(shí)為0)的二元一次方程都表示一條直線嗎?

師生共同討論,評價(jià)不同思路,達(dá)成共識(shí):

(1)當(dāng)時(shí),方程可化為。

這是表示斜率為、在軸上的截距為的直線。

(2)當(dāng)時(shí),由于、不同時(shí)為0,必有,方程可化為。

這表示一條與軸垂直的直線。

因此,得到結(jié)論:

在平面直角坐標(biāo)系中,任何形如(其中不同時(shí)為0)的二元一次方程都表示一條直線。

為方便,我們把(其中不同時(shí)為0)稱作直線方程的一般式是合理。

【動(dòng)畫演示】。

演示“直線各參數(shù)”文件,體會(huì)任何二元一次方程都表示一條直線。

(三)練習(xí)鞏固、總結(jié)提高、板書和作業(yè)等環(huán)節(jié)的設(shè)計(jì)。

高中數(shù)學(xué)經(jīng)典教案篇九

理解數(shù)列的概念,掌握數(shù)列的運(yùn)用。

理解數(shù)列的概念,掌握數(shù)列的運(yùn)用。

【知識(shí)點(diǎn)精講】。

1、數(shù)列:按照一定次序排列的一列數(shù)(與順序有關(guān))。

2、通項(xiàng)公式:數(shù)列的.第n項(xiàng)an與n之間的函數(shù)關(guān)系用一個(gè)公式來表示an=f(n)。

(通項(xiàng)公式不)。

3、數(shù)列的表示:。

(1)列舉法:如1,3,5,7,9……;。

(2)圖解法:由(n,an)點(diǎn)構(gòu)成;。

(3)解析法:用通項(xiàng)公式表示,如an=2n+1。

5、任意數(shù)列{an}的前n項(xiàng)和的性質(zhì)。

高中數(shù)學(xué)經(jīng)典教案篇十

三角函數(shù)的誘導(dǎo)公式是普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(人教b版)數(shù)學(xué)必修四,第一章第二節(jié)內(nèi)容,其主要內(nèi)容是公式(一)至公式(四)。本節(jié)課是第二課時(shí),教學(xué)內(nèi)容是公式(三)。教材要求通過學(xué)生在已經(jīng)掌握的任意角的三角函數(shù)定義和公式(一)(二)的基礎(chǔ)上,發(fā)現(xiàn)他們與單位圓的交點(diǎn)坐標(biāo)之間關(guān)系,進(jìn)而發(fā)現(xiàn)三角函數(shù)值的關(guān)系。同時(shí)教材滲透了轉(zhuǎn)化與化歸等數(shù)學(xué)思想方法。

通過學(xué)生在已經(jīng)掌握的任意角的三角函數(shù)定義和公式(一)(二)的基礎(chǔ)上,發(fā)現(xiàn)他們與單位圓的交點(diǎn)坐標(biāo)之間關(guān)系,進(jìn)而發(fā)現(xiàn)三角函數(shù)值的關(guān)系。同時(shí)教材滲透了轉(zhuǎn)化與化歸等數(shù)學(xué)思想方法,為培養(yǎng)學(xué)生養(yǎng)成良好的學(xué)習(xí)習(xí)慣提出了要求。因此本節(jié)內(nèi)容在三角函數(shù)中占有非常重要的地位.

以學(xué)生為主題,以發(fā)現(xiàn)為主線,盡力滲透類比、化歸、數(shù)形結(jié)合等數(shù)學(xué)思想方法,采用提出問題、啟發(fā)引導(dǎo)、共同探究、綜合應(yīng)用等教學(xué)模式。

借助單位圓探究誘導(dǎo)公式。

能正確運(yùn)用誘導(dǎo)公式將任意角的三角函數(shù)化為銳角三角函數(shù)。

誘導(dǎo)公式(三)的推導(dǎo)及應(yīng)用。

誘導(dǎo)公式的應(yīng)用。

多媒體。

1.誘導(dǎo)公式(一)(二)。

2.角(終邊在一條直線上)。

3.思考:下列一組角有什么特征?()能否用式子來表示?

