人教版初中完全平方公式教案(熱門14篇)

格式:DOC 上傳日期:2023-11-16 04:29:12
人教版初中完全平方公式教案(熱門14篇)
時間:2023-11-16 04:29:12     小編:曼珠

教案的編寫是教師有效組織教學的重要手段和基礎。教案的編寫應該注重教學方法的選擇和教學資源的合理運用。以下是小編整理的一些編寫教案時的注意事項,請大家一起來看看。

人教版初中完全平方公式教案篇一

重點、難點根據(jù)公式的特征及問題的特征選擇適當?shù)墓接嬎?

教學過程。

一、議一議。

1.邊長為(a+b)的正方形面積是多少?

2.邊長分別為a、b拍的兩個正方形面積和是多少?

3.你能比較(1)(2)的結果嗎?說明你的理由.師生共同討論:學生回答(1)(a+b)(2)a+b(3)因為(a+b)=a+2ab+b,所以(a+b)-(a+b)=a+2ab+b-a-b=2ab,即(1)中的正方形面積比(2)中的正方形面積大.

二、做一做。

例1.利用完全平方式計算1.102。

三、試一試。

計算:。

1.(a+b+c)。

2.(a+b)師生共同分析:對于1要把多項式完全平方轉化為二項式的完全平方,要使用加法結合律,為使用完全平方公式創(chuàng)造條件.如(a+b+c)=[a+(b+c)]對于(2)可化為(a+b)=(a+b)(a+b).學生動筆:在練習本上解答,并與同伴交流你的做法.學生敘述。

四、隨堂練習。

p381。

五、小結。

本節(jié)課進一步學習了完全平方公式,在應用此公式運算時注意以下幾點.1.使用完全平方公式首先要熟記公式和公式的'特征,不能出現(xiàn)(ab)=ab的錯誤,或(ab)=aab+b(漏掉2倍)等錯誤.2.要能根據(jù)公式的特征及題目的特征靈活選擇適當?shù)墓接嬎?3.用加法結合律,可為使用公式創(chuàng)造了條件.利用了這種方法,可以把多項式的完全平方轉化為二項式的完全平方.

六、作業(yè)。

課本習題1.14p381、2、3.

七、教后反思。

1.9整式的除法第一課時單項式除以單項式教學目標1.經歷探索單項式除法的法則過程,了解單項式除法的意義.

2.理解單項式除法法則,會進行單項式除以單項式運算.重點、難點重點:單項式除以單項式的運算.難點:單項式除以單項式法則的理解.

將本文的word文檔下載到電腦,方便收藏和打印。

人教版初中完全平方公式教案篇二

1、經歷探索完全平方公式的過程,發(fā)展學生觀察、交流、歸納、猜測、驗證等能力。

3、數(shù)形結合的數(shù)學思想和方法。

會推導完全平方公式,并能運用公式進行簡單的計算。

掌握完全平方公式的結構特征,理解公式中a、b的廣泛含義。

一、學習準備。

1、利用多項式乘以多項式計算:(a+b)2(a—b)2。

2、這兩個特殊形式的多項式乘法結果稱為完全平方公式。

3、完全平方公式的。幾何意義:閱讀課本64頁,完成填空。

(a+b)2=a2+2ab+b2。

(a—b)2=a2—2ab+b2。

左邊是形式,右邊有三項,其中兩項是形式,另一項是()。

www.。

5、兩個完全平方公式的轉化:(a—b)2=2=()2+2()+()2=()。

二、合作探究。

1、利用乘法公式計算:

(3a+2b)2(2)(—4x2—1)2。

分析:要分清題目中哪個式子相當于公式中的a,哪個式子相當于公式中的b。

2、利用乘法公式計算:

992(2)()2。

分析:要利用完全平方公式,需具備完全平方公式的結構,所以992可以轉化()2,()2可以轉化為()2。

(a+b+c)2(2)(a—b)3。

三、學習。

對照學習目標,通過預習,你覺得自己有哪些方面的收獲?又存在哪些方面的疑惑?

