高三數(shù)學教案文案(優(yōu)秀12篇)

格式:DOC 上傳日期:2023-11-15 07:18:13
高三數(shù)學教案文案(優(yōu)秀12篇)
時間:2023-11-15 07:18:13     小編:紫衣夢

教案是一種重要的教育工具,通過編寫教案可以培養(yǎng)教師的教學能力。教案中的評價方式應多樣化,能夠全面、客觀地評價學生的學習情況。教案范文中的教學方法和策略,以及教學過程的設計,值得教師們借鑒和應用。

高三數(shù)學教案文案篇一

理解數(shù)列的概念,掌握數(shù)列的`運用。

【知識點精講】。

1、數(shù)列:按照一定次序排列的一列數(shù)(與順序有關)。

2、通項公式:數(shù)列的第n項an與n之間的函數(shù)關系用一個公式來表示an=f(n)。

(通項公式不)。

3、數(shù)列的表示:

(1)列舉法:如1,3,5,7,9……;。

(2)圖解法:由(n,an)點構成;

(3)解析法:用通項公式表示,如an=2n+1。

5、任意數(shù)列{an}的前n項和的性質(zhì)。

高三數(shù)學教案文案篇二

§3.1.1數(shù)列、數(shù)列的通項公式目的:要求學生理解數(shù)列的概念及其幾何表示,理解什么叫數(shù)列的通項公式,給出一些數(shù)列能夠?qū)懗銎渫椆?,已知通項公式能夠求?shù)列的項。

重點:1數(shù)列的概念。按一定次序排列的一列數(shù)叫做數(shù)列。數(shù)列中的每一個數(shù)叫做數(shù)列的項,數(shù)列的第n項an叫做數(shù)列的通項(或一般項)。由數(shù)列定義知:數(shù)列中的數(shù)是有序的,數(shù)列中的數(shù)可以重復出現(xiàn),這與數(shù)集中的數(shù)的無序性、互異性是不同的。

3.4.-1的正整數(shù)次冪:-1,1,-1,1,…。

5.無窮多個數(shù)排成一列數(shù):1,1,1,1,…。

二、提出課題:數(shù)列。

1.數(shù)列的定義:按一定次序排列的一列數(shù)(數(shù)列的有序性)。

2.名稱:項,序號,一般公式,表示法。

3.通項公式:與之間的函數(shù)關系式如數(shù)列1:數(shù)列2:數(shù)列4:

4.分類:遞增數(shù)列、遞減數(shù)列;常數(shù)列;擺動數(shù)列;有窮數(shù)列、無窮數(shù)列。

5.實質(zhì):從映射、函數(shù)的觀點看,數(shù)列可以看作是一個定義域為正整數(shù)集n-(或它的有限子集{1,2,…,n})的函數(shù),當自變量從小到大依次取值時對應的一列函數(shù)值,通項公式即相應的函數(shù)解析式。

6.用圖象表示:—是一群孤立的點例一(p111例一略)。

三、關于數(shù)列的通項公式1.不是每一個數(shù)列都能寫出其通項公式(如數(shù)列3)。

2.數(shù)列的通項公式不唯一如:數(shù)列4可寫成和。

3.已知通項公式可寫出數(shù)列的任一項,因此通項公式十分重要例二(p111例二)略。

五、小結:1.數(shù)列的有關概念2.觀察法求數(shù)列的通項公式。

六、作業(yè):練習p112習題3.1(p114)1、2。

2.寫出下面數(shù)列的一個通項公式,使它的前4項分別是下列各數(shù):(1)1、、、;(2)、、、;(3)、、、;(4)、、、。

3.求數(shù)列1,2,2,4,3,8,4,16,5,…的一個通項公式。

6.在數(shù)列{an}中a1=2,a17=66,通項公式或序號n的一次函數(shù),求通項公式。

7.設函數(shù)(),數(shù)列{an}滿足(1)求數(shù)列{an}的通項公式;(2)判斷數(shù)列{an}的單調(diào)性。

7.(1)an=(2)。

高三數(shù)學教案文案篇三

我發(fā)現(xiàn),許多學生的學習方法是:直接記住函數(shù)性質(zhì),在解題中套用結論,對結論的來源不理解,知其然不知其所以然,應用中不能變通和遷移。