已知由。

可知。

而(課件演示,學(xué)生發(fā)現(xiàn))。

所以。

于是可得:(三)。

設(shè)計(jì)意圖:結(jié)合幾何畫板的演示利用同一點(diǎn)的坐標(biāo)變換,導(dǎo)出公式。

由公式(一)(三)可以看出,角角相等。即:

公式(一)(二)(三)都叫誘導(dǎo)公式。利用誘導(dǎo)公式可以求三角函數(shù)式的值或化簡三角函數(shù)式。

設(shè)計(jì)意圖:結(jié)合學(xué)過的公式(一)(二),發(fā)現(xiàn)特點(diǎn),總結(jié)公式。

1.練習(xí)。

(1)。

設(shè)計(jì)意圖:利用公式解決問題,發(fā)現(xiàn)新問題,小組研究討論,得到新公式。

(學(xué)生板演,老師點(diǎn)評,用彩色粉筆強(qiáng)調(diào)重點(diǎn),引導(dǎo)學(xué)生總結(jié)公式。)。

例3:求下列各三角函數(shù)值:

(1)。

(2)。

(3)。

(4)。

設(shè)計(jì)意圖:利用公式解決問題。

練習(xí):

(1)。

(2)(學(xué)生板演,師生點(diǎn)評)。

設(shè)計(jì)意圖:觀察公式特點(diǎn),選擇公式解決問題。

四.課堂小結(jié):將任意角三角函數(shù)轉(zhuǎn)化為銳角三角函數(shù),體現(xiàn)轉(zhuǎn)化化歸,數(shù)形結(jié)合思想的應(yīng)用,培養(yǎng)了學(xué)生分析問題、解決問題的能力,熟練應(yīng)用解決問題。

很榮幸大家來聽我的課,通過這課,我學(xué)習(xí)到如下的東西:

1.要認(rèn)真的研讀新課標(biāo),對教學(xué)的目標(biāo),重難點(diǎn)把握要到位。

2.注意板書設(shè)計(jì),注重細(xì)節(jié)的東西,語速需要改正。

3.進(jìn)一步的學(xué)習(xí)網(wǎng)頁制作,讓你的網(wǎng)頁更加的完善,學(xué)生更容易操作。

5.上課的生動(dòng)化,形象化需要加強(qiáng)。

1.評議者:網(wǎng)絡(luò)輔助教學(xué),起到了很好的效果;教態(tài)大方,作為新教師,開設(shè)校際課,勇氣可嘉!建議:感覺到老師有點(diǎn)緊張,其實(shí)可以放開點(diǎn)的`,相信效果會(huì)更好的!重點(diǎn)不夠清晰,有引導(dǎo)數(shù)學(xué)時(shí),最好值有個(gè)側(cè)重點(diǎn);網(wǎng)絡(luò)設(shè)計(jì)上,網(wǎng)頁上公開的推導(dǎo)公式為上,留有更大的空間讓學(xué)生來思考。

2.評議者:網(wǎng)絡(luò)教學(xué)效果良好,給學(xué)生自主思考,學(xué)習(xí)的空間發(fā)揮,教學(xué)設(shè)計(jì)得好;建議:課堂講課聲音,語調(diào)可以更有節(jié)奏感一些,抑揚(yáng)頓挫應(yīng)注意課堂例題練習(xí)可以多兩題。

3.評議者:學(xué)科網(wǎng)絡(luò)平臺(tái)的使用;建議:應(yīng)重視引導(dǎo)學(xué)生將一些唾手可得的有用結(jié)論總結(jié)出來,并形成自我的經(jīng)驗(yàn)。