四、自我測試。

1、下列計算是否正確,若不正確,請訂正;

(1)(—1+3a)2=9a2—6a+1。

(2)(3x2—)2=9x4—。

(3)(xy+4)2=x2y2+16。

(4)(a2b—2)2=a2b2—2a2b+4。

2、利用乘法公式計算:

(1)(3x+1)2。

(2)(a—3b)2。

(3)(—2x+)2。

(4)(—3m—4n)2。

3、利用乘法公式計算:

9992。

4、先化簡,再求值;

(m—3n)2—(m+3n)2+2,其中m=2,n=3。

五、思維拓展。

2、多項式4x2+1加上一個單項式后,使它能成為一個整式的完全平方,那么加上的單項式可以是()。

3、已知(x+y)2=9,(x—y)2=5,求xy的值。

4、x+y=4,x—y=10,那么xy=()。

5、已知x—=4,則x2+=()。

人教版初中完全平方公式教案篇三

本節(jié)內容是人教版教材八年級上冊,第十四章第2節(jié)乘法公式的第二課時――完全平方公式。

完全平方公式是乘法公式的重要組成部分,也是乘法運算知識的升華,它是在學生學習整式乘法后,對多項式乘法中出現(xiàn)的一種特殊的算式的總結,體現(xiàn)了從一般到特殊的思想方法。完全平方公式是學生后續(xù)學好因式分解、分式運算的必備知識,它還是配方法的基本模式,為以后學習一元二次方程、函數(shù)等知識奠定了基礎,所以說完全平方公式屬于代數(shù)學的基礎地位。

本節(jié)課內容是在學生掌握了平方差公式的基礎上,研究完全平方公式的推導和應用,公式的發(fā)現(xiàn)與驗證為學生體驗規(guī)律探索提供了一種較好的模式,培養(yǎng)學生逐步形成嚴密的邏輯推理能力。完全平方公式的學習對簡化某些代數(shù)式的運算,培養(yǎng)學生的求簡意識很有幫助。使學生了解到完全平方公式是有力的數(shù)學工具。

重點:掌握完全平方公式,會運用公式進行簡單的計算。

難點:理解公式中的字母含義,即對公式中字母a、b的理解與正確應用。

(1)經歷探索完全平方公式的推導過程,掌握完全平方公式,并能正確運用公式進行簡單計算。

(2)進一步發(fā)展學生的符號感和推理能力,了解公式的幾何背景,感受數(shù)與形之間的聯(lián)系,學會獨立思考。

(3)通過推導完全平方公式及分析結構特征,培養(yǎng)學生觀察、分析、歸納的能力,學會與他人合作交流,體驗解決問題的多樣性。

(4)體驗完全平方公式可以簡化運算從而激發(fā)學生的學習興趣;在自主探究、合作交流的學習過程中獲得體驗成功的喜悅,增強學習數(shù)學的自信心。

學情分析:課程標準提出數(shù)學教學活動必須建立在學生的認知發(fā)展水平和已有的知識經驗基礎之上,本節(jié)課就是在前面的學習中,學生已經掌握了整式的乘法運算及平方差公式的基礎上開展的,具備了初步的總結歸納能力。另外,14歲的中學生充滿了好奇心,有較強的求知欲、創(chuàng)造欲、表現(xiàn)欲,所以只有能調動學生的學習熱情,本節(jié)內容才較易掌握。但八年級學生的探究能力有差異,邏輯推理能力也有待于提高,而且易粗心馬虎,這都是本節(jié)課要注意的問題。

學法:以自主探究為主要學習方式,使學生在獨立思考、歸納總結、合作交流。

總結反思中獲得數(shù)學知識與技能。

教法:以啟發(fā)引導式為主要教學方式,在引導探究、歸納總結、典例精析、合作交流的教學過程中,教師做好組織者和引導者,讓學生在老師的指導下處于主動探究的學習狀態(tài)。

在教學中,教師在精心設置教學環(huán)節(jié)中,做到以學生為主體,做好組織者和引導者,全面評價學生在知識技能、數(shù)學思考、問題解決和情感態(tài)度等方面的表現(xiàn)。教師通過情境引入、提供問題引導學生從已有的知識為出發(fā)點,自主探究,發(fā)現(xiàn)問題,深入思考。學生解決問題要以獨立思考為主,當遇到困難時學會求助交流,教師也要給學生思考交流的時間,讓學生經歷得出結論的過程,培養(yǎng)發(fā)現(xiàn)問題解決問題的能力。

在整個學習過程中,通過對學生參與自主探究的程度、合作交流的意識以及獨立思考的習慣,發(fā)現(xiàn)問題的能力進行評價,并對學生的想法或結論給予鼓勵評價。

人教版初中完全平方公式教案篇四

(2)切勿把“乘積項”2ab中的2丟掉.

