最簡二次根式教學(xué)設(shè)計(jì)(匯總14篇)

格式:DOC 上傳日期:2023-11-18 15:11:20
最簡二次根式教學(xué)設(shè)計(jì)(匯總14篇)
時(shí)間:2023-11-18 15:11:20     小編:文鋒

大家可以嘗試一些有趣的活動(dòng),比如讀書、旅游、參加社交活動(dòng)等,以充實(shí)自己的生活。總結(jié)可以通過提出問題和解決問題的方式展開。通過閱讀總結(jié)范文,我們可以提升自己的寫作水平和思維能力。

最簡二次根式教學(xué)設(shè)計(jì)篇一

1、通過二次根式混合運(yùn)算的學(xué)習(xí),進(jìn)一步了解二次根式運(yùn)算法則,知道二次根式混合運(yùn)算順序,會(huì)進(jìn)行二次根式的混合運(yùn)算。

2、在進(jìn)行二次根式混合運(yùn)算的過程中,體會(huì)類比思想,逐步養(yǎng)成認(rèn)真仔細(xì)的學(xué)習(xí)品質(zhì),進(jìn)一步提高運(yùn)算能力。

教學(xué)難點(diǎn):類比整式運(yùn)算準(zhǔn)確快速的進(jìn)行二次根式的混合運(yùn)算。

教學(xué)過程:

(學(xué)生完成練習(xí)提綱,可以討論,老師做必要的板書準(zhǔn)備,然后巡回指導(dǎo),了解情況、)。

1、學(xué)生匯報(bào)解題過程,生說師寫;。

2、發(fā)動(dòng)其他學(xué)生評(píng)價(jià)補(bǔ)充完善;。

3、師畫龍點(diǎn)睛強(qiáng)調(diào):。

(1)二次根式混合運(yùn)算的運(yùn)算順序跟有理數(shù)運(yùn)算順序一樣,先乘方,再乘除,最后加減。

(2)二次根式混合運(yùn)算與整式的運(yùn)算有很多相似之處,因此可類比整式的運(yùn)算進(jìn)行二次根式的混合運(yùn)算。

(先讓學(xué)生獨(dú)立完成,老師做必要的板書準(zhǔn)備后巡回指導(dǎo),了解情況;然后讓有一定問題的學(xué)生匯報(bào)展示,發(fā)動(dòng)學(xué)生評(píng)價(jià)完善,老師強(qiáng)調(diào)關(guān)鍵地方,總結(jié)思想方法。)。

本節(jié)課你有哪些收獲?還有什么要提醒同學(xué)們注意的。(學(xué)生總結(jié),百花齊放,老師不做限定,沒說到的,老師補(bǔ)充。)。

最簡二次根式教學(xué)設(shè)計(jì)篇二

2.較熟練地掌握把一個(gè)式子化為最簡二次根式的方法.

重點(diǎn)和難點(diǎn)。

重點(diǎn):較熟練地把二次根式化為最簡二次根式.

難點(diǎn):把被開方數(shù)是多項(xiàng)式和分式的二次根式化為最簡二次根式.

過程設(shè)計(jì)。

請(qǐng)說出第(3),(4)題的解題過程.

答:第(3)題的被開方數(shù)是一個(gè)多項(xiàng)式,先把它分解因式,再運(yùn)用積的算術(shù)平方根的性質(zhì),把根號(hào)中的平方式及平方數(shù)開出來,運(yùn)算結(jié)果應(yīng)化為最簡二次根式.

理化.

請(qǐng)說出各題的特點(diǎn)和解題思路.

答:(1)題的被開方數(shù)及(2)題的被開方數(shù)的分子是多項(xiàng)式,應(yīng)化成因式積的形式,可以先分解因式,再化簡.

(3)題的被開方數(shù)的分母是兩個(gè)數(shù)的平方差,先利用平方差公式把它化為乘積形式,再根據(jù)商的算術(shù)平方根和積的算術(shù)平方根的性質(zhì)及分母有理化的方法,使運(yùn)算結(jié)果為最簡二次根式.