本節(jié)的學習方法對后續(xù)內(nèi)容的學習具有指導意義。為了培養(yǎng)學法,充分關注學生的可持續(xù)發(fā)展,教師要轉換角色,站在初學者的位置上,和學生共同探索新知,共同體驗數(shù)形結合的研究方法,體驗周期函數(shù)的研究思路;幫助學生實現(xiàn)知識的意義建構,幫助學生發(fā)現(xiàn)和總結學習方法,使教師成為學生學習的高級合作伙伴。

教師要做到:

授之以漁,與之合作而漁,使學生享受漁之樂趣。因此。

1.本節(jié)要教給學生看圖象、找規(guī)律、思考提問、交流協(xié)作、探索歸納的學習方法。

2.通過本課的探索過程,培養(yǎng)學生觀察、分析、交流、合作、類比、歸納的學習能力及數(shù)形結合(看圖說話)的意識和能力。

高三數(shù)學教案文案篇四

1.板書要基本體現(xiàn)整堂課的內(nèi)容與方法,體現(xiàn)課堂進程,能簡明扼要反映知識結構及其相互聯(lián)系;能指導教師的教學進程、引導學生探索知識;同時不完全按課本上的呈現(xiàn)方式來編排板書。即體現(xiàn)系統(tǒng)性、程序性、概括性、指導性、啟發(fā)性、創(chuàng)造性的原則;(原則性)。

2.使用幻燈片輔助板書,節(jié)省課堂時間,使課堂進程更加連貫。(靈活性)。

高三數(shù)學教案文案篇五

結合已學過的數(shù)學實例和生活中的實例,體會演繹推理的重要性,掌握演繹推理的基本模式,并能運用它們進行一些簡單推理。

掌握演繹推理的基本模式,并能運用它們進行一些簡單推理。

一、復習。

二、引入新課。

1.假言推理。

假言推理是以假言判斷為前提的演繹推理。假言推理分為充分條件假言推理和必要條件假言推理兩種。

(1)充分條件假言推理的基本原則是:小前提肯定大前提的前件,結論就肯定大前提的后件;小前提否定大前提的后件,結論就否定大前提的前件。

(2)必要條件假言推理的基本原則是:小前提肯定大前提的后件,結論就要肯定大前提的前件;小前提否定大前提的前件,結論就要否定大前提的后件。

2.三段論。

三段論是指由兩個簡單判斷作前提和一個簡單判斷作結論組成的演繹推理。三段論中三個簡單判斷只包含三個不同的概念,每個概念都重復出現(xiàn)一次。這三個概念都有專門名稱:結論中的賓詞叫“大詞”,結論中的主詞叫“小詞”,結論不出現(xiàn)的那個概念叫“中詞”,在兩個前提中,包含大詞的叫“大前提”,包含小詞的'叫“小前提”。

3.關系推理指前提中至少有一個是關系判斷的推理,它是根據(jù)關系的邏輯性質(zhì)進行推演的??煞譃榧冴P系推理和混合關系推理。純關系推理就是前提和結論都是關系判斷的推理,包括對稱性關系推理、反對稱性關系推理、傳遞性關系推理和反傳遞性關系推理。

(1)對稱性關系推理是根據(jù)關系的對稱性進行的推理。

(2)反對稱性關系推理是根據(jù)關系的反對稱性進行的推理。

(3)傳遞性關系推理是根據(jù)關系的傳遞性進行的推理。

(4)反傳遞性關系推理是根據(jù)關系的反傳遞性進行的推理。

4.完全歸納推理是這樣一種歸納推理:根據(jù)對某類事物的全部個別對象的考察,已知它們都具有某種性質(zhì),由此得出結論說:該類事物都具有某種性質(zhì)。

オネ耆歸納推理可用公式表示如下:

オs1具有(或不具有)性質(zhì)p。

オs2具有(或不具有)性質(zhì)p……。

オsn具有(或不具有)性質(zhì)p。

オ(s1s2……sn是s類的所有個別對象)。

オニ以,所有s都具有(或不具有)性質(zhì)p。

オタ杉,完全歸納推理的基本特點在于:前提中所考察的個別對象,必須是該類事物的全部個別對象。否則,只要其中有一個個別對象沒有考察,這樣的歸納推理就不能稱做完全歸納推理。完全歸納推理的結論所斷定的范圍,并未超出前提所斷定的范圍。所以,結論是由前提必然得出的。應用完全歸納推理,只要遵循以下兩點,那末結論就必然是真實的:(1)對于個別對象的斷定都是真實的;(2)被斷定的個別對象是該類的全部個別對象。