今后在教學中?,要注意以下幾點:

1.讓學生自編幾道符合平方差公式結構的計算題,目的是辨認題目的結構特征.

2.引入完全平方公式,讓學生用文字概括公式的內容,培養(yǎng)抽象的數(shù)字思維能力.

人教版初中完全平方公式教案篇五

探索單項式除以單項式法則(出示投影1)計算下列各題,并說說你的理由1.xyx,(8mn)(2mn),(abc)(3ab).師生共同分析:此題是做除法運算,可以從兩方面思考:根據(jù)除法是乘法的逆運算,將除法問題轉化為乘法問題去解決,即()x=xy,由單項式乘以單項式法則可得(xy)x=xy,因此,xyx=xy.另外,根據(jù)同底數(shù)冪的除法法則,由約分也可得=xy.學生動筆:寫出(2)(3)題的結果。教師板書:xyx=xy,(8mn)(2mn)=4n,(abc)(3ab)=abc師:以上運算是單項式除以單項式的運算,你能說說如何進行單項式除以單項式的運算?學生活動:小組討論,教師引導學生從系數(shù)、同底數(shù)冪、只在被除式含有的字母三方面思考,討論充分后,由一名同學敘述,其余同學補充糾正。出示單項式除法法則(投影顯示)單項式相除,把系數(shù)、同底數(shù)冪分別相除后,作為商的因式;對于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個因式。

p401學生活動:讓四名同學到黑板板演,其余同學在練習本上計算,同伴可交流,互相訂正。教師巡回檢查,對存在問題及時更正。待四名板演同學完成后,師生共同訂正。

本節(jié)課主要學習了單項式除以單項式的運算。在運用法則計算時應注意以下幾點:

1.系數(shù)相除與同底數(shù)冪相除的區(qū)別;

2.符號問題;

人教版初中完全平方公式教案篇六

一、教學內容:

本節(jié)內容是人教版教材八年級上冊,第十四章第2節(jié)乘法公式的第二課時——完全平方公式。

二、教材分析:

完全平方公式是乘法公式的重要組成部分,也是乘法運算知識的升華,它是在學生學習整式乘法后,對多項式乘法中出現(xiàn)的一種特殊的算式的總結,體現(xiàn)了從一般到特殊的思想方法。完全平方公式是學生后續(xù)學好因式分解、分式運算的必備知識,它還是配方法的基本模式,為以后學習一元二次方程、函數(shù)等知識奠定了基礎,所以說完全平方公式屬于代數(shù)學的基礎地位。

本節(jié)課內容是在學生掌握了平方差公式的基礎上,研究完全平方公式的推導和應用,公式的發(fā)現(xiàn)與驗證為學生體驗規(guī)律探索提供了一種較好的模式,培養(yǎng)學生逐步形成嚴密的邏輯推理能力。完全平方公式的學習對簡化某些代數(shù)式的運算,培養(yǎng)學生的求簡意識很有幫助。使學生了解到完全平方公式是有力的數(shù)學工具。

