作為一名教職工,就不得不需要編寫教案,編寫教案有利于我們科學(xué)、合理地支配課堂時間。怎樣寫教案才更能起到其作用呢?教案應(yīng)該怎么制定呢?下面是小編整理的優(yōu)秀教案范文,歡迎閱讀分享,希望對大家有所幫助。
高中數(shù)學(xué)經(jīng)典教案篇1
教學(xué)目標(biāo):
1.理解流程圖的選擇結(jié)構(gòu)這種基本邏輯結(jié)構(gòu).
2.能識別和理解簡單的框圖的功能.
3、 能運用三種基本邏輯結(jié)構(gòu)設(shè)計流程圖以解決簡單的問題.
教學(xué)方法:
1、 通過模仿、操作、探索,經(jīng)歷設(shè)計流程圖表達求解問題的過程,加深對流程圖的感知.
2、 在具體問題的解決過程中,掌握基本的流程圖的畫法和流程圖的三種基本邏輯結(jié)構(gòu).
教學(xué)過程:
一、問題情境
1.情境:
某鐵路客運部門規(guī)定甲、乙兩地之間旅客托運行李的費用為
其中(單位:)為行李的重量.
試給出計算費用(單位:元)的一個算法,并畫出流程圖.
二、學(xué)生活動
學(xué)生討論,教師引導(dǎo)學(xué)生進行表達.
解 算法為:
輸入行李的重量;
如果,那么,
否則;
輸出行李的重量和運費.
上述算法可以用流程圖表示為:
教師邊講解邊畫出第10頁圖1-2-6.
在上述計費過程中,第二步進行了判斷.
三、建構(gòu)數(shù)學(xué)
1.選擇結(jié)構(gòu)的概念:
(1)先根據(jù)條件作出判斷,再決定執(zhí)行哪一種
(2)操作的結(jié)構(gòu)稱為選擇結(jié)構(gòu).
如圖:虛線框內(nèi)是一個選擇結(jié)構(gòu),它包含一個判斷框,當(dāng)條件成立(或稱條件為“真”)時執(zhí)行,否則執(zhí)行.
2.說明:
(1)有些問題需要按給定的條件進行分析、比較和判斷,并按判斷的不同情況進行不同的操作,這類問題的實現(xiàn)就要用到選擇結(jié)構(gòu)的設(shè)計;
(2)選擇結(jié)構(gòu)也稱為分支結(jié)構(gòu)或選取結(jié)構(gòu),它要先根據(jù)指定的條件進行判斷,再由判斷的結(jié)果決定執(zhí)行兩條分支路徑中的某一條;
(3)在上圖的選擇結(jié)構(gòu)中,只能執(zhí)行和之一,不可能既執(zhí)行,又執(zhí)行,但或兩個框中可以有一個是空的,即不執(zhí)行任何操作;
(4)流程圖圖框的形狀要規(guī)范,判斷框必須畫成菱形,它有一個進入點和兩個退出點.
3.思考:教材第7頁圖所示的算法中,哪一步進行了判斷?
高中數(shù)學(xué)經(jīng)典教案篇2
教學(xué)目標(biāo):
1.結(jié)合實際問題情景,理解分層抽樣的必要性和重要性;
2.學(xué)會用分層抽樣的方法從總體中抽取樣本;
3.并對簡單隨機抽樣、系統(tǒng)抽樣及分層抽樣方法進行比較,揭示其相互關(guān)系.
教學(xué)重點:
通過實例理解分層抽樣的方法.
教學(xué)難點:
分層抽樣的步驟.
教學(xué)過程:
一、問題情境
1.復(fù)習(xí)簡單隨機抽樣、系統(tǒng)抽樣的概念、特征以及適用范圍.
2.實例:某校高一、高二和高三年級分別有學(xué)生名,為了了解全校學(xué)生的視力情況,從中抽取容量為的樣本,怎樣抽取較為合理?
二、學(xué)生活動
能否用簡單隨機抽樣或系統(tǒng)抽樣進行抽樣,為什么?
