幾何原本的讀書心得(4篇)

格式:DOC 上傳日期:2023-02-03 19:21:46
幾何原本的讀書心得(4篇)
時間:2023-02-03 19:21:46     小編:zdfb

每個人都曾試圖在平淡的學(xué)習(xí)、工作和生活中寫一篇文章。寫作是培養(yǎng)人的觀察、聯(lián)想、想象、思維和記憶的重要手段。范文書寫有哪些要求呢?我們怎樣才能寫好一篇范文呢?下面我給大家整理了一些優(yōu)秀范文,希望能夠幫助到大家,我們一起來看一看吧。

幾何原本的讀書心得篇一

兩千多年來,《幾何原本》一直是學(xué)習(xí)幾何的主要教材。哥白尼、伽利略、笛卡爾、牛頓等許多偉大的學(xué)者都曾學(xué)習(xí)過《幾何原本》,從中吸取了豐富的營養(yǎng),從而作出了許多偉大的成就。

從歐幾里得發(fā)表《幾何原本》到現(xiàn)在,已經(jīng)過去了兩千多年,盡管科學(xué)技術(shù)日新月異,由于歐氏幾何具有鮮明的直觀性和有著嚴密的邏輯演繹方法相結(jié)合的特點,在長期的實踐中表明,它巳成為培養(yǎng)、提高青少年邏輯思維能力的好教材。歷史上不知有多少科學(xué)家從學(xué)習(xí)幾何中得到益處,從而作出了偉大的貢獻。

少年時代的牛頓在劍橋大學(xué)附近的夜店里買了一本《幾何原本》。開始他認為這本書的內(nèi)容沒有超出常識范圍,因而并沒有認真地去讀它,而對笛卡兒的“坐標幾何”很感興趣而專心攻讀,后來,牛頓于1664年4月在參加特列臺獎學(xué)金考試的時候遭到落選,當(dāng)時的考官巴羅博士對他說:“因為你的幾何基礎(chǔ)知識太貧乏,無論怎樣用功也是不行的?!边@席談話對牛頓的震動很大,于是,牛頓又重新把《幾何原本》從頭到尾地反復(fù)進行了深入鉆研,為以后的科學(xué)工作打下了堅實的數(shù)學(xué)基礎(chǔ)。

但是,在人類認識的長河中,無論怎樣高明的前輩和名家。都不可能把問題全部解決。由于歷史條件的限制,歐幾里得在《幾何原本》中提出幾何學(xué)的“根據(jù)”問題并沒有得到徹底的解決,他的理論體系并不是完美無缺的。比如,對直線的定義實際上是用一個未知的定義來解釋另一個未知的定義,這樣的定義不可能在邏輯推理中起什么作用。又如,歐幾里得在邏輯推理中使用了“連續(xù)”的概念,但是在《幾何原本》中從未提到過這個概念。

幾何原本的讀書心得篇二

“古希臘”這個詞,我們耳熟能詳,很多人卻不了解它。

如果《幾何原本》的作者歐幾里得能夠代表整個古希臘人民,那么我可以說,古希臘是古代文化中最燦爛的一支——因為古希臘的數(shù)學(xué)中,所包含的不僅僅是數(shù)學(xué),還有著難得的邏輯,更有著耐人尋味的哲學(xué)。

《幾何原本》這本數(shù)學(xué)著作,以幾個顯而易見、眾所周知的定義、公設(shè)和公理,互相搭橋,展開了一系列的命題:由簡單到復(fù)雜,相輔而成。其邏輯的嚴密,不能不令我們佩服。

就我目前拜訪的幾個命題來看,歐幾里得證明關(guān)于線段“一樣長”的題,最常用、也是最基本的,便是畫圓:因為,一個圓的所有半徑都相等。一般的數(shù)學(xué)思想,都是很復(fù)雜的,這邊剛講一點,就又跑到那邊去了;而《幾何原本》非常容易就被我接受,其原因大概就在于歐幾里得反復(fù)運用一種思想、使讀者不斷接受的緣故吧。

不過,我要著重講的,是他的哲學(xué)。

書中有這樣幾個命題:如,“等腰三角形的兩底角相等,將腰延長,與底邊形成的兩個補角亦相等”,再如,“如果在一個三角形里,有兩個角相等,那么也有兩條邊相等”。這些命題,我在讀時,內(nèi)心一直承受著幾何外的震撼。

我們七年級已經(jīng)學(xué)了幾何。想想那時做這類證明題,需要證明一個三角形中的兩個角相等的時候,我們總是會這么寫:“因為它是一個等腰三角形,所以兩底角相等”——我們總是習(xí)慣性的認為,等腰三角形的兩個底角就是相等的;而看《幾何原本》,他思考的是“等腰三角形的兩個底角為什么相等”。想想看吧,一個思想習(xí)以為常,一個思想在思考為什么,這難道還不夠說明現(xiàn)代人的問題嗎?