計(jì)算:

依據(jù)二次根式的乘除法的法則進(jìn)行計(jì)算,最后要把計(jì)算結(jié)果化成最簡二次根式.

1.選擇題:

(7)下列化簡中,正確的是[]。

(8)下列化簡中,錯(cuò)誤的是[]。

3.計(jì)算:

答案:

1.把一個(gè)式子化為最簡二次根式時(shí),如果被開方數(shù)是多項(xiàng)式,應(yīng)把它化成積的形式,一般可考慮先分解因式,然后再化簡.

2.如果一個(gè)式子的被開方數(shù)的分母是一個(gè)多項(xiàng)式,而這個(gè)多項(xiàng)式又不能分解因式(如課堂練習(xí)2(2)),在分母有理化時(shí),把分子分母同乘以這個(gè)多項(xiàng)式.

3.二次根式的乘除法運(yùn)算,運(yùn)算結(jié)果一定要化為最簡二次根式.

2.計(jì)算:

答案:

最簡二次根式分二課時(shí)進(jìn)行.設(shè)計(jì)中首先安排討論二次根式的被開方數(shù)是單項(xiàng)式以及被開方數(shù)的分母是單項(xiàng)式的情況,然后再討論被開方數(shù)是多項(xiàng)式和分母是多項(xiàng)式的情況.通過5個(gè)例題及課堂練習(xí),最后達(dá)到使學(xué)生比較深刻地理解最簡二次根式的概念,達(dá)到熟練地掌握把二次根式化為最簡二次根式的目標(biāo).

最簡二次根式教學(xué)設(shè)計(jì)篇三

2.會(huì)運(yùn)用積和商的算術(shù)平方根的性質(zhì),把一個(gè)二次根式化為最簡二次根式。

1.把下列各根式化簡,并說出化簡的根據(jù):

2.引導(dǎo)學(xué)生觀察考慮:

化簡前后的根式,被開方數(shù)有什么不同?

化簡前的被開方數(shù)有分?jǐn)?shù),分式;化簡后的被開方數(shù)都是整數(shù)或整式,且被開方數(shù)中開得盡方的因數(shù)或因式,被移到根號(hào)外。

3.啟發(fā)學(xué)生回答:

二次根式,請(qǐng)同學(xué)們考慮一下被開方數(shù)符合什么條件的二次根式叫做最簡二次根式?

1.總結(jié)學(xué)生回答的內(nèi)容后,給出最簡二次根式定義:

滿足下列兩個(gè)條件的二次根式叫做最簡二次根式:

(1)被開方數(shù)的因數(shù)是整數(shù),因式是整式;

(2)被開方數(shù)中不含能開得盡的因數(shù)或因式。

最簡二次根式定義中第(1)條說明被開方數(shù)不含有分母;分母是1的例外。第(2)條說明被開方數(shù)中每個(gè)因式的指數(shù)小于2;特別注意被開方數(shù)應(yīng)化為因式連乘積的形式。

2.練習(xí):

下列各根式是否為最簡二次根式,不是最簡二次根式的說明原因:

3.例題:

4.總結(jié)。

把二次根式化成最簡二次根式的根據(jù)是什么?應(yīng)用了什么方法?

當(dāng)被開方數(shù)為整數(shù)或整式時(shí),把被開方數(shù)進(jìn)行因數(shù)或因式分解,根據(jù)積的算術(shù)平方根的性質(zhì),把開得盡方的因數(shù)或因式用它的算術(shù)平方根代替移到根號(hào)外面去。

當(dāng)被開方數(shù)是分?jǐn)?shù)或分式時(shí),根據(jù)分式的基本性質(zhì)和商的算術(shù)平方根的性質(zhì)化去分母。

