最新一次函數(shù)教案人教版 一次函數(shù)教案第三課時(shí)(三篇)

格式:DOC 上傳日期:2023-01-19 06:11:54
最新一次函數(shù)教案人教版 一次函數(shù)教案第三課時(shí)(三篇)
時(shí)間:2023-01-19 06:11:54     小編:zdfb

作為一位無(wú)私奉獻(xiàn)的人民教師,總歸要編寫(xiě)教案,借助教案可以有效提升自己的教學(xué)能力。寫(xiě)教案的時(shí)候需要注意什么呢?有哪些格式需要注意呢?以下是小編收集整理的教案范文,僅供參考,希望能夠幫助到大家。

一次函數(shù)教案人教版 一次函數(shù)教案第三課時(shí)篇一

1、能根據(jù)k、b的符號(hào)說(shuō)出一次函數(shù)y=kx+b的圖象(直線)的大致情況。

2、理解并掌握一次函數(shù)y=kx+b的性質(zhì)。

例1.在同一直角坐標(biāo)系中畫(huà)出下列函數(shù)的圖象。

①y=2x-4y=12x+1

觀察直線y=2x-4:

(1)圖象與x軸的交點(diǎn)坐標(biāo)是,與y軸的交點(diǎn)坐標(biāo)是

(2)圖象經(jīng)過(guò)這些點(diǎn):(-3,);(-1,);(0,);(,-2);(,2)

(3)當(dāng)x的值越來(lái)越大時(shí),y的值越來(lái)越

(4)整個(gè)函數(shù)圖象來(lái)看,是從左至右(填上升或下降)

(5)當(dāng)x取何值時(shí),y>0?

②y=-2x+2y=-13x-1

觀察直線y=-2x+2:

(1)圖象與x軸的交點(diǎn)坐標(biāo)是,與y軸的交點(diǎn)坐標(biāo)是

(2)圖象經(jīng)過(guò)這些點(diǎn):(-3,);(-1,);(0,);(,-4);(,-8)

(3)當(dāng)x的值越來(lái)越大時(shí),y的值越來(lái)越

(4)整個(gè)函數(shù)圖象來(lái)看,是從左至右(填上升或下降)

(5)當(dāng)x取何值時(shí),y<0?

小結(jié):一次函數(shù)y=kx+b有下列性質(zhì):1.當(dāng)k>0時(shí),y隨x的增大而______,這時(shí)函數(shù)的圖象從左到右_____;當(dāng)k<0時(shí),y隨x的增大而______,這時(shí)函數(shù)的圖象從左到右_____.

2、當(dāng)b>0時(shí),這時(shí)函數(shù)的圖象與y軸的交點(diǎn)在______

當(dāng)b>0時(shí),這時(shí)函數(shù)的圖象與y軸的交點(diǎn)在_____.

當(dāng)b=0時(shí),這時(shí)函數(shù)的圖象與y軸的交點(diǎn)在_____.

3、當(dāng)k>0,b>0時(shí),一次函數(shù)圖像經(jīng)過(guò)______________象限。

當(dāng)k>0,b<0時(shí),一次函數(shù)圖像經(jīng)過(guò)______________象限。

當(dāng)k0時(shí),一次函數(shù)圖像經(jīng)過(guò)______________象限。

當(dāng)k<0,b<0時(shí),一次函數(shù)圖像經(jīng)過(guò)______________象限。

當(dāng)k>0,正比例函數(shù)圖像經(jīng)過(guò)______________象限。

當(dāng)k<0,正比例函數(shù)圖像經(jīng)過(guò)______________象限。

例1.(1)一次函數(shù)y=kx+b的圖象位置大致如下圖所示,試分別確定k、b的符號(hào),并說(shuō)出函數(shù)的性質(zhì)。

(2)下列圖形中,表示一次函數(shù)y=mx+n與正比例函數(shù)y=mnx(m、n是常數(shù),且mn≠0)的圖象是()

例2.(1)若k>0,b>0,則直線y=kx+b的圖象經(jīng)過(guò)第___________象限。

(2)若k0,則直線y=kx+b的圖象經(jīng)過(guò)第___________象限。

(3)已知函數(shù)y=kx+b的圖象不經(jīng)過(guò)第二象限,則k______,b______.

例3.已知一次函數(shù)y=(m+5)x+(2-n)。①m為何值時(shí),y隨x的增大而減少?②m、n為何值時(shí),函數(shù)圖像與y軸的交點(diǎn)在x軸上方?③m、n為何值時(shí),函數(shù)圖像過(guò)原點(diǎn)?④m、n為何值時(shí),函數(shù)圖像經(jīng)過(guò)二、三、四象限?