4.評議者:引導(dǎo)學(xué)生通過網(wǎng)絡(luò)進(jìn)行探究。

建議:課件制作在線測評部分,建議不能重復(fù)選擇,應(yīng)全部做完后,顯示結(jié)果,再重復(fù)測試;多提問學(xué)生。

(1)給學(xué)生思考的時(shí)間較長,語調(diào)相對平緩,總結(jié)時(shí),給學(xué)生一些激勵(lì)的語言更好。

(2)這樣子的教學(xué)可以提高上課效率,讓學(xué)生更多的時(shí)間思考。

(4)給學(xué)生答案,這個(gè)網(wǎng)頁要進(jìn)一步的修正,答案能否不要一點(diǎn)就出來。

(5)1.板書設(shè)計(jì)要進(jìn)一步的加強(qiáng),2.語速相對是比較快的3.練習(xí)量比較少。

(6)讓學(xué)生多探究,課堂會(huì)更熱鬧。

(7)注意引入的過程要帶有目的,帶著問題來教學(xué),學(xué)生帶著問題來學(xué)習(xí)。

(8)教學(xué)模式相對簡單重復(fù)。

(9)思路較為清晰,規(guī)范化的推理。

高中數(shù)學(xué)經(jīng)典教案篇十一

3.進(jìn)一步提高問題探究意識(shí)、知識(shí)應(yīng)用意識(shí)和同伴合作意識(shí)。

問題的提出與解決。

如何進(jìn)行問題的探究。

啟發(fā)探究式。

研究方向提示:

1.?dāng)?shù)列{an}是一個(gè)等比數(shù)列,可以從等比數(shù)列角度來進(jìn)行研究;

2.研究所給數(shù)列的項(xiàng)之間的關(guān)系;

3.研究所給數(shù)列的子數(shù)列;

4.研究所給數(shù)列能構(gòu)造的新數(shù)列;

5.?dāng)?shù)列是一種特殊的函數(shù),可以從函數(shù)性質(zhì)角度來進(jìn)行研究;

6.研究所給數(shù)列與其它知識(shí)的聯(lián)系(組合數(shù)、復(fù)數(shù)、圖形、實(shí)際意義等)。

針對學(xué)生的研究情況,對所提問題進(jìn)行歸類,選擇部分類型問題共同進(jìn)行研究、分析與解決。

課堂小結(jié):

1.研究一個(gè)數(shù)列可以從哪些方面提出問題并進(jìn)行研究?

2.你最喜歡哪位同學(xué)的研究?為什么?

開展研究性學(xué)習(xí),培養(yǎng)問題解決能力。

一、對“研究性學(xué)習(xí)”和“問題解決”的認(rèn)識(shí)研究性學(xué)習(xí)是一種與接受性學(xué)習(xí)相對應(yīng)的學(xué)習(xí)方式,泛指學(xué)生主動(dòng)探究問題的學(xué)習(xí)。研究性學(xué)習(xí)也可以說是一種學(xué)習(xí)活動(dòng):學(xué)生在教師指導(dǎo)下,在自己的學(xué)習(xí)生活和社會(huì)生活中選擇課題,以類似科學(xué)研究的方式去主動(dòng)地獲取知識(shí)、應(yīng)用知識(shí)、解決問題。

“問題解決”(problemsolving)是美國數(shù)學(xué)教育界在二十世紀(jì)八十年代的主要口號,即認(rèn)為應(yīng)當(dāng)以“問題解決”作為學(xué)校數(shù)學(xué)教育的中心。

問題解決能力是一種重要的數(shù)學(xué)能力,其核心是“創(chuàng)新精神”與“實(shí)踐能力”。在數(shù)學(xué)教學(xué)活動(dòng)中開展研究性學(xué)習(xí)是培養(yǎng)問題解決能力的主要途徑。

二、“問題解決”課堂教學(xué)模式的建構(gòu)與實(shí)踐以研究性學(xué)習(xí)活動(dòng)為載體,以培養(yǎng)問題解決能力為核心的'課堂教學(xué)模式(以下簡稱為“問題解決”課堂教學(xué)模式)試圖通過問題情境創(chuàng)設(shè),激發(fā)學(xué)生的求知欲,以獨(dú)立思考和交流討論的形式,發(fā)現(xiàn)、分析并解決問題,培養(yǎng)處理信息、獲取新知、應(yīng)用知識(shí)的能力,提高合作意識(shí)、探究意識(shí)和創(chuàng)新意識(shí)。

(一)關(guān)于“問題解決”課堂教學(xué)模式。

通過實(shí)施“問題解決”課堂教學(xué)模式,希望能夠達(dá)到以下的功能目標(biāo):學(xué)習(xí)發(fā)現(xiàn)問題的方法,開掘創(chuàng)造性思維潛力,培養(yǎng)主動(dòng)參與、團(tuán)結(jié)協(xié)作精神,增進(jìn)師生、同伴之間的情感交流,形成自覺運(yùn)用數(shù)學(xué)基礎(chǔ)知識(shí)、基本技能和數(shù)學(xué)思想方法分析問題、解決問題的能力和意識(shí)。