指出由于不同年級的學(xué)生視力狀況有一定的差異,用簡單隨機抽樣或系統(tǒng)抽樣進行抽樣不能準確反映客觀實際,在抽樣時不僅要使每個個體被抽到的機會相等,還要注意總體中個體的層次性.
由于樣本的容量與總體的個體數(shù)的比為100∶2500=1∶25,
所以在各年級抽取的個體數(shù)依次是x,x,x,即40,32,28.
三、建構(gòu)數(shù)學(xué)
1.分層抽樣:當(dāng)已知總體由差異明顯的幾部分組成時,為了使樣本更客觀地反映總體的情況,常將總體按不同的特點分成層次比較分明的幾部分,然后按各部分在總體中所占的比進行抽樣,這種抽樣叫做分層抽樣,其中所分成的各部分叫“層”.
說明:①分層抽樣時,由于各部分抽取的個體數(shù)與這一部分個體數(shù)的比等于樣本容量與總體的個體數(shù)的比,每一個個體被抽到的可能性都是相等的;
②由于分層抽樣充分利用了我們所掌握的信息,使樣本具有較好的代表性,而且在各層抽樣時可以根據(jù)具體情況采取不同的抽樣方法,所以分層抽樣在實踐中有著非常廣泛的應(yīng)用.
2.三種抽樣方法對照表:
類別
共同點
各自特點
相互聯(lián)系
適用范圍
簡單隨機抽樣
抽樣過程中每個個體被抽取的概率是相同的
從總體中逐個抽取
總體中的個體數(shù)較少
系統(tǒng)抽樣
將總體均分成幾個部分,按事先確定的規(guī)則在各部分抽取
在第一部分抽樣時采用簡單隨機抽樣
總體中的個體數(shù)較多
分層抽樣
將總體分成幾層,分層進行抽取
各層抽樣時采用簡單隨機抽樣或系統(tǒng)
總體由差異明顯的幾部分組成
3.分層抽樣的步驟:
(1)分層:將總體按某種特征分成若干部分.
(2)確定比例:計算各層的個體數(shù)與總體的個體數(shù)的比.
(3)確定各層應(yīng)抽取的樣本容量.
(4)在每一層進行抽樣(各層分別按簡單隨機抽樣或系統(tǒng)抽樣的方法抽取),綜合每層抽樣,組成樣本.
四、數(shù)學(xué)運用
1.例題.
例1(1)分層抽樣中,在每一層進行抽樣可用_________________.
(2)①教育局督學(xué)組到學(xué)校檢查工作,臨時在每個班各抽調(diào)2人參加座談;
②某班期中考試有15人在85分以上,40人在60-84分,1人不及格.現(xiàn)欲從中抽出8人研討進一步改進教和學(xué);
③某班元旦聚會,要產(chǎn)生兩名“幸運者”.
對這三件事,合適的抽樣方法為( )
A.分層抽樣,分層抽樣,簡單隨機抽樣
B.系統(tǒng)抽樣,系統(tǒng)抽樣,簡單隨機抽樣
C.分層抽樣,簡單隨機抽樣,簡單隨機抽樣
D.系統(tǒng)抽樣,分層抽樣,簡單隨機抽樣
例2某電視臺在因特網(wǎng)上就觀眾對某一節(jié)目的喜愛程度進行調(diào)查,參加調(diào)查的總?cè)藬?shù)為12000人,其中持各種態(tài)度的人數(shù)如表中所示:
很喜愛
喜愛
一般
不喜愛
2435
4567
3926
1072
電視臺為進一步了解觀眾的具體想法和意見,打算從中抽取60人進行更為詳細的調(diào)查,應(yīng)怎樣進行抽樣?
解:抽取人數(shù)與總的比是60∶12000=1∶200,
則各層抽取的人數(shù)依次是12.175,22.835,19.63,5.36,
取近似值得各層人數(shù)分別是12,23,20,5.
然后在各層用簡單隨機抽樣方法抽?。?/p>
答用分層抽樣的方法抽取,抽取“很喜愛”、“喜愛”、“一般”、“不喜愛”的人
數(shù)分別為12,23,20,5.