大多數(shù)現(xiàn)代人,好奇心似乎已經(jīng)泯滅了。這里所說的好奇心不單單是指那種對新奇的事物感興趣,同樣指對平常的事物感興趣。比如說,許多人會問“宇航員在空中為什么會飄起來”,但也許不會問“我們?yōu)槭裁茨軌蛘驹诘厣隙粫h起來”;許多人會問“吃什么東西能減肥”,但也許不會問“羊為什么吃草而不吃肉”。

我們對身邊的事物太習(xí)以為常了,以致不會對許多“平?!钡氖挛锔信d趣,進而去琢磨透它。牛頓為什么會發(fā)現(xiàn)萬有引力?很大一部分原因,就在于他有好奇心。

如果僅把《幾何原本》當(dāng)做數(shù)學(xué)書看,那可就大錯特錯了:因為古希臘的數(shù)學(xué)滲透著哲學(xué),學(xué)數(shù)學(xué),就是學(xué)哲學(xué)。

哲學(xué)第一課:人要建立好奇心,不僅探索新奇的事物,更要探索身邊的平常事,這就是我讀《幾何原本》意外的收獲吧!

幾何原本的讀書心得篇三

《幾何原本》的作者歐幾里得能夠代表整個古希臘人民,那么我可以說,古希臘是古代文化中最燦爛的一支——因為古希臘的數(shù)學(xué)中,所包含的不僅僅是數(shù)學(xué),還有著難得的邏輯,更有著耐人尋味的哲學(xué)。

《幾何原本》這本數(shù)學(xué)著作,以幾個顯而易見、眾所周知的定義、公設(shè)和公理,互相搭橋,展開了一系列的命題:由簡單到復(fù)雜,相輔而成。其邏輯的嚴密,不能不令我們佩服。

就我目前拜訪的幾個命題來看,歐幾里得證明關(guān)于線段“一樣長”的題,最常用、也是最基本的,便是畫圓:因為,一個圓的所有半徑都相等。一般的數(shù)學(xué)思想,都是很復(fù)雜的,這邊剛講一點,就又跑到那邊去了;而《幾何原本》非常容易就被我接受,其原因大概就在于歐幾里得反復(fù)運用一種思想、使讀者不斷接受的緣故吧。

不過,我要著重講的,是他的哲學(xué)。

書中有這樣幾個命題:如,“等腰三角形的兩底角相等,將腰延長,與底邊形成的兩個補角亦相等”,再如,“如果在一個三角形里,有兩個角相等,那么也有兩條邊相等”。這些命題,我在讀時,內(nèi)心一直承受著幾何外的震撼。

我們七年級已經(jīng)學(xué)了幾何。想想那時做這類證明題,需要證明一個三角形中的兩個角相等的時候,我們總是會這么寫:“因為它是一個等腰三角形,所以兩底角相等”——我們總是習(xí)慣性的認為,等腰三角形的兩個底角就是相等的;而看《幾何原本》,他思考的是“等腰三角形的兩個底角為什么相等”。想想看吧,一個思想習(xí)以為常,一個思想在思考為什么,這難道還不夠說明現(xiàn)代人的問題嗎?

大多數(shù)現(xiàn)代人,好奇心似乎已經(jīng)泯滅了。這里所說的好奇心不單單是指那種對新奇的事物感興趣,同樣指對平常的事物感興趣。比如說,許多人會問“宇航員在空中為什么會飄起來”,但也許不會問“我們?yōu)槭裁茨軌蛘驹诘厣隙粫h起來”;許多人會問“吃什么東西能減肥”,但也許不會問“羊為什么吃草而不吃肉”。

我們對身邊的事物太習(xí)以為常了,以致不會對許多“平?!钡氖挛锔信d趣,進而去琢磨透它。牛頓為什么會發(fā)現(xiàn)萬有引力?很大一部分原因,就在于他有好奇心。

如果僅把《幾何原本》當(dāng)做數(shù)學(xué)書看,那可就大錯特錯了:因為古希臘的數(shù)學(xué)滲透著哲學(xué),學(xué)數(shù)學(xué),就是學(xué)哲學(xué)。

哲學(xué)第一課:人要建立好奇心,不僅探索新奇的事物,更要探索身邊的平常事,這就是我讀《幾何原本》意外的收獲吧!