例4.已知一次函數(shù)y=(1-2m)x+m-1,若函數(shù)y隨x的增大而減小,并且函數(shù)的圖象與y軸的交點(diǎn)在x軸下方,求m的取值范圍。

一、填空題:

1、已知一次函數(shù)y=kx+5的圖象經(jīng)過(guò)點(diǎn)(-1,2),則k=_________.

2、一次函數(shù)y=kx+b的圖象如圖所示,則k=_______,b=________.

3、若k<0,b<0,則一次函數(shù)y=kx+b的圖象經(jīng)過(guò)第______________象限。

4、已知直線l1:y=ax+b經(jīng)過(guò)第一、二、四象限,那么直線l2:y=b https:/// x+a所經(jīng)過(guò)的象限是。

5、(1)一次函數(shù)y=x-1的圖象與x軸交點(diǎn)坐標(biāo)為_(kāi)_________,與y軸的交點(diǎn)坐標(biāo)為_(kāi)_________,y隨x的增大而____________.

(2)一次函數(shù)y=-5x+4的圖象經(jīng)過(guò)___________象限,y隨x的增大而________.

(3)一次函數(shù)y=kx+1的圖象過(guò)點(diǎn)a(2,3),則k=_______,該函數(shù)圖象經(jīng)過(guò)點(diǎn)b(-1,____)和c(0,_____)

(4)已知函數(shù)y=mx+(m+2),當(dāng)m________時(shí),的圖象過(guò)原點(diǎn);當(dāng)m________時(shí),函數(shù)y值x隨的增大而增大。

(5)寫(xiě)出一個(gè)y隨x的增大而減少的一次函數(shù)_______.

二、選擇題:

1、直線y=x+1不經(jīng)過(guò)的象限是( )

a.第一象限b.第二象限c.第三象限d.第四象限

2、下列函數(shù)中,y隨x的增大而增大的函數(shù)是()

a.y=-3xb.y=-2x+1c.y=x-3d.y=-x-2

3、若函數(shù)y=(m-1)x+1是一次函數(shù),且y隨自變量x的增大而減小,那么m的取值為()a.m>1b.m≥1c.m<1d.m=1

4、已知一次函數(shù)y=kx+b,y隨著x的增大而減小,且kb<0,則它的大致圖象是()

abcd

三、解答題:

1、已知一次函數(shù)y=(p+8)x+(6-q)。

①p、q為何值時(shí),y隨x的增大而增大?

②p、q為何值時(shí),函數(shù)與y軸交點(diǎn)在x軸上方?

③p、q為何值時(shí),圖象過(guò)原點(diǎn)?

2、若一次函數(shù)y=(2k-3)x+2-k的圖象與y軸的交點(diǎn)在x軸上方,且y隨x的增大而增大,求k的取值范圍。

3、已知一次函數(shù)y=ax+1+a2的圖象與y軸的交點(diǎn)的縱坐標(biāo)為5,且圖象經(jīng)過(guò)第一、二、三象限,求此函數(shù)的解析式。

4、已知一次函數(shù)y=(3m-8)x+1-m圖象與y軸交點(diǎn)在x軸下方,且y隨x的增大而減小,其中m為整數(shù)。

(1)求m的值;

(2)當(dāng)x取何值時(shí),0<y<4?

一次函數(shù)教案人教版 一次函數(shù)教案第三課時(shí)篇二

(一)知識(shí)認(rèn)知要求

1、認(rèn)識(shí)一元一次方程與一次函數(shù)問(wèn)題的轉(zhuǎn)化關(guān)系;

2、學(xué)會(huì)用圖象法求解方程;

3、進(jìn)一步理解數(shù)形結(jié)合思想;

(二)能力訓(xùn)練要求

1、通過(guò)一元一次方程與一次函數(shù)的圖象之間的結(jié)合,培養(yǎng)學(xué)生的數(shù)形結(jié)合意識(shí);

2、訓(xùn)練大家能利用數(shù)學(xué)知識(shí)去解決實(shí)際問(wèn)題的能力。

(三)情感與價(jià)值觀要求

體驗(yàn)數(shù)、圖形是有效地描述現(xiàn)實(shí)世界的重要手段,認(rèn)識(shí)到數(shù)學(xué)是解決問(wèn)題和進(jìn)行交流的重要工具,了解數(shù)學(xué)對(duì)促進(jìn)社會(huì)進(jìn)步和發(fā)展人類理性精神的作用。

1、理解一元一次不方程與一次函數(shù)的轉(zhuǎn)化及本質(zhì)聯(lián)系。

2、掌握用圖象求解方程的方法。

一、提出問(wèn)題

(1)方程2x+20=0;(2)函數(shù)y=2x+20

觀察思考:二者之間有什么聯(lián)系?