說明:各層的抽取數(shù)之和應(yīng)等于樣本容量,對于不能取整數(shù)的情況,取其近似值.
(3)某學(xué)校有160名教職工,其中教師120名,行政人員16名,后勤人員24名.為了了解教職工對學(xué)校在校務(wù)公開方面的某意見,擬抽取一個容量為20的樣本.
分析:(1)總體容量較小,用抽簽法或隨機數(shù)表法都很方便.
(2)總體容量較大,用抽簽法或隨機數(shù)表法都比較麻煩,由于人員沒有明顯差異,且剛好32排,每排人數(shù)相同,可用系統(tǒng)抽樣.
(3)由于學(xué)校各類人員對這一問題的看法可能差異較大,所以應(yīng)采用分層抽樣方法.
五、要點歸納與方法小結(jié)
本節(jié)課學(xué)習(xí)了以下內(nèi)容:
1.分層抽樣的概念與特征;
2.三種抽樣方法相互之間的區(qū)別與聯(lián)系.
高中數(shù)學(xué)經(jīng)典教案篇3
一、教學(xué)目標(biāo)
1、知識與技能
(1)掌握畫三視圖的基本技能
(2)豐富學(xué)生的空間想象力
2、過程與方法
主要通過學(xué)生自己的親身實踐,動手作圖,體會三視圖的作用。
3、情感態(tài)度與價值觀
(1)提高學(xué)生空間想象力
(2)體會三視圖的作用
二、教學(xué)重點、難點
重點:畫出簡單組合體的三視圖
難點:識別三視圖所表示的空間幾何體
三、學(xué)法與教學(xué)用具
1、學(xué)法:觀察、動手實踐、討論、類比
2、教學(xué)用具:實物模型、三角板
四、教學(xué)思路
(一)創(chuàng)設(shè)情景,揭開課題
“橫看成嶺側(cè)看成峰”,這說明從不同的角度看同一物體視覺的效果可能不同,要比較真實反映出物體,我們可從多角度觀看物體,這堂課我們主要學(xué)習(xí)空間幾何體的三視圖。
在初中,我們已經(jīng)學(xué)習(xí)了正方體、長方體、圓柱、圓錐、球的三視圖(正視圖、側(cè)視圖、俯視圖),你能畫出空間幾何體的三視圖嗎?
(二)實踐動手作圖
1、講臺上放球、長方體實物,要求學(xué)生畫出它們的三視圖,教師巡視,學(xué)生畫完后可交流結(jié)果并討論;
2、教師引導(dǎo)學(xué)生用類比方法畫出簡單組合體的三視圖
(1)畫出球放在長方體上的三視圖
(2)畫出礦泉水瓶(實物放在桌面上)的三視圖
學(xué)生畫完后,可把自己的作品展示并與同學(xué)交流,總結(jié)自己的作圖心得。
作三視圖之前應(yīng)當(dāng)細心觀察,認識了它的基本結(jié)構(gòu)特征后,再動手作圖。
3、三視圖與幾何體之間的相互轉(zhuǎn)化。
(1)投影出示圖片(課本P10,圖1.2-3)
請同學(xué)們思考圖中的三視圖表示的幾何體是什么?
(2)你能畫出圓臺的三視圖嗎?
(3)三視圖對于認識空間幾何體有何作用?你有何體會?