小結:本節(jié)課學習了演繹推理的基本模式。

高三數(shù)學教案文案篇六

(一)教法說明教法的確定基于如下考慮:

(1)心理學的研究表明:只有內(nèi)化的東西才能充分外顯,只有學生自己獲取的知識,他才能靈活應用,所以要注重學生的自主探索。

(2)本節(jié)目的是讓學生學會如何探索、理解正、余弦函數(shù)的性質(zhì)。教師始終要注意的是引導學生探索,而不是自己探索、學生觀看,所以教師要引導,而且只能引導不能代辦,否則不但沒有教給學習方法,而且會讓學生產(chǎn)生依賴和倦怠。

(3)本節(jié)內(nèi)容屬于本源性知識,一般采用觀察、實驗、歸納、總結為主的方法,以培養(yǎng)學生自學能力。

所以,根據(jù)以人為本,以學定教的原則,我采取以問題為解決為中心、啟發(fā)為主的教學方法,形成教師點撥引導、學生積極參與、師生共同探討的課堂結構形式,營造一種民主和諧的課堂氛圍。

(二)教學手段說明:

為完成本節(jié)課的教學目標,突出重點、克服難點,我采取了以下三個教學手段:

(1)精心設計課堂提問,整個課堂以問題為線索,帶著問題探索新知,因為沒有問題就沒有發(fā)現(xiàn)。

(3)為節(jié)省課堂時間,制作幻燈片演示正、余弦函數(shù)圖象和性質(zhì),也可以使教學更生動形象和連貫。

高三數(shù)學教案文案篇七

【教學目標】:

(1)知識目標:

通過實例,了解簡單的邏輯聯(lián)結詞“且”、“或”的含義;

(2)過程與方法目標:

(3)情感與能力目標:

在知識學習的基礎上,培養(yǎng)學生簡單推理的技能。

【教學重點】:

通過數(shù)學實例,了解邏輯聯(lián)結詞“或”、“且”的含義,使學生能正確地表述相關數(shù)學內(nèi)容。

【教學難點】:

簡潔、準確地表述“或”命題、“且”等命題,以及對新命題真假的判斷。

【教學過程設計】:

教學環(huán)節(jié)教學活動設計意圖。

情境引入問題:

下列三個命題間有什么關系?

(1)12能被3整除;

(2)12能被4整除;

知識建構歸納總結:

一般地,用邏輯聯(lián)結詞“且”把命題p和命題q聯(lián)結起來,就得到一個新命題,

記作,讀作“p且q”。

引導學生通過通過一些數(shù)學實例分析,概括出一般特征。

1、引導學生閱讀教科書上的例1中每組命題p,q,讓學生嘗試寫出命題,判斷真假,糾正可能出現(xiàn)的邏輯錯誤。學習使用邏輯聯(lián)結詞“且”聯(lián)結兩個命題,根據(jù)“且”的含義判斷邏輯聯(lián)結詞“且”聯(lián)結成的新命題的真假。

2、引導學生閱讀教科書上的例2中每個命題,讓學生嘗試改寫命題,判斷真假,糾正可能出現(xiàn)的邏輯錯誤。

歸納總結:

當p,q都是真命題時,是真命題,當p,q兩個命題中有一個是假命題時,是假命題,

學習使用邏輯聯(lián)結詞“且”改寫一些命題,根據(jù)“且”的含義判斷原先命題的真假。

引導學生通過通過一些數(shù)學實例分析命題p和命題q以及命題的真假性,概括出這三個命題的真假性之間的一般規(guī)律。

高三數(shù)學教案文案篇八

一、教學目標:

掌握向量的概念、坐標表示、運算性質(zhì),做到融會貫通,能應用向量的有關性質(zhì)解決諸如平面幾何、解析幾何等的問題。

二、教學重點:

向量的性質(zhì)及相關知識的綜合應用。

三、教學過程:

(一)主要知識:

1、掌握向量的概念、坐標表示、運算性質(zhì),做到融會貫通,能應用向量的有關性質(zhì)解決諸如平面幾何、解析幾何等的問題。

(二)例題分析:略。

四、小結:

1、進一步熟練有關向量的運算和證明;能運用解三角形的知識解決有關應用問題,

2、滲透數(shù)學建模的思想,切實培養(yǎng)分析和解決問題的能力。

高三數(shù)學教案文案篇九

教學目標:

1、知識與技能:

1)了解導數(shù)概念的實際背景;

2)理解導數(shù)的概念、掌握簡單函數(shù)導數(shù)符號表示和基本導數(shù)求解方法;

3)理解導數(shù)的幾何意義;

4)能進行簡單的導數(shù)四則運算。

2、過程與方法:

先理解導數(shù)概念背景,培養(yǎng)觀察問題的能力;再掌握定義和幾何意義,培養(yǎng)轉化問題的能力;最后求切線方程及運算,培養(yǎng)解決問題的能力。

3、情態(tài)及價值觀;

讓學生感受數(shù)學與生活之間的聯(lián)系,體會數(shù)學的美,激發(fā)學生學習興趣與主動性。

教學重點:

1、導數(shù)的求解方法和過程;

2、導數(shù)公式及運算法則的熟練運用。

教學難點:

1、導數(shù)概念及其幾何意義的理解;

2、數(shù)形結合思想的靈活運用。

教學課型:復習課(高三一輪)。

教學課時:約1課時。

高三數(shù)學教案文案篇十

近年來的高考數(shù)學試題逐步做到科學化、規(guī)范化,堅持了穩(wěn)中求改、穩(wěn)中創(chuàng)新的原則??荚囶}不但堅持了考查全面,比例適當,布局合理的特點,也突出體現(xiàn)了變知識立意為能力立意這一舉措。更加注重考查考生進入高校學習所需的基本素養(yǎng),這些問題應引起我們在教學中的關注和重視。

20__年是湖南省新課標命題的第二年,數(shù)學試卷充分發(fā)揮數(shù)學作為基礎學科的作用,既重視考查中學數(shù)學基礎知識的掌握程度,又注意考查進入高校繼續(xù)學習的潛能。在前二年命題工作的基礎上做到了總體保持穩(wěn)定,深化能力立意,積極改革創(chuàng)新,兼顧了數(shù)學基礎、思想方法、思維、應用和潛能等多方面的考查,融入課程改革的理念,拓寬題材,選材多樣化,寬角度、多視點地考查數(shù)學素養(yǎng),多層次地考查思想能力,充分體現(xiàn)出湖南卷的特色:

1、試題題型平穩(wěn)突出對主干知識的考查重視對新增內(nèi)容的考查。

2、充分考慮文、理科考生的思維水平與不同的學習要求,體現(xiàn)出良好的層次性。

3、重視對數(shù)學思想方法的考查。

4、深化能力立意,考查考生的學習潛能。

5、重視基礎,以教材為本。

6、重視應用題設計,考查考生數(shù)學應用意識。

二、教學計劃與要求。

新課已授完,高三將進入全面復習階段,全年復習分兩輪進行。

第一輪為系統(tǒng)復習(第一學期),此輪要求突出知識結構,扎實打好基礎知識,全面落實考點,要做到每個知識點,方法點,能力點無一遺漏。在此基礎上,注意各部分知識點在各自發(fā)展過程中的縱向聯(lián)系,以及各個部分之間的橫向聯(lián)系,理清脈絡,抓住知識主干,構建知識網(wǎng)絡。在教學中重點抓好各中通性、通法以及常規(guī)方法的復習,是學生形成一些最基本的數(shù)學意識,掌握一些最基本的數(shù)學方法。同時有意識進行一定的綜合訓練,先小綜合再大綜合,逐步提高學生解題能力。

三、具體方法措施。

1、認真學習《考試說明》,研究高考試題,提高復習課的效率。

《考試說明》是命題的依據(jù),復習的依據(jù)、高考試題是《考試說明》的具體體現(xiàn)。只有研究近年來的考試試題,才能加深對《考試說明》的理解,找到我們與命題專家在認識《考試說明》上的差距。并力求在復習中縮小這一差距,更好地指導我們的復習。

2、高質(zhì)量備課,

參考網(wǎng)上的課件資料,結合我校學生實際,高度重視基礎知識,基本技能和基本方法的復習。充分發(fā)揮全組老師的集體智慧,確保每節(jié)課件都是高質(zhì)量的。統(tǒng)一的教案、統(tǒng)一的課件。

3、高效率的上好每節(jié)課,

重視通性、通法的落實。要把復習的重點放在教材中典型例題、習題上;放在體現(xiàn)通性、通法的例題、習題上;放在各部分知識網(wǎng)絡之間的內(nèi)在聯(lián)系上抓好課堂教學質(zhì)量,定出實施方法和評價方案。