幾何原本的讀書心得篇四

公理化結(jié)構(gòu)是近代數(shù)學(xué)的主要特征。而《原本》是完成公理化結(jié)構(gòu)的最早典范,它產(chǎn)生于兩千多年前,這是難能可貴的。不過用現(xiàn)代的標準去衡量,也有不少缺點。首先,一個公理系統(tǒng)都有若干原始概念,或稱不定義概念,作為其他概念定義的基礎(chǔ)。點、線、面就屬于這一類。而在《原本》中一一給出定義,這些定義本身就是含混不清的。其次是公理系統(tǒng)不完備,沒有運動、順序、連續(xù)性等公理,所以許多證明不得不借助于直觀。此外,有的公理不是獨立的,即可以由別的公理推出。這些缺陷直到1899年希爾伯特(hilbert)的《幾何基礎(chǔ)》出版才得到了補救。盡管如此,畢竟瑕不掩瑜,《原本》開創(chuàng)了數(shù)學(xué)公理化的正確道路,對整個數(shù)學(xué)發(fā)展的影響,超過了歷史上任何其他著作。

《原本》的兩個理論支柱——比例論和窮竭法。為了論述相似形的理論,歐幾里得安排了比例論,引用了歐多克索斯的比例論。這個理論是無比的成功,它避開了無理數(shù),而建立了可公度與不可公度的正確的比例論,因而順利地建立了相似形的理論。在幾何發(fā)展的歷史上,解決曲邊圍成的面積和曲面圍成的體積等問題,一直是人們關(guān)注的重要課題。這也是微積分最初涉及的問題。它的解決依賴于極限理論,這已是17世紀的事了。然而在古希臘于公元前三四世紀對一些重要的面積、體積問題的證明卻沒有明顯的極限過程,他們解決這些問題的理念和方法是如此的超前,并且深刻地影響著數(shù)學(xué)的發(fā)展。

化圓為方問題是古希臘數(shù)學(xué)家歐多克索斯提出的,后來以“窮竭法”而得名的方法?!案F竭法”的依據(jù)是阿基米得公理和反證法。在《幾何原本》中歐幾里得利用“窮竭法”證明了許多命題,如圓與圓的面積之比等于直徑平方比。兩球體積之比等于它們的直徑的立方比。阿基米德應(yīng)用“窮竭法”更加熟練,而且技巧很高。并且用它解決了一批重要的面積和體積命題。當(dāng)然,利用“窮竭法”證明命題,首先要知道命題的結(jié)論,而結(jié)論往往是由推測、判斷等確定的。阿基米德在此做了重要的工作,他在《方法》一文中闡述了發(fā)現(xiàn)結(jié)論的一般方法,這實際又包含了積分的思想。他在數(shù)學(xué)上的貢獻,奠定了他在數(shù)學(xué)史上的突出地位。

作圖問題的研究與終結(jié)。歐幾里得在《原本》中談了正三角形、正方形、正五邊形、正六邊形、正十五邊形的作圖,未提及其他正多邊形的作法。可見他已嘗試著作過其他正多邊形,碰到了“不能”作出的情形。但當(dāng)時還無法判斷真正的“不能作”,還是暫時找不到作圖方法。

高斯并未滿足于尋求個別正多邊形的作圖方法,他希望能找到一種判別準則,哪些正多邊形用直尺和圓規(guī)可以作出、哪些正多邊形不能作出。也就是說,他已經(jīng)意識到直尺和圓規(guī)的“效能”不是萬能的,可能對某些正多邊形不能作出,而不是人們找不到作圖方法。1801年,他發(fā)現(xiàn)了新的研究結(jié)果,這個結(jié)果可以判斷一個正多邊形“能作”或“不能作”的準則。判斷這個問題是否可作,首先把問題化為代數(shù)方程。