此方法是先根據(jù)分式的基本性質(zhì)把被開方數(shù)的分母化成能開得盡方的因式,然后分子、分母再分別化簡。

2.判斷下列各根式,哪些是最簡二次根式?哪些不是最簡二次根式?如果不是,把它化成最簡二次根式。

本節(jié)課學(xué)習(xí)了最簡二次根式的定義及化簡二次根式的方法。同學(xué)們掌握用最簡二次根式的定義判斷一個(gè)根式是否為最簡二次根式,要根據(jù)積的算術(shù)平方根和商的算術(shù)平方根的性質(zhì)把一個(gè)根式化成最簡二次根式,特別注意當(dāng)被開方數(shù)為多項(xiàng)式時(shí)要進(jìn)行因式分解,被開方數(shù)為兩個(gè)分?jǐn)?shù)的和則要先通分,再化簡。

字).

最簡二次根式教學(xué)設(shè)計(jì)篇四

1、通過二次根式混合運(yùn)算的學(xué)習(xí),進(jìn)一步了解二次根式運(yùn)算法則,知道二次根式混合運(yùn)算順序,會(huì)進(jìn)行二次根式的混合運(yùn)算。

2、在進(jìn)行二次根式混合運(yùn)算的過程中,體會(huì)類比思想,逐步養(yǎng)成認(rèn)真仔細(xì)的學(xué)習(xí)品質(zhì),進(jìn)一步提高運(yùn)算能力。

教學(xué)難點(diǎn):類比整式運(yùn)算準(zhǔn)確快速的進(jìn)行二次根式的混合運(yùn)算。

教學(xué)過程:

一、情境誘導(dǎo)。

二、練習(xí)指導(dǎo)。

(學(xué)生完成練習(xí)提綱,可以討論,老師做必要的板書準(zhǔn)備,然后巡回指導(dǎo),了解情況、)。

三、展示歸納。

1、學(xué)生匯報(bào)解題過程,生說師寫;。

2、發(fā)動(dòng)其他學(xué)生評(píng)價(jià)補(bǔ)充完善;。

3、師畫龍點(diǎn)睛強(qiáng)調(diào):。

(1)二次根式混合運(yùn)算的運(yùn)算順序跟有理數(shù)運(yùn)算順序一樣,先乘方,再乘除,最后加減。

(2)二次根式混合運(yùn)算與整式的運(yùn)算有很多相似之處,因此可類比整式的運(yùn)算進(jìn)行二次根式的混合運(yùn)算。

四、變式練習(xí)。

(先讓學(xué)生獨(dú)立完成,老師做必要的板書準(zhǔn)備后巡回指導(dǎo),了解情況;然后讓有一定問題的學(xué)生匯報(bào)展示,發(fā)動(dòng)學(xué)生評(píng)價(jià)完善,老師強(qiáng)調(diào)關(guān)鍵地方,總結(jié)思想方法。)。

五、小結(jié)。

本節(jié)課你有哪些收獲?還有什么要提醒同學(xué)們注意的。(學(xué)生總結(jié),百花齊放,老師不做限定,沒說到的,老師補(bǔ)充。)。

六、布置作業(yè)。

最簡二次根式教學(xué)設(shè)計(jì)篇五

2.掌握把二次根式化為最簡二次根式的方法。

重點(diǎn)和難點(diǎn)。

過程設(shè)計(jì)。

計(jì)算:

我們?cè)倏聪旅娴膯栴}:

簡,得到。

從上面例子可以看出,如果把二次根式先進(jìn)行化簡,會(huì)對(duì)解決問題帶來方便。

答:

1.被開方數(shù)的因數(shù)是整數(shù)或整式;

2.被開方數(shù)中不含能開得盡方的因數(shù)或因式。

滿足上面兩個(gè)條件的二次根式叫做最簡二次根式。

(l)不是最簡二次根式。因?yàn)閍3=a2·a,而a2可以開方,即被開方數(shù)中有開得盡方的因式。

整數(shù)。

(3)是最簡二次根式。因?yàn)楸婚_方數(shù)的因式x2+y2開不盡方,而且是整式。

(4)是最簡二次根式。因?yàn)楸婚_方數(shù)的因式a-b開不盡方,而且是整式。

(5)是最簡二次根式。因?yàn)楸婚_方數(shù)的因式5x開不盡方,而且是整式。

(6)不是最簡二次根式。因?yàn)楸婚_方數(shù)中的因數(shù)8=22·2,含有開得盡的因數(shù)22.