4、狠抓作業(yè)批改、講評,教材作業(yè)、練習課內(nèi)完成,課外作業(yè)認真批改、講評。一題多思多解,提煉思想方法,提升學生解題能力。

5、認真落實月考,考前作好指導復習,試卷講評起到補缺長智的作用。

6、結合實際,了解學生,分類指導。

高考復習要結合高考的實際,也要結合學生的實際,要了解學生的全面情況,實行綜合指導??赡苡械膶W生應專攻薄弱環(huán)節(jié),而另一些學生則應揚長避短。了解學生要加強量的分析,建立檔案、了解學生,才有利于個別輔導,因材施教,對于好的學生,重在提高;對于差的學生,重在補缺。

四、復習參考資料。

1、20__年數(shù)學科《考試說明》(全國)及湖南省《補充說明》。

2、《創(chuàng)新設計》高考第一輪總復習數(shù)學及《學海導航》高考第一輪總復習數(shù)學。

五、教學參考進度。

第一輪的復習要以基礎知識、基本技能、基本方法為主,為高三數(shù)學會考做好準備。

高三數(shù)學教案文案篇十一

引出數(shù)形結合思想方法,強調(diào)其含義和重要性,告訴學生,本節(jié)課將利用數(shù)形結合方法來研究,會使學習變得輕松有趣。

采用這樣的引入方法,目的是打消學生對函數(shù)學習的畏難情緒,引起學生注意,也激起學生好奇和興趣。

(二)新知探索主要環(huán)節(jié),分為兩個部分。

教學過程如下:

第一部分————師生共同研究得出正弦函數(shù)的性質(zhì)。

1.定義域、值域2.周期性。

3.單調(diào)性(重難點內(nèi)容)。

為了突出重點、克服難點,采用以下手段和方法:

(1)利用多媒體動態(tài)演示函數(shù)性質(zhì),充分體現(xiàn)數(shù)形結合的重要作用;。

(2)以層層深入,環(huán)環(huán)相扣的課堂提問,啟發(fā)學生思維,反饋課堂信息,使問題成為探索新知的線索和動力,隨著問題的解決,學生的積極性將被調(diào)動起來。

(3)單調(diào)區(qū)間的探索過程是:

先在靠近原點的一個單調(diào)周期內(nèi)找出正弦函數(shù)的一個增區(qū)間,由此表示出所有的增區(qū)間,體現(xiàn)從特殊到一般的知識認識過程。

**教師結合圖象幫助學生理解并強調(diào)“距離”(“長度”)是周期的多少倍。

為什么要這樣強調(diào)呢?

因為這是對知識的一種意義建構,有助于以后理解記憶正弦型函數(shù)的相關性質(zhì)。

4.對稱性。

設計意圖:

(1)因為奇偶性是特殊的對稱性,掌握了對稱性,容易得出奇偶性,所以著重講清對稱性。體現(xiàn)了從一般到特殊的知識再現(xiàn)過程。

(2)從正弦函數(shù)的對稱性看到了數(shù)學的對稱之美、和諧之美,體現(xiàn)了數(shù)學的審美功能。

5.最值點和零值點。

有了對稱性的理解,容易得出此性質(zhì)。

第二部分————學習任務轉移給學生。

設計意圖:

(3)通過課堂教學結構的改革,提高課堂教學效率,最終使學生成為獨立的學習者,這也符合建構主義的教學原則。

(三)鞏固練習。

補充和選作題體現(xiàn)了課堂要求的差異性。

(四)結課。

高三數(shù)學教案文案篇十二

教學重難點。

教學過程。

【知識點精講】。

1、數(shù)列:按照一定次序排列的一列數(shù)(與順序有關)。

2、通項公式:數(shù)列的第n項an與n之間的函數(shù)關系用一個公式來表示an=f(n)。

(通項公式不)。

3、數(shù)列的表示:。

(1)列舉法:如1,3,5,7,9……;。

(2)圖解法:由(n,an)點構成;。

(3)解析法:用通項公式表示,如an=2n+1。

5、任意數(shù)列{an}的前n項和的性質(zhì)。

【本文地址:http://www.aiweibaby.com/zuowen/12109546.html】

全文閱讀已結束,如果需要下載本文請點擊

下載此文檔