重點:掌握完全平方公式,會運用公式進行簡單的計算。

難點:理解公式中的字母含義,即對公式中字母a、b的理解與正確應用。

三、教學目標。

(1)經歷探索完全平方公式的推導過程,掌握完全平方公式,并能正確運用公式進行簡單計算。

(2)進一步發(fā)展學生的符號感和推理能力,了解公式的幾何背景,感受數(shù)與形之間的聯(lián)系,學會獨立思考。

(3)通過推導完全平方公式及分析結構特征,培養(yǎng)學生觀察、分析、歸納的能力,學會與他人合作交流,體驗解決問題的多樣性。

(4)體驗完全平方公式可以簡化運算從而激發(fā)學生的學習興趣;在自主探究、合作交流的學習過程中獲得體驗成功的喜悅,增強學習數(shù)學的自信心。

四、學情分析與教法學法。

學情分析:課程標準提出數(shù)學教學活動必須建立在學生的認知發(fā)展水平和已有的知識經驗基礎之上,本節(jié)課就是在前面的學習中,學生已經掌握了整式的乘法運算及平方差公式的基礎上開展的,具備了初步的總結歸納能力。另外,14歲的中學生充滿了好奇心,有較強的求知欲、創(chuàng)造欲、表現(xiàn)欲,所以只有能調動學生的學習熱情,本節(jié)內容才較易掌握。但八年級學生的探究能力有差異,邏輯推理能力也有待于提高,而且易粗心馬虎,這都是本節(jié)課要注意的問題。

學法:以自主探究為主要學習方式,使學生在獨立思考、歸納總結、合作交流。

總結反思中獲得數(shù)學知識與技能。

教法:以啟發(fā)引導式為主要教學方式,在引導探究、歸納總結、典例精析、合作交流的教學過程中,教師做好組織者和引導者,讓學生在老師的指導下處于主動探究的學習狀態(tài)。

五、教學過程(略)。

六、教學評價。

在教學中,教師在精心設置教學環(huán)節(jié)中,做到以學生為主體,做好組織者和引導者,全面評價學生在知識技能、數(shù)學思考、問題解決和情感態(tài)度等方面的表現(xiàn)。教師通過情境引入、提供問題引導學生從已有的知識為出發(fā)點,自主探究,發(fā)現(xiàn)問題,深入思考。學生解決問題要以獨立思考為主,當遇到困難時學會求助交流,教師也要給學生思考交流的時間,讓學生經歷得出結論的過程,培養(yǎng)發(fā)現(xiàn)問題解決問題的能力。

在整個學習過程中,通過對學生參與自主探究的程度、合作交流的意識以及獨立思考的習慣,發(fā)現(xiàn)問題的能力進行評價,并對學生的想法或結論給予鼓勵評價。

人教版初中完全平方公式教案篇七

完全平方公式是初中代數(shù)的一個重要組成部分,是學生在已經掌握單項式乘法、多項式乘法及平方差公式基礎上的拓展,對以后學習因式分解、解一元二次方程、配方法、勾股定理及圖形面積計算都有舉足輕重的作用。

本節(jié)課是繼乘法公式的內容的一種升華,起著承上啟下的作用。在內容上是由多項式乘多項式而得到的,同時又為下一節(jié)課打下了基礎,環(huán)環(huán)相扣,層層遞進。通過這節(jié)課的學習,可以培養(yǎng)學生探索與歸納能力,體會到從簡單到復雜,從特殊到一般和轉化等重要的思想方法。

多數(shù)學生的抽象思維能力、邏輯思維能力、數(shù)學化能力有限,理解完全平方公式的幾何解釋、推導過程、結構特點有一定困難。所以教學中應盡可能多地讓學生動手操作,突出完全平方公式的探索過程,自主探索出完全平方公式的基本形式,并用語言表述其結構特征,進一步發(fā)展學生的合情推理能力、合作交流能力和數(shù)學化能力。

知識與技能。

利用添括號法則靈活應用乘法公式。

過程與方法。

利用去括號法則得到添括號法則,培養(yǎng)學生的逆向思維能力。

情感態(tài)度與價值觀。

鼓勵學生算法多樣化,培養(yǎng)學生多方位思考問題的習慣,提高學生的合作交流意識和創(chuàng)新精神。

教學重點。

理解添括號法則,進一步熟悉乘法公式的合理利用。

教學難點。

在多項式與多項式的乘法中適當添括號達到應用公式的目的。

思考分析、歸納總結、練習、應用拓展等環(huán)節(jié)。

師生活動。

設計意圖。

一.提出問題,創(chuàng)設情境。

請同學們完成下列運算并回憶去括號法則.。

(1)4+(5+2)(2)4-(5+2)(3)a+(b+c)(4)a-(b-c)去括號法則:

也就是說,遇“加”不變,遇“減”都變.。

二、探究新知。

把上述四個等式的左右兩邊反過來,又會得到什么結果呢?