(二)數(shù)學(xué)學(xué)科中的問題解決能力的培養(yǎng)目標(biāo)。

數(shù)學(xué)問題解決能力培養(yǎng)的目標(biāo)可以有不同層次的要求:會(huì)審題,會(huì)建模,會(huì)轉(zhuǎn)化,會(huì)歸類,會(huì)反思,會(huì)編題。

(三)“問題解決”課堂教學(xué)模式的教學(xué)流程。

(四)“問題解決”課堂教學(xué)評價(jià)標(biāo)準(zhǔn)。

1.教學(xué)目標(biāo)的確定;

2.教學(xué)方法的選擇;

3.問題的選擇;

4.師生主體意識(shí)的體現(xiàn);

5.教學(xué)策略的運(yùn)用。

(五)了解學(xué)生的數(shù)學(xué)問題解決能力的途徑。

(六)開展研究性學(xué)習(xí)活動(dòng)對教師的能力要求。

高中數(shù)學(xué)經(jīng)典教案篇十二

【知識(shí)與技能】。

在掌握圓的標(biāo)準(zhǔn)方程的基礎(chǔ)上,理解記憶圓的一般方程的代數(shù)特征,由圓的一般方程確定圓的圓心半徑,掌握方程x+y+dx+ey+f=0表示圓的條件。

【過程與方法】。

通過對方程x+y+dx+ey+f=0表示圓的的條件的探究,學(xué)生探索發(fā)現(xiàn)及分析解決問題的實(shí)際能力得到提高。

【情感態(tài)度與價(jià)值觀】。

滲透數(shù)形結(jié)合、化歸與轉(zhuǎn)化等數(shù)學(xué)思想方法,提高學(xué)生的整體素質(zhì),激勵(lì)學(xué)生創(chuàng)新,勇于探索。

【重點(diǎn)】。

掌握圓的一般方程,以及用待定系數(shù)法求圓的一般方程。

【難點(diǎn)】。

二元二次方程與圓的一般方程及標(biāo)準(zhǔn)圓方程的'關(guān)系。

三、教學(xué)過程。

(一)復(fù)習(xí)舊知,引出課題。

1、復(fù)習(xí)圓的標(biāo)準(zhǔn)方程,圓心、半徑。

2、提問1:已知圓心為(1,—2)、半徑為2的圓的方程是什么?

高中數(shù)學(xué)經(jīng)典教案篇十三

(1)通過實(shí)物操作,增強(qiáng)學(xué)生的直觀感知。

(2)能根據(jù)幾何結(jié)構(gòu)特征對空間物體進(jìn)行分類。

(3)會(huì)用語言概述棱柱、棱錐、圓柱、圓錐、棱臺(tái)、圓臺(tái)、球的結(jié)構(gòu)特征。

(4)會(huì)表示有關(guān)于幾何體以及柱、錐、臺(tái)的分類。

2.過程與方法。

(1)讓學(xué)生通過直觀感受空間物體,從實(shí)物中概括出柱、錐、臺(tái)、球的幾何結(jié)構(gòu)特征。

(2)讓學(xué)生觀察、討論、歸納、概括所學(xué)的知識(shí)。

3.情感態(tài)度與價(jià)值觀。

(1)使學(xué)生感受空間幾何體存在于現(xiàn)實(shí)生活周圍,增強(qiáng)學(xué)生學(xué)習(xí)的積極性,同時(shí)提高學(xué)生的觀察能力。

(2)培養(yǎng)學(xué)生的空間想象能力和抽象括能力。

重點(diǎn):讓學(xué)生感受大量空間實(shí)物及模型、概括出柱、錐、臺(tái)、球的結(jié)構(gòu)特征。

難點(diǎn):柱、錐、臺(tái)、球的結(jié)構(gòu)特征的概括。

(1)學(xué)法:觀察、思考、交流、討論、概括。

(2)實(shí)物模型、投影儀。

(一)創(chuàng)設(shè)情景,揭示課題。

1.教師提出問題:在我們生活周圍中有不少有特色的建筑物,你能舉出一些例子嗎?這些建筑的幾何結(jié)構(gòu)特征如何?引導(dǎo)學(xué)生回憶,舉例和相互交流。教師對學(xué)生的活動(dòng)及時(shí)給予評價(jià)。