指出:從(1),(2),(6)題可以看到如下兩個(gè)結(jié)論。

1.在二次根式的被開方數(shù)中,只要含有分?jǐn)?shù)或小數(shù),就不是最簡二次根式;

2.在二次根式的被開方數(shù)中的每一個(gè)因式(或因數(shù)),如果冪的指數(shù)等于或大于2,也不是最簡二次根式。

分析:把被開方數(shù)分解因式或因數(shù),再利用積的算術(shù)平方根的性質(zhì)。

分析:題(l)的被開方數(shù)是帶分?jǐn)?shù),應(yīng)把它變成假分?jǐn)?shù),然后將分母有理化,把原式化成最簡二次根式。

題(2)及題(3)的被開方數(shù)是分式,先應(yīng)用商的算術(shù)平方根的性質(zhì)把原式表示為兩個(gè)根式的商的形式,再把分母有理化,把原式化成最簡二次根式。

通過例2、例3,請(qǐng)同學(xué)們總結(jié)出把二次根式化成最簡二次根式的方法。

答:如果被開方數(shù)是分式或分?jǐn)?shù)(包括小數(shù))先利用商的算術(shù)平方根的性質(zhì),把它寫成分式的形式,然后利用分母有理化化簡。

如果被開方數(shù)是整式或整數(shù),先把它分解因式或分解因數(shù),然后把開得盡方的因式或因數(shù)開出來,從而將式子化簡。

a.2b.3。

c.1d.0。

3.把下列各式化成最簡二次根式:

答案:

1.b。

2.b。

(1)被開方數(shù)的因數(shù)是整數(shù),因式是整式;

(2)被開方數(shù)中不含能開得盡方的因數(shù)或因式。

2.把一個(gè)式子化為最簡二次根式的方法是:

(2)如果被開方數(shù)含有分母,應(yīng)去掉分母的根號(hào)。

1.把下列各式化成最簡二次根式:

2.把下列各式化成最簡二次根式:

答案:

最簡二次根式教學(xué)設(shè)計(jì)篇六

(2)會(huì)進(jìn)行簡單的二次根式的除法運(yùn)算;。

本節(jié)內(nèi)容主要是在做二次根式的`除法運(yùn)算時(shí),分母含根號(hào)的處理方式上,學(xué)生可能會(huì)出現(xiàn)困難或容易失誤,在除法運(yùn)算中,可以先計(jì)算后利用商的算術(shù)平方根的性質(zhì)來進(jìn)行,也可以先利用分式的性質(zhì),去掉分母中的根號(hào),再結(jié)合乘法法則和積的算術(shù)平方根的性質(zhì)來進(jìn)行。二次根式的除法與分式的運(yùn)算類似,如果分子、分母中含有相同的因式,可以直接約去,以簡化運(yùn)算。教學(xué)中不能只是列舉題型,應(yīng)以各級(jí)各類習(xí)題為載體,引導(dǎo)學(xué)生把握運(yùn)算過程,估計(jì)運(yùn)算結(jié)果,明確運(yùn)算方向。

重點(diǎn):二次根式的乘法法則與積的算術(shù)平方根的性質(zhì).。

難點(diǎn):二次根式的除法法則與商的算術(shù)平方根的性質(zhì)之間的關(guān)系和應(yīng)用。

4。1第一學(xué)時(shí)。

問題1二次根式的乘法法則是什么內(nèi)容?化簡二次根式的一般步驟怎樣?