教師巡視指導(dǎo),解答學(xué)生在學(xué)習(xí)中遇到的困難,然后讓學(xué)生發(fā)表對上述問題的看法。
4、請同學(xué)們畫出1.2-4中其他物體表示的空間幾何體的三視圖,并與其他同學(xué)交流。
(三)鞏固練習(xí)
課本P12練習(xí)1、2P18習(xí)題1.2A組1
(四)歸納整理
請學(xué)生回顧發(fā)表如何作好空間幾何體的三視圖
(五)課外練習(xí)
1、自己動手制作一個底面是正方形,側(cè)面是全等的三角形的棱錐模型,并畫出它的三視圖。
2、自己制作一個上、下底面都是相似的正三角形,側(cè)面是全等的等腰梯形的棱臺模型,并畫出它的三視圖。
高中數(shù)學(xué)經(jīng)典教案篇4
一、教材分析
1、教材地位和作用:二面角是我們?nèi)粘I钪薪?jīng)常見到的、很普通的一個空間圖形?!岸娼恰笔侨私贪妗稊?shù)學(xué)》第二冊(下B)中9.7的內(nèi)容。它是在學(xué)生學(xué)過兩條異面直線所成的角、直線和平面所成角、又要重點研究的一種空間的角,它是為了研究兩個平面的垂直而提出的一個概念,也是學(xué)生進一步研究多面體的基礎(chǔ)。因此,它起著承上啟下的作用。通過本節(jié)課的學(xué)習(xí)還對學(xué)生系統(tǒng)地掌握直線和平面的知識乃至于創(chuàng)新能力的培養(yǎng)都具有十分重要的意義。
2、教學(xué)目標(biāo):
知識目標(biāo):(1)正確理解二面角及其平面角的概念,并能初步運用它們解決實際問題。
(2)進一步培養(yǎng)學(xué)生把空間問題轉(zhuǎn)化為平面問題的化歸思想。
能力目標(biāo):(1)突出對類比、直覺、發(fā)散等探索性思維的培養(yǎng),從而提高學(xué)生的創(chuàng)新能力。(2)通過對圖形的觀察、分析、比較和操作來強化學(xué)生的動手操作能力。
德育目標(biāo):(1)使學(xué)生認識到數(shù)學(xué)知識來自實踐,并服務(wù)于實踐,增強學(xué)生應(yīng)用數(shù)學(xué)的意識(2)通過揭示線線、線面、面面之間的內(nèi)在聯(lián)系,進一步培養(yǎng)學(xué)生聯(lián)系的辯證唯物主義觀點。
情感目標(biāo):在平等的教學(xué)氛圍中,通過學(xué)生之間、師生之間的交流、合作和評價,拉近學(xué)生之間、師生之間的情感距離。
3、重點、難點:
重點:“二面角”和“二面角的平面角”的概念
難點:“二面角的平面角”概念的形成過程
二、教法分析
1、教學(xué)方法:在引入課題時,我采用多媒體、實物演示法,在新課探究中采用問題啟導(dǎo)、活動探究和類比發(fā)現(xiàn)法,在形成技能時以訓(xùn)練法、探究研討法為主。
2、教學(xué)控制與調(diào)節(jié)的措施:本節(jié)課由于充分運用了多媒體和實物教具,預(yù)計學(xué)生對二面角及二面角平面角的概念能夠理解,根據(jù)學(xué)生及教學(xué)的實際情況,估計二面角的具體求法一節(jié)課內(nèi)完成有一定的困難,所以將其放在下節(jié)課。
3、教學(xué)手段:教學(xué)手段的現(xiàn)代化有利于提高課堂效益,有利于創(chuàng)新人才的培養(yǎng),根據(jù)本節(jié)課的教學(xué)需要,確定利用多媒體課件來輔助教學(xué);此外,為加強直觀教學(xué),還要預(yù)先做好一些二面角的模型。
三、學(xué)法指導(dǎo)
1、樂學(xué):在整個學(xué)習(xí)過程中學(xué)生要保持強烈的好奇心和求知欲,不斷強化自己的創(chuàng)新意識,全身心地投入到學(xué)習(xí)中去,成為學(xué)習(xí)的主人。
2、學(xué)會:在掌握基礎(chǔ)知識的同時,學(xué)生要注意領(lǐng)會化歸、類比聯(lián)想等數(shù)學(xué)思想方法的運用,學(xué)會建立完善的認知結(jié)構(gòu)。
3、會學(xué):通過自己親身參與,學(xué)生要領(lǐng)會復(fù)習(xí)類比和深入研究這兩種知識創(chuàng)新的方法,從而既學(xué)到知識,又學(xué)會創(chuàng)新,既能解決問題,更能發(fā)現(xiàn)問題。
四、教學(xué)過程
心理學(xué)研究表明,當(dāng)學(xué)生明確數(shù)學(xué)概念的學(xué)習(xí)目的和意義時,就會對概念的學(xué)習(xí)產(chǎn)生濃厚的興趣。創(chuàng)設(shè)問題情境,激發(fā)了學(xué)生的創(chuàng)新意識,營造了創(chuàng)新思維的氛圍。
(一)、二面角
1、揭示概念產(chǎn)生背景。
問題情境1、在平面幾何中“角”是怎樣定義的?