2.所舉的建筑物基本上都是由這些幾何體組合而成的,(展示具有柱、錐、臺(tái)、球結(jié)構(gòu)特征的空間物體),你能通過觀察。根據(jù)某種標(biāo)準(zhǔn)對這些空間物體進(jìn)行分類嗎?這是我們所要學(xué)習(xí)的內(nèi)容。

(二)、研探新知。

1.引導(dǎo)學(xué)生觀察物體、思考、交流、討論,對物體進(jìn)行分類,分辯棱柱、圓柱、棱錐。

3.組織學(xué)生分組討論,每小組選出一名同學(xué)發(fā)表本組討論結(jié)果。在此基礎(chǔ)上得出棱柱的主要結(jié)構(gòu)特征。(1)有兩個(gè)面互相平行;(2)其余各面都是平行四邊形;(3)每相鄰兩上四邊形的公共邊互相平行。概括出棱柱的概念。

4.教師與學(xué)生結(jié)合圖形共同得出棱柱相關(guān)概念以及棱柱的表示。

6.以類似的方法,讓學(xué)生思考、討論、概括出棱錐、棱臺(tái)的結(jié)構(gòu)特征,并得出相關(guān)的概念,分類以及表示。

7.讓學(xué)生觀察圓柱,并實(shí)物模型演示,如何得到圓柱,從而概括出圓標(biāo)的概念以及相關(guān)的概念及圓柱的表示。

8.引導(dǎo)學(xué)生以類似的方法思考圓錐、圓臺(tái)、球的結(jié)構(gòu)特征,以及相關(guān)概念和表示,借助實(shí)物模型演示引導(dǎo)學(xué)生思考、討論、概括。

9.教師指出圓柱和棱柱統(tǒng)稱為柱體,棱臺(tái)與圓臺(tái)統(tǒng)稱為臺(tái)體,圓錐與棱錐統(tǒng)稱為錐體。

(三)質(zhì)疑答辯,排難解惑,發(fā)展思維,教師提出問題,讓學(xué)生思考。

1.有兩個(gè)面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱(舉反例說明,如圖)。

2.棱柱的何兩個(gè)平面都可以作為棱柱的底面嗎?

3.課本p8,習(xí)題1.1a組第1題。

5.棱臺(tái)與棱柱、棱錐有什么關(guān)系?圓臺(tái)與圓柱、圓錐呢?

四、鞏固深化。

練習(xí):課本p7練習(xí)1、2(1)(2)。

課本p8習(xí)題1.1第2、3、4題。

五、歸納整理。

由學(xué)生整理學(xué)習(xí)了哪些內(nèi)容。

六、布置作業(yè)。

課本p8練習(xí)題1.1b組第1題。

課外練習(xí)課本p8習(xí)題1.1b組第2題。

(1)掌握畫三視圖的基本技能。

(2)豐富學(xué)生的.空間想象力。

2.過程與方法。

主要通過學(xué)生自己的親身實(shí)踐,動(dòng)手作圖,體會(huì)三視圖的作用。

3.情感態(tài)度與價(jià)值觀。

(1)提高學(xué)生空間想象力。

(2)體會(huì)三視圖的作用。

重點(diǎn):畫出簡單組合體的三視圖。

難點(diǎn):識(shí)別三視圖所表示的空間幾何體。

1.學(xué)法:觀察、動(dòng)手實(shí)踐、討論、類比。

2.教學(xué)用具:實(shí)物模型、三角板。

(一)創(chuàng)設(shè)情景,揭開課題。

“橫看成嶺側(cè)看成峰”,這說明從不同的角度看同一物體視覺的效果可能不同,要比較真實(shí)反映出物體,我們可從多角度觀看物體,這堂課我們主要學(xué)習(xí)空間幾何體的三視圖。

(二)實(shí)踐動(dòng)手作圖。

2.教師引導(dǎo)學(xué)生用類比方法畫出簡單組合體的三視圖。

(1)畫出球放在長方體上的三視圖。

(2)畫出礦泉水瓶(實(shí)物放在桌面上)的三視圖。

學(xué)生畫完后,可把自己的作品展示并與同學(xué)交流,總結(jié)自己的作圖心得。

作三視圖之前應(yīng)當(dāng)細(xì)心觀察,認(rèn)識(shí)了它的基本結(jié)構(gòu)特征后,再動(dòng)手作圖。

3.三視圖與幾何體之間的相互轉(zhuǎn)化。

(1)投影出示圖片(課本p10,圖1.2-3)。

請同學(xué)們思考圖中的三視圖表示的幾何體是什么?