師生活動(dòng)學(xué)生回答。

【設(shè)計(jì)意圖】讓學(xué)生回憶探究乘法法則的過程,類比該過程,學(xué)生可以探究除法法則.。

2.觀察思考,理解法則。

問題2教材第8頁“探究”欄目,計(jì)算結(jié)果如何?有何規(guī)律?

師生活動(dòng)學(xué)生回答,給出正確答案后,教師引導(dǎo)學(xué)生思考,并總結(jié)二次根式除法法則:。

問題3對(duì)比乘法法則里字母的取值范圍,除法法則里字母的取值范圍有何變化?

師生活動(dòng)學(xué)生思考,回答。學(xué)生能說明根據(jù)分?jǐn)?shù)的意義知道,分母不為零就可以了。

【設(shè)計(jì)意圖】學(xué)生通過自主探究,采用類比的方法,得出二次根式的除法法則后,要明確字母的取值范圍,以免在處理更為復(fù)雜的二次根式的運(yùn)算時(shí)出現(xiàn)錯(cuò)誤。

問題4對(duì)例題的運(yùn)算你有什么看法?是如何進(jìn)行的?

師生活動(dòng)學(xué)生利用法則直接運(yùn)算,一般根號(hào)下不含分母和開得盡方的因數(shù)。

【設(shè)計(jì)意圖】讓學(xué)生初步利用二次根式的性質(zhì)、乘除法法則進(jìn)行簡單的運(yùn)算。

問題5對(duì)比積的算術(shù)平方根的性質(zhì),商的算術(shù)平方根有沒有類似性質(zhì)?

師生活動(dòng)學(xué)生類比地發(fā)現(xiàn),商的算術(shù)平方根等于算術(shù)平方根的商,即。利用該性質(zhì)可以進(jìn)行二次根式的化簡。

問題2教材第8頁“探究”欄目,計(jì)算結(jié)果如何?有何規(guī)律?

師生活動(dòng)學(xué)生回答,給出正確答案后,教師引導(dǎo)學(xué)生思考,并總結(jié)二次根式除法法則:。

問題3對(duì)比乘法法則里字母的取值范圍,除法法則里字母的取值范圍有何變化?

師生活動(dòng)學(xué)生思考,回答。學(xué)生能說明根據(jù)分?jǐn)?shù)的意義知道,分母不為零就可以了。

【設(shè)計(jì)意圖】學(xué)生通過自主探究,采用類比的方法,得出二次根式的除法法則后,要明確字母的取值范圍,以免在處理更為復(fù)雜的二次根式的運(yùn)算時(shí)出現(xiàn)錯(cuò)誤。

問題4對(duì)例題的運(yùn)算你有什么看法?是如何進(jìn)行的?

師生活動(dòng)學(xué)生利用法則直接運(yùn)算,一般根號(hào)下不含分母和開得盡方的因數(shù)。

【設(shè)計(jì)意圖】讓學(xué)生初步利用二次根式的性質(zhì)、乘除法法則進(jìn)行簡單的運(yùn)算。

問題5對(duì)比積的算術(shù)平方根的性質(zhì),商的算術(shù)平方根有沒有類似性質(zhì)?

師生活動(dòng)學(xué)生類比地發(fā)現(xiàn),商的算術(shù)平方根等于算術(shù)平方根的商,即。利用該性質(zhì)可以進(jìn)行二次根式的化簡。

例1計(jì)算:(1);(2);(3)。

師生活動(dòng)提問:你有幾種方法去掉分母中的根號(hào)?去分母的依據(jù)分別是什么?

【設(shè)計(jì)意圖】通過具體問題,讓學(xué)生在實(shí)際運(yùn)算中培養(yǎng)運(yùn)算能力,訓(xùn)練運(yùn)算技能,

問題5你能從例題的解答過程中,總結(jié)一下二次根式的運(yùn)算結(jié)果有什么特征嗎?