問題情境2、在立體幾何中我們還學(xué)習(xí)了哪些角?
問題情境3、運用多媒體和身邊的實例,展示我們遇到的另一種空間的角——二面角(板書課題)。
通過這三個問題,打開了學(xué)生的原有認知結(jié)構(gòu),為知識的創(chuàng)新做好了準備;同時也讓學(xué)生領(lǐng)會到,二面角這一概念的產(chǎn)生是因為它與我們的生活密不可分,激發(fā)學(xué)生的求知欲。2、展現(xiàn)概念形成過程。
問題情境4、那么,應(yīng)該如何定義二面角呢?
創(chuàng)設(shè)這個問題情境,為學(xué)生創(chuàng)新思維的展開提供了空間。引導(dǎo)學(xué)生回憶平面幾何中“角”這一概念的引入過程。教師應(yīng)注意多讓學(xué)生說,對于學(xué)生的創(chuàng)新意識和創(chuàng)新結(jié)果,教師要給與積極的評價。
問題情境5、同學(xué)們能舉出一些二面角的實例嗎?通過實際運用,可以促使學(xué)生更加深刻地理解概念。
(二)、二面角的平面角
1、揭示概念產(chǎn)生背景。平面幾何中可以把角理解為是一個旋轉(zhuǎn)量,同樣一個二面角也可以看作是一個半平面以其棱為軸旋轉(zhuǎn)而成的,也是一個旋轉(zhuǎn)量。說明二面角不僅有大小,而且其大小是唯一確定的。平面
與平面的位置關(guān)系,總的說來只有相交或平行兩種情況,為了對相交平面的相互位置作進一步的探討,我們有必要來研究二面角的度量問題。
問題情境6、二面角的大小應(yīng)該怎么度量?能否轉(zhuǎn)化為平面角來處理?這樣就從度量二面角大小的需要上揭示了二面角的平面角概念產(chǎn)生的背景。
2、展現(xiàn)概念形成過程
(1)、類比。教師啟發(fā),尋找類比聯(lián)想的對象。
問題情境7、我們以前碰到過類似的問題嗎?引導(dǎo)學(xué)生回憶前面所學(xué)過的兩種空間角的定義,電腦演示以提高效率。
問題情境8、兩定義的共同點是什么?生:空間角總是轉(zhuǎn)化為平面的角,并且這個角是唯一確定的。
問題情境9、這個平面的角的頂點及兩邊是如何確定的?