(2)你能畫出圓臺(tái)的三視圖嗎?

(3)三視圖對于認(rèn)識(shí)空間幾何體有何作用?你有何體會(huì)?

教師巡視指導(dǎo),解答學(xué)生在學(xué)習(xí)中遇到的困難,然后讓學(xué)生發(fā)表對上述問題的看法。

4.請同學(xué)們畫出1.2-4中其他物體表示的空間幾何體的三視圖,并與其他同學(xué)交流。

(三)鞏固練習(xí)。

課本p12練習(xí)1、2p18習(xí)題1.2a組1。

(四)歸納整理。

請學(xué)生回顧發(fā)表如何作好空間幾何體的三視圖。

(五)課外練習(xí)。

1.自己動(dòng)手制作一個(gè)底面是正方形,側(cè)面是全等的三角形的棱錐模型,并畫出它的三視圖。

2.自己制作一個(gè)上、下底面都是相似的正三角形,側(cè)面是全等的等腰梯形的棱臺(tái)模型,并畫出它的三視圖。

(1)掌握斜二測畫法畫水平設(shè)置的平面圖形的直觀圖。

(2)采用對比的方法了解在平行投影下畫空間圖形與在中心投影下畫空間圖形兩種方法的各自特點(diǎn)。

2.過程與方法。

學(xué)生通過觀察和類比,利用斜二測畫法畫出空間幾何體的直觀圖。

3.情感態(tài)度與價(jià)值觀。

(1)提高空間想象力與直觀感受。

(2)體會(huì)對比在學(xué)習(xí)中的作用。

(3)感受幾何作圖在生產(chǎn)活動(dòng)中的應(yīng)用。

重點(diǎn)、難點(diǎn):用斜二測畫法畫空間幾何值的直觀圖。

1.學(xué)法:學(xué)生通過作圖感受圖形直觀感,并自然采用斜二測畫法畫空間幾何體的過程。

2.教學(xué)用具:三角板、圓規(guī)。

(一)創(chuàng)設(shè)情景,揭示課題。

1.我們都學(xué)過畫畫,這節(jié)課我們畫一物體:圓柱。

把實(shí)物圓柱放在講臺(tái)上讓學(xué)生畫。

2.學(xué)生畫完后展示自己的結(jié)果并與同學(xué)交流,比較誰畫的效果更好,思考怎樣才能畫好物體的直觀圖呢?這是我們這節(jié)主要學(xué)習(xí)的內(nèi)容。

(二)研探新知。

1.例1,用斜二測畫法畫水平放置的正六邊形的直觀圖,由學(xué)生閱讀理解,并思考斜二測畫法的關(guān)鍵步驟,學(xué)生發(fā)表自己的見解,教師及時(shí)給予點(diǎn)評。

畫水平放置的多邊形的直觀圖的關(guān)鍵是確定多邊形頂點(diǎn)的位置,因?yàn)槎噙呅雾旤c(diǎn)的位置一旦確定,依次連結(jié)這些頂點(diǎn)就可畫出多邊形來,因此平面多邊形水平放置時(shí),直觀圖的畫法可以歸結(jié)為確定點(diǎn)的位置的畫法。強(qiáng)調(diào)斜二測畫法的步驟。

根據(jù)斜二測畫法,畫出水平放置的正五邊形的直觀圖,讓學(xué)生獨(dú)立完成后,教師檢查。

2.例2,用斜二測畫法畫水平放置的圓的直觀圖。

教師引導(dǎo)學(xué)生與例1進(jìn)行比較,與畫水平放置的多邊形的直觀圖一樣,畫水平放置的圓的直觀圖,也是要先畫出一些有代表性的點(diǎn),由于不能像多邊那樣直接以頂點(diǎn)為代表點(diǎn),因此需要自己構(gòu)造出一些點(diǎn)。