(1)4+5+2=4+(5+2)(2)4-5-2=4-(5+2)。

(3)a+b+c=a+(b+c)(4)a-b+c=a-(b-c)。

左邊沒括號,右邊有括號,也就是添了括號,同學們可不可以總結出添括號法則來呢?

(學生分組討論,最后總結)。

添括號法則是:

也是:遇“加”不變,遇“減”都變.。

請同學們利用添括號法則完成下列練習:

1.在等號右邊的括號內填上適當?shù)捻棧?/p>

(1)a+b-c=a+()(2)a-b+c=a-()。

(3)a-b-c=a-()(4)a+b+c=a-()。

判斷下列運算是否正確.。

(1)2a-b-=2a-(b-)(2)m-3n+2a-b=m+(3n+2a-b)。

(3)2x-3y+2=-(2x+3y-2)(4)a-2b-4c+5=(a-2b)-(4c+5)。

三、新知運用。

例:運用乘法公式計算。

(1)(x+2y-3)(x-2y+3)(2)(a+b+c)2。

(3)(x+3)2-x2(4)(x+5)2-(x-2)(x-3)。

四.隨堂練習:

1.課本p111練習。

2.《學案》101頁——鞏固訓練。

五、課堂小結:

通過本節(jié)課的學習,你有何收獲和體會?

六、檢測作業(yè)。

習題14.2:必做題:3、4、5題。

選做題:7題。

知識梳理,教學導入,激發(fā)學生的學習熱情。

交流合作,探究新知,以問題驅動,層層深入。

歸納總結,提升課堂效果。

作業(yè)檢測,檢測目標的達成情況。

人教版初中完全平方公式教案篇八

教學目標:

1、經歷探索完全平方公式的過程,并從完全平方公式的推導過程中,培養(yǎng)學生觀察、發(fā)現(xiàn)、歸納、概括、猜想等探究創(chuàng)新能力,發(fā)展邏輯推理能力和有條理的表達能力。

2、體會公式的發(fā)現(xiàn)和推導過程,理解公式的本質,從不同的層次上理解完全平方公式,并會運用公式進行簡單的計算。

4、在學習中使學生體會學習數(shù)學的樂趣,培養(yǎng)學習數(shù)學的信心,感愛數(shù)學的內在美。

教學重點:

1、弄清完全平方公式的來源及其結構特點,用自己的.語言說明公式及其特點;

教學難點:

教學方法:

探索討論、歸納總結。

教學過程:

一、回顧與思考。

活動內容:復習已學過的平方差公式。

1、平方差公式:(a+b)(a―b)=a2―b2;

公式的結構特點:左邊是兩個二項式的乘積,即兩數(shù)和與這兩數(shù)差的積。

右邊是兩數(shù)的平方差。

2、應用平方差公式的注意事項:弄清在什么情況下才能使用平方差公式。

二、情境引入。

活動內容:提出問題:

一塊邊長為a米的正方形實驗田,由于效益比較高,所以要擴大農田,將其邊長增加b米,形成四塊實驗田,以種植不同的新品種(如圖)。

用不同的形式表示實驗田的總面積,并進行比較。

活動內容:

1、通過多項式的乘法法則來驗證(a+b)2=a2+2ab+b2的正確性。并利用兩數(shù)和的完全平方公式推導出兩數(shù)差的完全平方公式:(a―b)2=a2―2ab+b2。

2、引導學生利用幾何圖形來驗證兩數(shù)差的完全平方公式。

3、分析完全平方公式的結構特點,并用語言來描述完全平方公式。

結構特點:左邊是二項式(兩數(shù)和(差))的平方;

右邊是兩數(shù)的平方和加上(減去)這兩數(shù)乘積的兩倍。

語言描述:兩數(shù)和(或差)的平方,等于這兩數(shù)的平方和加上(或減去)這兩數(shù)積的兩倍。

2、總結口訣:首平方,尾平方,兩倍乘積放中央,加減看前方,同加異減。

五、鞏固練習:

1、下列各式中哪些可以運用完全平方公式計算。

一、學習目標。

1、會推導完全平方公式,并能運用公式進行簡單的計算。

二、學習重點:會用完全平方公式進行運算。

三、學習難點:理解完全平方公式的結構特征并能靈活應用公式進行計算。

四、學習設計。

(一)預習準備。

(1)預習書p23―26。

(2)思考:和的平方等于平方的和嗎?