(2)、提出猜想:二面角的大小也可通過平面的角來定義。對學(xué)生提出的猜想,教師應(yīng)該給予充分的肯定,以培養(yǎng)他們大膽猜想的意識和習(xí)慣,這對強化他們的創(chuàng)新意識大有幫助。
問題情境10、那么,這個角的頂點及兩邊應(yīng)如何確定呢?生:頂點放在棱上,兩邊分別放在兩個面內(nèi)。這也是學(xué)生直覺思維的結(jié)果。
(3)、探索實驗。通過實驗,激發(fā)了學(xué)生的學(xué)習(xí)興趣,培養(yǎng)了學(xué)生的動手操作能力。
(4)、繼續(xù)探索,得到定義。
問題情境11、那么,怎樣使這個角的大小唯一確定呢?師生共同探討后發(fā)現(xiàn),角的頂點確定后,要使此角的大小唯一確定,只須使它的兩條邊在平面內(nèi)唯一確定,聯(lián)想到平面內(nèi)過直線上一點的垂線的唯一性,由此發(fā)現(xiàn)二面角的大小的一種描述方法。
(5)、自我驗證:要求學(xué)生閱讀課本上的定義。并說明定義的合理性,教師作適當(dāng)?shù)囊龑?dǎo),并加以理論證明。
(三)、二面角及其平面角的畫法
主要分為直立式和平臥式兩種,用電腦《幾何畫板》作圖。
(四)、范例分析
為鞏固學(xué)生所學(xué)知識,由于時間的關(guān)系設(shè)置了一道例題。于實際生活,不但培養(yǎng)了學(xué)生分析問題和解決問題的能力,也讓學(xué)生領(lǐng)會到數(shù)學(xué)概念來自生活實際,并服務(wù)于生活實際,從而增強他們應(yīng)用數(shù)學(xué)的意識。
例:一張邊長為10厘米的正三角形紙片ABc,以它的高AD為折痕,折成一個1200二面角,求此時B、c兩點間的距離。
分析:涉及二面角的計算問題,關(guān)鍵是找出(或作出)該二面角的平面角。引導(dǎo)學(xué)生充分利用已知圖形的性質(zhì),最后發(fā)現(xiàn)可由定義找出該二面角的平面角??勺寣W(xué)生先做,為調(diào)動學(xué)生的積極性,并增加學(xué)生的參與感,活躍課堂的氣氛,教師可給學(xué)生板演的機會。教師講評時強調(diào)解題規(guī)范即必須證明∠BDc是二面角B—AD—c的平面角。
變式訓(xùn)練:圖中共有幾個二面角?能求出它們的大小嗎?根據(jù)課堂實際情況,本題的變式訓(xùn)練也可作為課后思考題。
題后反思:(1)解題過程中必須證明∠BDc是二面角B—AD—c的平面角。
(2)求二面角的平面角的方法是:先找(或作)——后證——再解(三角形)
(五)、練習(xí)、小結(jié)與作業(yè)
練習(xí):習(xí)題9.7的第3題
小結(jié)在復(fù)習(xí)完二面角及其平面角的概念后,要求學(xué)生對空間中三種角加以比較、歸納,以促成學(xué)生建立起空間中角這一概念系統(tǒng)。同時要求學(xué)生對本節(jié)課的學(xué)習(xí)方法進行總結(jié),領(lǐng)會復(fù)習(xí)類比和深入研究這兩種知識創(chuàng)新的方法。
作業(yè):習(xí)題9.7的第4題
思考題:見例題
五、板書設(shè)計(見課件)
以上是我對《二面角》授課的初步設(shè)想,不足之處,懇請大家批評指正,謝謝!
高中數(shù)學(xué)經(jīng)典教案篇5
教學(xué)目標(biāo):
1。理解并掌握瞬時速度的定義;
2。會運用瞬時速度的定義求物體在某一時刻的瞬時速度和瞬時加速度;
3。理解瞬時速度的實際背景,培養(yǎng)學(xué)生解決實際問題的能力。
教學(xué)重點:
會運用瞬時速度的定義求物體在某一時刻的瞬時速度和瞬時加速度。
教學(xué)難點:
理解瞬時速度和瞬時加速度的定義。
教學(xué)過程:
一、問題情境
1。問題情境。
平均速度:物體的運動位移與所用時間的比稱為平均速度。
問題一平均速度反映物體在某一段時間段內(nèi)運動的快慢程度。那么如何刻畫物體在某一時刻運動的快慢程度?