從數(shù)上看:方程2x+20=0的解,是函數(shù)y=2x+20的值為0時(shí),對(duì)應(yīng)自變量x的值

從形上看:函數(shù)y=2x+20與x軸交點(diǎn)的橫坐標(biāo)即為方程2x+20=0的解

根據(jù)上述問(wèn)題,教師啟發(fā)學(xué)生思考:

根據(jù)學(xué)生回答,教師總結(jié):

由于任何一元一次方程都可以轉(zhuǎn)化為ax+b=0(a,b為常數(shù),a≠0)的形式,所以解一元一次方程可以轉(zhuǎn)化為:當(dāng)某一個(gè)函數(shù)的值為0時(shí),求相應(yīng)的自變量的值。從圖象上看,這相當(dāng)于已知直線y=ax+b,確定它也x軸交點(diǎn)的橫坐標(biāo)的值。

二、典型例題:

例1、(書(shū)中例1)一個(gè)物體現(xiàn)在的速度是5米/秒,其速度每秒增加2米/秒,再過(guò)幾秒它的速度為17米/秒?

一次函數(shù)教案人教版 一次函數(shù)教案第三課時(shí)篇三

(知識(shí)與技能,過(guò)程與方法,情感態(tài)度價(jià)值觀)

(一)教學(xué)知識(shí)點(diǎn)

1、一元一次不等式與一次函數(shù)的關(guān)系。

2、會(huì)根據(jù)題意列出函數(shù)關(guān)系式,畫(huà)出函數(shù)圖象,并利用不等關(guān)系進(jìn)行比較。

(二)能力訓(xùn)練要求

1、通過(guò)一元一次不等式與一次函數(shù)的圖象之間的結(jié)合,培養(yǎng)學(xué)生的數(shù)形結(jié)合意識(shí)。

2、訓(xùn)練大家能利用數(shù)學(xué)知識(shí)去解決實(shí)際問(wèn)題的能力。

(三)情感與價(jià)值觀要求

體驗(yàn)數(shù)、圖形是有效地描述現(xiàn)實(shí)世界的重要手段,認(rèn)識(shí)到數(shù)學(xué)是解決問(wèn)題和進(jìn)行交流的重要工具,了解數(shù)學(xué)對(duì)促進(jìn)社會(huì)進(jìn)步和發(fā)展人類理性精神的作用。

了解一元一次不等式與一次函數(shù)之間的關(guān)系。

自己根據(jù)題意列函數(shù)關(guān)系式,并能把函數(shù)關(guān)系式與一元一次不等式聯(lián)系起來(lái)作答。

創(chuàng)設(shè)情境,導(dǎo)入課題,展示教學(xué)目標(biāo)

1、張大爺買(mǎi)了一個(gè)手機(jī),想辦理一張電話卡,開(kāi)米廣場(chǎng)移動(dòng)通訊公司業(yè)務(wù)員對(duì)張大爺介紹說(shuō):移動(dòng)通訊公司開(kāi)設(shè)了兩種有關(guān)神州行的通訊業(yè)務(wù):甲類使用者先繳15元基礎(chǔ)費(fèi),然后每通話1分鐘付話費(fèi)0.2元;乙類不交月基礎(chǔ)費(fèi),每通話1分鐘付話費(fèi)0.3元。你能幫幫張大爺選擇一種電話卡嗎?

2、展示學(xué)習(xí)目標(biāo):

(1)、理解一次函數(shù)圖象與一元一次不等式的關(guān)系。

(2)、能夠用圖像法解一元一次不等式。

(3)、理解兩種方法的關(guān)系,會(huì)選擇適當(dāng)?shù)姆椒ń庖辉淮尾坏仁健?/p>

積極思考,嘗試回答問(wèn)題,導(dǎo)出本節(jié)課題。

閱讀學(xué)習(xí)目標(biāo),明確探究方向。

從生活實(shí)例出發(fā),引起學(xué)生的好奇心,激發(fā)學(xué)生學(xué)習(xí)興趣

學(xué)生自主研學(xué)

指出探究方向,巡回指導(dǎo)學(xué)生,答疑解惑

探究一:一元一次不等式與一次函數(shù)的關(guān)系。

問(wèn)題1:結(jié)合函數(shù)y=2x-5的圖象,觀察圖象回答下列問(wèn)題:

(1) x取何值時(shí),2x-5=0?