1、已知實數(shù)x、y都大于2,試比較這兩個數(shù)的積與這兩個數(shù)的和的大小,并說明理由。

2、已知(a+b)2=24,(a―b)2=20,求:

(1)ab的值是多少?

(2)a2+b2的值是多少?

3、已知2(x+y)=―6,xy=1,求代數(shù)式(x+2)―(3xy―y)的值。

1、(5―x2)2等于;

答案:25―10x2+x4。

解析:解答:(5―x2)2=25―10x2+x4。

2、(x―2y)2等于;

答案:x2―8xy+4y2。

解析:解答:(x―2y)2=x2―8xy+4y2。

3、(3a―4b)2等于;

答案:9a2―24ab+16b2。

解析:解答:(3a―4b)2=9a2―24ab+16b2。

人教版初中完全平方公式教案篇九

1、經歷探索完全平方公式的過程,并從完全平方公式的推導過程中,培養(yǎng)學生觀察、發(fā)現(xiàn)、歸納、概括、猜想等探究創(chuàng)新能力,發(fā)展邏輯推理能力和有條理的表達能力。

2、體會公式的發(fā)現(xiàn)和推導過程,理解公式的本質,從不同的層次上理解完全平方公式,并會運用公式進行簡單的計算。

3、了解完全平方公式的幾何背景,培養(yǎng)學生的數(shù)形結合意識。

4、在學習中使學生體會學習數(shù)學的樂趣,培養(yǎng)學習數(shù)學的信心,感愛數(shù)學的內在美。

1、弄清完全平方公式的來源及其結構特點,用自己的語言說明公式及其特點;

探索討論、歸納總結。

一、回顧與思考。

1、平方差公式:(a+b)(a—b)=a2—b2;

公式的結構特點:左邊是兩個二項式的乘積,即兩數(shù)和與這兩數(shù)差的積。

右邊是兩數(shù)的平方差。

2、應用平方差公式的注意事項:弄清在什么情況下才能使用平方差公式。

二、情境引入。

活動內容:提出問題:

用不同的形式表示實驗田的總面積,并進行比較。

活動內容:

1、通過多項式的乘法法則來驗證(a+b)2=a2+2ab+b2的正確性。并利用兩數(shù)和的完全平方公式推導出兩數(shù)差的完全平方公式:(a—b)2=a2—2ab+b2。

2、引導學生利用幾何圖形來驗證兩數(shù)差的完全平方公式。

3、分析完全平方公式的結構特點,并用語言來描述完全平方公式。

結構特點:左邊是二項式(兩數(shù)和(差))的平方;

右邊是兩數(shù)的平方和加上(減去)這兩數(shù)乘積的兩倍。

語言描述:兩數(shù)和(或差)的平方,等于這兩數(shù)的平方和加上(或減去)這兩數(shù)積的兩倍。

2、總結口訣:首平方,尾平方,兩倍乘積放中央,加減看前方,同加異減。

五、鞏固練習:

一、學習目標。

1、會推導完全平方公式,并能運用公式進行簡單的計算。

三、學習難點:理解完全平方公式的結構特征并能靈活應用公式進行計算。

四、學習設計。

(一)預習準備。

(1)預習書p23—26。

(2)思考:和的平方等于平方的和嗎?

1、已知實數(shù)x、y都大于2,試比較這兩個數(shù)的積與這兩個數(shù)的和的大小,并說明理由。

2、已知(a+b)2=24,(a—b)2=20,求:

(1)ab的值是多少?

(2)a2+b2的值是多少?