問題二跳水運動員從10m高跳臺騰空到入水的過程中,不同時刻的速度是不同的。假設(shè)t秒后運動員相對于水面的高度為h(t)=-4.9t2+6.5t+10,試確定t=2s時運動員的速度。
2。探究活動:
(1)計算運動員在2s到2.1s(t∈)內(nèi)的平均速度。
(2)計算運動員在2s到(2+?t)s(t∈)內(nèi)的平均速度。
(3)如何計算運動員在更短時間內(nèi)的平均速度。
探究結(jié)論:
時間區(qū)間
t
平均速度
0.1
-13.59
0.01
-13.149
0.001
-13.1049
0.0001
-13.10049
0.00001
-13.100049
0.000001
-13.1000049
當(dāng)?t?0時,?-13.1,
該常數(shù)可作為運動員在2s時的瞬時速度。
即t=2s時,高度對于時間的瞬時變化率。
二、建構(gòu)數(shù)學(xué)
1。平均速度。
設(shè)物體作直線運動所經(jīng)過的路程為,以為起始時刻,物體在?t時間內(nèi)的平均速度為。
可作為物體在時刻的速度的近似值,?t越小,近似的程度就越好。所以當(dāng)?t?0時,極限就是物體在時刻的瞬時速度。
三、數(shù)學(xué)運用
例1物體作自由落體運動,運動方程為,其中位移單位是m,時
間單位是s,,求:
(1)物體在時間區(qū)間s上的平均速度;
(2)物體在時間區(qū)間上的平均速度;
(3)物體在t=2s時的瞬時速度。
分析
解
(1)將?t=0.1代入上式,得:=2.05g=20.5m/s。
(2)將?t=0.01代入上式,得:=2.005g=20.05m/s。
(3)當(dāng)?t?0,2+?t?2,從而平均速度的極限為:
例2設(shè)一輛轎車在公路上作直線運動,假設(shè)時的速度為,
求當(dāng)時轎車的瞬時加速度。
解
∴當(dāng)?t無限趨于0時,無限趨于,即=。
練習(xí)
課本P12—1,2。
四、回顧小結(jié)
問題1本節(jié)課你學(xué)到了什么?
1理解瞬時速度和瞬時加速度的定義;
2實際應(yīng)用問題中瞬時速度和瞬時加速度的求解;
問題2解決瞬時速度和瞬時加速度問題需要注意什么?
注意當(dāng)?t?0時,瞬時速度和瞬時加速度的極限值。
問題3本節(jié)課體現(xiàn)了哪些數(shù)學(xué)思想方法?
2極限的思想方法。
3特殊到一般、從具體到抽象的推理方法。
五、課外作業(yè)
高中數(shù)學(xué)經(jīng)典教案篇6
一、教學(xué)目標(biāo)
知識與技能:
理解任意角的概念(包括正角、負角、零角)與區(qū)間角的概念。
過程與方法:
會建立直角坐標(biāo)系討論任意角,能判斷象限角,會書寫終邊相同角的集合;掌握區(qū)間角的集合的書寫。
情感態(tài)度與價值觀:
1、提高學(xué)生的推理能力;
2、培養(yǎng)學(xué)生應(yīng)用意識。
二、教學(xué)重點、難點:
教學(xué)重點:
任意角概念的理解;區(qū)間角的集合的書寫。
教學(xué)難點:
終邊相同角的集合的表示;區(qū)間角的集合的書寫。
三、教學(xué)過程
(一)導(dǎo)入新課
1、回顧角的定義
①角的第一種定義是有公共端點的兩條射線組成的圖形叫做角。
②角的第二種定義是角可以看成平面內(nèi)一條射線繞著端點從一個位置旋轉(zhuǎn)到另一個位置所形成的圖形。
(二)教學(xué)新課
1、角的有關(guān)概念:
①角的定義:
角可以看成平面內(nèi)一條射線繞著端點從一個位置旋轉(zhuǎn)到另一個位置所形成的圖形。
②角的名稱:
注意:
⑴在不引起混淆的情況下,“角α ”或“∠α ”可以簡化成“α ”;
⑵零角的終邊與始邊重合,如果α是零角α =0°;
⑶角的概念經(jīng)過推廣后,已包括正角、負角和零角。
⑤練習(xí):請說出角α、β、γ各是多少度?
2、象限角的概念:
①定義:若將角頂點與原點重合,角的始邊與x軸的非負半軸重合,那么角的終邊(端點除外)在第幾象限,我們就說這個角是第幾象限角。
例1、如圖⑴⑵中的角分別屬于第幾象限角?
【本文地址:http://www.aiweibaby.com/zuowen/115540.html】