師生活動(dòng)學(xué)生總結(jié),師生共同補(bǔ)充、完善。要總結(jié)出:

(1)這些根式的被開方數(shù)都不含分母;

(2)被開方數(shù)中不含能開得盡方的因數(shù)或因式;

(3)分母中不含根號(hào);

【設(shè)計(jì)意圖】引導(dǎo)學(xué)生及時(shí)總結(jié),提出最簡二次根式的概念,要強(qiáng)調(diào),在二次根式的運(yùn)算中,一般要把最后結(jié)果化為最簡二次根式。

問題6課件展示一組二次根式的計(jì)算、化簡題。

【設(shè)計(jì)意圖】讓學(xué)生用總結(jié)出的結(jié)論進(jìn)行二次根式的運(yùn)算。

例2教材第9頁例7。

再提問章引言中的問題現(xiàn)在能解決了嗎?

【設(shè)計(jì)意圖】鞏固性練習(xí),同時(shí)培養(yǎng)學(xué)生應(yīng)用二次根式的乘除運(yùn)算法則解決實(shí)際問題的能力。

1.在、、中,最簡二次根式為。

【設(shè)計(jì)意圖】考查對(duì)最簡二次根式的概念的理解。

2.化簡下列各式為最簡二次根式:;。

【設(shè)計(jì)意圖】復(fù)習(xí)二次根式的運(yùn)算法則和運(yùn)算性質(zhì)。鼓勵(lì)學(xué)生用不同方法進(jìn)行計(jì)算。對(duì)于分母含二次根式的處理,要結(jié)合整式的乘法公式進(jìn)行計(jì)算。

3.化簡:(1);(2)。

【設(shè)計(jì)意圖】綜合運(yùn)用二次根式的概念、性質(zhì)和運(yùn)算法則進(jìn)行二次根式的運(yùn)算。

教科書第10頁練習(xí)第1,2,3題;

教科書習(xí)題16。2第10,11題。

最簡二次根式教學(xué)設(shè)計(jì)篇七

一、案例背景:

本節(jié)是九年級(jí)上學(xué)期數(shù)學(xué)的起始課。二次根式的學(xué)習(xí),是對(duì)代數(shù)式的進(jìn)一步學(xué)習(xí)。本節(jié)主要經(jīng)歷二次根式的發(fā)生過程及對(duì)二次根式的理解。掌握求二次根式的值和二次根式根號(hào)內(nèi)字母的取值范圍。為以后的運(yùn)用二次根式的運(yùn)算解決實(shí)際問題打好基礎(chǔ)。

二、案例描述:

1、學(xué)習(xí)任務(wù)分析:

通過對(duì)數(shù)和平方根、算術(shù)平方根的復(fù)習(xí),鼓勵(lì)學(xué)生經(jīng)歷觀察、歸納、類比等方法理解二次根式的概念。在解決實(shí)際問題的時(shí)候,注意轉(zhuǎn)化思想的滲透。體會(huì)分析問題、解決問題的方法,積累數(shù)學(xué)活動(dòng)經(jīng)驗(yàn)。比如求二次根式根號(hào)內(nèi)的字母的取值范圍,就是將問題轉(zhuǎn)化為不等式來解決。注意學(xué)生數(shù)學(xué)書寫格式的規(guī)范,為以后的學(xué)習(xí)打好基礎(chǔ)。為了使學(xué)生更好地掌握這一部分內(nèi)容,遵循啟發(fā)式教學(xué)原則,用復(fù)習(xí)以前學(xué)過的知識(shí)導(dǎo)入新課。設(shè)計(jì)合作學(xué)習(xí)活動(dòng),引導(dǎo)學(xué)生操作、觀察、探索、交流、發(fā)現(xiàn)、思維,解決實(shí)際問題的過程,真正把學(xué)生放到主體位置。

2、學(xué)生的認(rèn)知起點(diǎn)分析:

學(xué)生已掌握數(shù)的平方根和算術(shù)平方根。這為經(jīng)歷二次根式概念的發(fā)生過程做好準(zhǔn)備。另外,學(xué)生對(duì)數(shù)的算術(shù)平方根的理解作為基礎(chǔ),經(jīng)歷跟此根式概念的發(fā)生過程,引導(dǎo)學(xué)生對(duì)二次根式概念的理解。

案例反思:

以往對(duì)這類問題的回答都是全班回答,有些學(xué)生反面信息不能體現(xiàn)出來。采取的措施是全班舉手勢(shì)回答,可以做二次根式的被開方數(shù)舉“布”,若不能舉“拳頭”。使班級(jí)能夠全面參與,避免集體回答所體現(xiàn)不出的問題。

2.合作活動(dòng):

第一位同學(xué)——出題者:請(qǐng)你按表中的要求寫完后,按順時(shí)針方向交給下一位同學(xué);

第二位同學(xué)——解題者:請(qǐng)你按表中的要求解完后,按順時(shí)針方向交給下一位同學(xué);

第四位同學(xué)——復(fù)查者:請(qǐng)你一定要把好關(guān)哦!

出題者姓名:解題者姓名:

第一個(gè)二次根式:1.要使式子的值為實(shí)數(shù),求x的取值范圍.2.寫出x的一個(gè)值,使式子的值為有理數(shù),并求出這個(gè)有理數(shù)。3.寫出x的一個(gè)值,使式子的值為無理數(shù),并求出這個(gè)無理數(shù)。

第二個(gè)二次根式:1.要使式子的值為實(shí)數(shù),求x的取值范圍。2.寫出x的一個(gè)值,使式子的值為有理數(shù),并求出這個(gè)有理數(shù)。3.寫出x的一個(gè)值,使式子的值為無理數(shù),并求出這個(gè)無理數(shù)。

批改者姓名:復(fù)查者姓名:

《課程標(biāo)準(zhǔn)》突出了學(xué)生在學(xué)習(xí)中的地位--學(xué)生是學(xué)習(xí)的主人,同時(shí),教師的地位、角色發(fā)生了變化,從“主導(dǎo)”變成了“學(xué)生學(xué)習(xí)活動(dòng)的組織者、引導(dǎo)者和合作者”。合作活動(dòng)的安排就是對(duì)這一課程標(biāo)準(zhǔn)的體現(xiàn)。

最簡二次根式教學(xué)設(shè)計(jì)篇八

2.掌握用簡單的一元一次不等式解決二次根式中字母的取值問題;。

3.掌握二次根式的性質(zhì)和,并能靈活應(yīng)用;。

4.通過二次根式的計(jì)算培養(yǎng)學(xué)生的邏輯思維能力;。

5.通過二次根式性質(zhì)和的介紹滲透對(duì)稱性、規(guī)律性的數(shù)學(xué)美。

二、教學(xué)重點(diǎn)和難點(diǎn)。

重點(diǎn):(1)二次根的意義;(2)二次根式中字母的取值范圍。

難點(diǎn):確定二次根式中字母的取值范圍。

三、教學(xué)方法。

啟發(fā)式、講練結(jié)合。

四、教學(xué)過程。

(一)復(fù)習(xí)提問。

1.什么叫平方根、算術(shù)平方根?

2.說出下列各式的意義,并計(jì)算:

通過練習(xí)使學(xué)生進(jìn)一步理解平方根、算術(shù)平方根的概念。

觀察上面幾個(gè)式子的特點(diǎn),引導(dǎo)學(xué)生總結(jié)它們的被平方數(shù)都大于或等于零,其中,表示的是算術(shù)平方根。

我們已遇到的這樣的式子是我們這節(jié)課研究的內(nèi)容,引出:

定義:式子叫做二次根式。

對(duì)于請(qǐng)同學(xué)們討論論應(yīng)注意的問題,引導(dǎo)學(xué)生總結(jié):

(1)式子只有在條件a0時(shí)才叫二次根式,是二次根式嗎?