(2) x取哪些值時(shí), 2x-5>0?

(3) x取哪些值時(shí), 2x-5<0?

(4) x取哪些值時(shí), 2x-5>3?

問(wèn)題2:如果y=-2x-5,那么當(dāng)x取何值時(shí),y>0 ? 當(dāng)x取何值時(shí),y<1 ?

你是怎樣求解的?與同伴交流

讓每個(gè)學(xué)生都投入到探究中來(lái)養(yǎng)成自主學(xué)習(xí)習(xí)慣

小組合作互學(xué)

巡回每個(gè)小組之間,鼓勵(lì)學(xué)生用不同方法進(jìn)行嘗試,尋找最佳方案。答疑展示中存在的問(wèn)題。

探究二:一元一次不等式與一次函數(shù)關(guān)系的簡(jiǎn)單應(yīng)用。

問(wèn)題3.兄弟倆賽跑,哥哥先讓弟弟跑9 m,然后自己才開(kāi)始跑,已知弟弟每秒跑3 m,哥哥每秒跑4 m,列出函數(shù)關(guān)系式,畫(huà)出函數(shù)圖象,觀察圖象回答下列問(wèn)題:

(1)何時(shí)哥哥分追上弟弟?

(2)何時(shí)弟弟跑在哥哥前面?

(3)何時(shí)哥哥跑在弟弟前面?

(4)誰(shuí)先跑過(guò)20 m?誰(shuí)先跑過(guò)100 m?

你是怎樣求解的?與同伴交流。

問(wèn)題4:已知y1=-x+3,y2=3x-4,當(dāng)x取何值時(shí),y1>y2?你是怎樣做的?與同伴交流。

讓學(xué)生體會(huì)數(shù)形結(jié)合的魅力所在。理解函數(shù)和不等式的聯(lián)系。

精講點(diǎn)撥

移動(dòng)通訊公司開(kāi)設(shè)了兩種長(zhǎng)途通訊業(yè)務(wù):全球通使用者先繳50元基礎(chǔ)費(fèi),然后每通話1分鐘付話費(fèi)0.4元;神州行不交月基礎(chǔ)費(fèi),每通話1分鐘付話費(fèi)0.6元。若設(shè)一個(gè)月內(nèi)通話x分鐘,兩種通訊方式的費(fèi)用分別為y1元和y2元,那么 (1)寫(xiě)出y1、y2與x之間的函數(shù)關(guān)系式; (2)在同一直角坐標(biāo)系中畫(huà)出兩函數(shù)的圖象;(3)求出或?qū)で蟪鲆粋€(gè)月內(nèi)通話多少分鐘,兩種通訊方式費(fèi)用相同; (4)若某人預(yù)計(jì)一個(gè)月內(nèi)使用話費(fèi)200元,應(yīng)選擇哪種通訊方式較合算?

在共同探究的過(guò)程中加強(qiáng)理解,體會(huì)數(shù)學(xué)在生活中的重大應(yīng)用,進(jìn)行能力提升。

提高學(xué)生應(yīng)用數(shù)學(xué)知識(shí)解決實(shí)際問(wèn)題的能力

達(dá)標(biāo)檢測(cè)

展示檢測(cè)內(nèi)容

積極完成導(dǎo)學(xué)案上的檢測(cè)內(nèi)容,相互點(diǎn)評(píng)。

反饋學(xué)生學(xué)習(xí)效果

知識(shí)與收獲

引導(dǎo)學(xué)生歸納探究?jī)?nèi)容

學(xué)生回顧總結(jié)學(xué)習(xí)收獲,交流學(xué)習(xí)心得。

學(xué)會(huì)歸納與總結(jié)

布置作業(yè)

教材p51.習(xí)題2.6知識(shí)技能1;問(wèn)題解決2,3.

板書(shū)設(shè)計(jì)

§2.5 一元一次不等式與一次函數(shù)(一)

一、學(xué)習(xí)與探究:

1、一元一次不等式與一次函數(shù)之間的關(guān)系;

2、做一做(根據(jù)函數(shù)圖象求不等式);

3、試一試(當(dāng)x取何值時(shí),y>0);

4、議一議

二、精講點(diǎn)撥:

三、知識(shí)與收獲:

四、課后作業(yè):

【本文地址:http://aiweibaby.com/zuowen/1138569.html】

全文閱讀已結(jié)束,如果需要下載本文請(qǐng)點(diǎn)擊

下載此文檔