教師組織學(xué)生思考、討論和交流,如何構(gòu)造出需要的一些點(diǎn),與學(xué)生共同完成例2并詳細(xì)板書畫法。

3.探求空間幾何體的直觀圖的畫法。

(1)例3,用斜二測畫法畫長、寬、高分別是4cm、3cm、2cm的長方體abcd-a’b’c’d’的直觀圖。

教師引導(dǎo)學(xué)生完成,要注意對每一步驟提出嚴(yán)格要求,讓學(xué)生按部就班地畫好每一步,不能敷衍了事。

(2)投影出示幾何體的三視圖、課本p15圖1.2-9,請說出三視圖表示的幾何體?并用斜二測畫法畫出它的直觀圖。教師組織學(xué)生思考,討論和交流完成,教師巡視幫不懂的同學(xué)解疑,引導(dǎo)學(xué)生正確把握圖形尺寸大小之間的關(guān)系。

4.平行投影與中心投影。

投影出示課本p17圖1.2-12,讓學(xué)生觀察比較概括在平行投影下畫空間圖形與在中心投影下畫空間圖形的各自特點(diǎn)。

5.鞏固練習(xí),課本p16練習(xí)1(1),2,3,4。

三、歸納整理。

學(xué)生回顧斜二測畫法的關(guān)鍵與步驟。

四、作業(yè)。

1.書畫作業(yè),課本p17練習(xí)第5題。

2.課外思考課本p16,探究(1)(2)。

高中數(shù)學(xué)經(jīng)典教案篇十四

(2)進(jìn)一步理解曲線的方程和方程的曲線。

(3)初步掌握求曲線方程的方法。

(4)通過本節(jié)內(nèi)容的教學(xué),培養(yǎng)學(xué)生分析問題和轉(zhuǎn)化的能力。

求曲線的方程。

計(jì)算機(jī)。

啟發(fā)引導(dǎo)法,討論法。

【引入】。

1.提問:什么是曲線的方程和方程的曲線。

學(xué)生思考并回答,教師強(qiáng)調(diào)。

2.坐標(biāo)法和解析幾何的意義、基本問題。

對于一個(gè)幾何問題,在建立坐標(biāo)系的基礎(chǔ)上,用坐標(biāo)表示點(diǎn);用方程表示曲線,通過研究方程的性質(zhì)間接地來研究曲線的性質(zhì),這一研究幾何問題的方法稱為坐標(biāo)法,這門科學(xué)稱為解析幾何,解析幾何的兩大基本問題就是:

(1)根據(jù)已知條件,求出表示平面曲線的方程。

(2)通過方程,研究平面曲線的性質(zhì)。

【問題】。

如何根據(jù)已知條件,求出曲線的方程。

【概括總結(jié)】通過學(xué)生討論,師生共同總結(jié):

分析上面兩個(gè)例題的求解過程,我們總結(jié)一下求解曲線方程的大體步驟:

首先應(yīng)有坐標(biāo)系;其次設(shè)曲線上任意一點(diǎn);然后寫出表示曲線的點(diǎn)集;再代入坐標(biāo);最后整理出方程,并證明或修正.說得更準(zhǔn)確一點(diǎn)就是:

(1)建立適當(dāng)?shù)淖鴺?biāo)系,用有序?qū)崝?shù)對例如表示曲線上任意一點(diǎn)的坐標(biāo);

(2)寫出適合條件的點(diǎn)的集合;

(3)用坐標(biāo)表示條件,列出方程;

(4)化方程為最簡形式;

(5)證明以化簡后的方程的解為坐標(biāo)的點(diǎn)都是曲線上的點(diǎn).

上述五個(gè)步驟可簡記為:建系設(shè)點(diǎn);寫出集合;列方程;化簡;修正。

下面再看一個(gè)問題:

【小結(jié)】師生共同總結(jié):

(1)解析幾何研究研究問題的方法是什么?

(2)如何求曲線的方程?

【作業(yè)】課本第72頁練習(xí)1,2,3;

【本文地址:http://www.aiweibaby.com/zuowen/11205416.html】

全文閱讀已結(jié)束,如果需要下載本文請點(diǎn)擊

下載此文檔