然后,用代數(shù)方法來判斷。判斷的準則是:“對一個幾何量用直尺和圓規(guī)能作出的充分必要條件是:這個幾何量所對應(yīng)的數(shù)能由已知量所對應(yīng)的數(shù),經(jīng)有限次的加、減、乘、除及開平方而得到?!?圓周率不可能如此得到,它是超越數(shù),還有e、劉維爾數(shù)都是超越數(shù),我們知道,實數(shù)是不可數(shù)的,實數(shù)分為有理數(shù)和無理數(shù),其中有理數(shù)和一部分無理數(shù),比如根號2,是代數(shù)數(shù),而代數(shù)數(shù)是可數(shù)的,因此實數(shù)中不可數(shù)是因為超越數(shù)的存在。雖然超越數(shù)比較多,但要判定一個數(shù)是否為超越數(shù)卻不是那么的簡單。)至此,“三大難題”即“化圓為方、三等分角、二倍立方體”問題是用尺規(guī)不能作出的作圖題。正十七邊形可作,但其作法不易給出。高斯(gauss)在1796年19歲時,給出了正十七邊形的尺規(guī)作圖法,并作了詳盡的討論。為了表彰他的這一發(fā)現(xiàn),他去世后,在他的故鄉(xiāng)不倫瑞克建立的紀念碑上面刻了一個正十七邊形。

幾何中連續(xù)公理的引入。由歐氏公設(shè)、公理不能推出作圖題中“交點”存在。因為,其中沒有連續(xù)性(公理)概念。這就需要給歐氏的公理系統(tǒng)中添加新的公理——連續(xù)性公理。雖然19世紀之前費馬與笛卡爾已經(jīng)發(fā)現(xiàn)解析幾何,代數(shù)有了長驅(qū)直入的進展,微積分進入了大學(xué)課堂,拓撲學(xué)和射影幾何已經(jīng)出現(xiàn)。但是,數(shù)學(xué)家對數(shù)系理論基礎(chǔ)仍然是模糊的,沒有引起重視。直觀地承認了實數(shù)與直線上的點都是連續(xù)的,且一一對應(yīng)。直到19世紀末葉才完滿地解決了這一重大問題。從事這一工作的學(xué)者有康托(cantor)、戴德金(dedekind)、皮亞諾(peano)、希爾伯特(hilbert)等人。

當(dāng)時,康托希望用基本序列建立實數(shù)理論,代德金也深入地研究了無理數(shù)理念,他的一篇論文發(fā)表在1872年。在此之前的1858年,他給學(xué)生開設(shè)微積分時,知道實數(shù)系還沒有邏輯基礎(chǔ)的保證。因此,當(dāng)他要證明“單調(diào)遞增有界變量序列趨向于一個極限”時,只得借助于幾何的直觀性。

實際上,“直線上全體點是連續(xù)統(tǒng)”也是沒有邏輯基礎(chǔ)的。更沒有明確全體實數(shù)和直線全體點是一一對應(yīng)這一重大關(guān)系。如,數(shù)學(xué)家波爾查奴(bolzano)把兩個數(shù)之間至少存在一個數(shù),認為是數(shù)的連續(xù)性。實際上,這是誤解。因為,任何兩個有理數(shù)之間一定能求到一個有理數(shù)。但是,有理數(shù)并不是數(shù)的全體。有了戴德金分割之后,人們認識至波爾查奴的說法只是數(shù)的稠密性,而不是連續(xù)性。由無理數(shù)引發(fā)的數(shù)學(xué)危機一直延續(xù)到19世紀。直到1872年,德國數(shù)學(xué)家戴德金從連續(xù)性的要求出發(fā),用有理數(shù)的“分割”來定義無理數(shù),并把實數(shù)理論建立在嚴格的科學(xué)基礎(chǔ)上,才結(jié)束了無理數(shù)被認為“無理”的時代,也結(jié)束了持續(xù)2000多年的數(shù)學(xué)史上的第一次大危機。

原本還研究了其它許多問題,如求兩數(shù)(可推廣至任意有限數(shù))最大公因數(shù),數(shù)論中的素數(shù)的個數(shù)無窮多等。

【本文地址:http://aiweibaby.com/zuowen/1248742.html】

全文閱讀已結(jié)束,如果需要下載本文請點擊

下載此文檔