3、已知2(x+y)=—6,xy=1,求代數(shù)式(x+2)—(3xy—y)的值。

1、(5—x2)2等于;

答案:25—10x2+x4。

解析:解答:(5—x2)2=25—10x2+x4。

2、(x—2y)2等于;

答案:x2—8xy+4y2。

解析:解答:(x—2y)2=x2—8xy+4y2。

3、(3a—4b)2等于;

答案:9a2—24ab+16b2。

解析:解答:(3a—4b)2=9a2—24ab+16b2。

人教版初中完全平方公式教案篇十

1、使學生理解完全平方公式的意義,弄清完全平方公式的形式和特點;使學生知道把完全平方公式反過來就可以得到相應的因式分解。

2、掌握運用完全平方公式分解因式的`方法,能正確運用完全平方公式把多項式分解因式(直接用公式不超過兩次)。

教學方法:對比發(fā)現(xiàn)法課型新授課教具投影儀。

教師活動:學生活動。

新課講解:

(投影)我們把形如a2+2ab+b2與a2-2ab+b2叫做完全平方式,和平方差公式一樣,我們也可以利用它把一些多項式因式分解。例如:

a2+8a+16=a2+2×4a+42=(a+4)2。

a2-8a+16=a2-2×4a+42=(a-4)2。

(要強調注意符號)。

首先我們來試一試:(投影:牛刀小試)。

1.把下列各式分解因式:

(1)x2+8x+16;;(2)25a4+10a2+1。

(3)(m+n)2-4(m+n)+4。

(教師強調步驟的重要性,注意發(fā)現(xiàn)學生易錯點,及時糾正)。

2.把81x4-72x2y2+16y4分解因式。

(本題用了兩次乘法公式,難度稍大,教師要鼓勵學生大膽嘗試,敢于創(chuàng)新)。

將乘法公式反過來就得到多項式因式分解的公式。運用這些公式把一個多項式分解因式的方法叫做運用公式法。

練習:第88頁練一練第1、2題。

人教版初中完全平方公式教案篇十一

1、使學生理解完全平方公式的意義,弄清完全平方公式的形式和特點;使學生知道把完全平方公式反過來就可以得到相應的因式分解。

2、掌握運用完全平方公式分解因式的'方法,能正確運用完全平方公式把多項式分解因式(直接用公式不超過兩次)。

對比發(fā)現(xiàn)法課型新授課教具投影儀。

學生活動。

(投影)我們把形如a2+2ab+b2與a2-2ab+b2叫做完全平方式,和平方差公式一樣,我們也可以利用它把一些多項式因式分解。例如:

a2+8a+16=a2+2×4a+42=(a+4)2。

a2-8a+16=a2-2×4a+42=(a-4)2。

(要強調注意符號)。

首先我們來試一試:(投影:牛刀小試)。

1.把下列各式分解因式:

(1)x2+8x+16;;(2)25a4+10a2+1。

(3)(m+n)2-4(m+n)+4。

(教師強調步驟的重要性,注意發(fā)現(xiàn)學生易錯點,及時糾正)。

2.把81x4-72x2y2+16y4分解因式。

(本題用了兩次乘法公式,難度稍大,教師要鼓勵學生大膽嘗試,敢于創(chuàng)新)。

將乘法公式反過來就得到多項式因式分解的公式。運用這些公式把一個多項式分解因式的方法叫做運用公式法。

第88頁練一練第1、2題。

人教版初中完全平方公式教案篇十二

(l)(2)(3)(4)。

學生活動:學生分組討論,選代表解答.。

練習三。

甲的計算過程是:原式。

乙的計算過程是:原式。

丙的計算過程是:原式。

丁的計算過程是:原式。

(2)想一想,與相等嗎?為什么?

與相等嗎?為什么?

學生活動:觀察、思考后,回答問題.。

練習四。

(l)(2)。

(3)(4)。

(四)總結、擴展。

這節(jié)課我們學習了乘法公式中的完全平方公式.。

引導學生舉例說明公式的結構特征,公式中字母含義和運用公式時應該注意的問題.。

八、布置作業(yè)。

p1331,2.(3)(4).。

參考答案。

略.。

人教版初中完全平方公式教案篇十三

本節(jié)教材是初中數(shù)學七年級下冊第一章第八節(jié)的內容,是初中數(shù)學的重要內容之一。一方面,這是在學習了整式的加、減、乘、除及平方差公式的基礎上,對多項式乘法的進一步深入和拓展;另一方面,又為學習《因式分解》《配方法》等知識奠定了基礎,是進一步研究《一元二次方程》《二次函數(shù)》的工具性內容。鑒于這種認識,我認為,本節(jié)課不僅有著廣泛的實際應用,而且起著承前啟后的作用。

2、學情分析。

從心理特征來說,初中階段的學生邏輯思維能力有待培養(yǎng),從經驗型逐步向理論型發(fā)展,觀察能力,記憶能力和想象能力也隨著迅速發(fā)展。但同時,這一階段的學生好動,注意力易分散,愛發(fā)表見解,希望得到老師的表揚,所以在教學中應抓住這些特點,一方面運用直觀生動的形象,引發(fā)學生的興趣,使他們的注意力始終集中在課堂上;另一方面,要創(chuàng)造條件和機會,讓學生發(fā)表見解,發(fā)揮學生學習的主動性。

從認知狀況來說,學生在此之前已經學習了多項式乘法法則、平方差公式的探索過程,對“完全平方公式”已經有了初步的認識,為順利完成本節(jié)課的教學任務打下了基礎,但對于“完全平方公式”的理解,(由于其抽象程度較高,)學生可能會產生一定的困難,所以教學中應予以簡單明白,深入淺出的分析。

3、教學重難點。

根據(jù)以上對教材的地位和作用,以及學情分析,結合新課標對本節(jié)課的要求,我將本節(jié)課的重點確定為:

對公式(a+b)2=a2+2ab+b2的理解,包括它的推導過程、結構特點、語言表述(學生自己的語言)、幾何解釋。

難點確定為:從廣泛意義上理解完全平方公式的符號含義,培養(yǎng)學生有條理的思考和語言表達能力。

人教版初中完全平方公式教案篇十四

重點、難點根據(jù)公式的特征及問題的特征選擇適當?shù)墓接嬎恪?/p>

1.邊長為(a+b)的正方形面積是多少?

2.邊長分別為a、b拍的兩個正方形面積和是多少?

3.你能比較(1)(2)的結果嗎?說明你的理由。師生共同討論:學生回答(1)(a+b)(2)a+b(3)因為(a+b)=a+2ab+b,所以(a+b)-(a+b)=a+2ab+b-a-b=2ab,即(1)中的正方形面積比(2)中的正方形面積大。

例1.利用完全平方式計算1.102。

計算:

1.(a+b+c)。

2.(a+b)師生共同分析:對于1要把多項式完全平方轉化為二項式的完全平方,要使用加法結合律,為使用完全平方公式創(chuàng)造條件。如(a+b+c)=[a+(b+c)]對于(2)可化為(a+b)=(a+b)(a+b).學生動筆:在練習本上解答,并與同伴交流你的做法。學生敘述。

p381。

本節(jié)課進一步學習了完全平方公式,在應用此公式運算時注意以下幾點。1.使用完全平方公式首先要熟記公式和公式的特征,不能出現(xiàn)(ab)=ab的錯誤,或(ab)=aab+b(漏掉2倍)等錯誤。2.要能根據(jù)公式的特征及題目的特征靈活選擇適當?shù)墓接嬎恪?.用加法結合律,可為使用公式創(chuàng)造了條件。利用了這種方法,可以把多項式的完全平方轉化為二項式的完全平方。

課本習題1.14p381、2、3.

1.9整式的除法第一課時單項式除以單項式教學目標1.經歷探索單項式除法的法則過程,了解單項式除法的意義。

2.理解單項式除法法則,會進行單項式除以單項式運算。重點、難點重點:單項式除以單項式的運算。難點:單項式除以單項式法則的理解。

【本文地址:http://www.aiweibaby.com/zuowen/12284552.html】

全文閱讀已結束,如果需要下載本文請點擊

下載此文檔