若根式中含有字母必須保證根號(hào)下式子大于等于零,因此字母范圍的限制也是根式的一部分。

(2)是二次根式,而,提問學(xué)生:2是二次根式嗎?顯然不是,因此二次。

根式指的是某種式子的外在形態(tài).請(qǐng)學(xué)生舉出幾個(gè)二次根式的例子,并說明為什么是二次根式。下面例題根據(jù)二次根式定義,由學(xué)生分析、回答。

最簡二次根式教學(xué)設(shè)計(jì)篇九

(2)會(huì)用公式化簡二次根式。

(1)學(xué)生能通過計(jì)算發(fā)現(xiàn)規(guī)律并對(duì)其進(jìn)行一般化的推廣,得出乘法法則的內(nèi)容;

(2)學(xué)生能利用二次根式的乘法法則和積的算術(shù)平方根的性質(zhì),化簡二次根式。

教學(xué)問題診斷分析。

本節(jié)課的學(xué)習(xí)中,學(xué)生在得出乘法法則和積的算術(shù)平方根的性質(zhì)后,對(duì)于何時(shí)該選用何公式簡化運(yùn)算感到困難、運(yùn)算習(xí)慣的養(yǎng)成與符號(hào)意識(shí)的養(yǎng)成、運(yùn)算能力的形成緊密相關(guān),由于該內(nèi)容與以前學(xué)過的實(shí)數(shù)內(nèi)容有較多的聯(lián)系,例如,整式中的乘法公式在二次根式的運(yùn)算中也成立,在教學(xué)中,要多從聯(lián)系性上下力氣、,培養(yǎng)學(xué)生良好的運(yùn)算習(xí)慣。

在教學(xué)時(shí),通過實(shí)例運(yùn)算,對(duì)于將一個(gè)二次根式化為最簡二次根式,一般有兩種情況:(1)如果被開方數(shù)是分?jǐn)?shù)或分式(包括小數(shù)),可以采用直接利用分式的性質(zhì),結(jié)合二次根式的性質(zhì)進(jìn)行化簡(例見教科書例6解法1),也可以先寫成算術(shù)平方根的商的形式,再利用分式的性質(zhì)處理分母的根號(hào)(例見教科書例6解法2);(2)如果被開方數(shù)不含分母,可以先將它分解因數(shù)或分解因式,然后吧開得盡方的因數(shù)或因式開出來,從而將式子化簡。

本節(jié)課的教學(xué)難點(diǎn)為:二次根式的性質(zhì)及乘法法則的正確應(yīng)用和二次根式的化簡。

1、復(fù)習(xí)引入,探究新知。

問題1什么叫二次根式?二次根式有哪些性質(zhì)?

師生活動(dòng)學(xué)生回答。

【設(shè)計(jì)意圖】乘法運(yùn)算和二次根式的化簡需要用到二次根式的性質(zhì)。

問題2教材第6頁“探究”欄目,計(jì)算結(jié)果如何?有何規(guī)律?

師生活動(dòng)學(xué)生計(jì)算、思考并嘗試歸納,引導(dǎo)學(xué)生用自己的語言描述乘法法則的內(nèi)容。

2、觀察比較,理解法則。

問題3簡單的根式運(yùn)算。

師生活動(dòng)學(xué)生動(dòng)手操作,教師檢驗(yàn)。

問題4二次根式的乘除成立的條件是什么?等式反過來有什么價(jià)值?

師生活動(dòng)學(xué)生回答,給出正確答案后,教師給出積的算術(shù)平方根的性質(zhì)。

【設(shè)計(jì)意圖】讓學(xué)生運(yùn)用法則進(jìn)行簡單的二次根式的乘法運(yùn)算,以檢驗(yàn)法則的掌握情況、乘法法則反過來就是積的算術(shù)平方根的性質(zhì),性質(zhì)是為運(yùn)算服務(wù)的,積的算術(shù)平方根的性質(zhì)將積的算術(shù)平方根分解成幾個(gè)因數(shù)或因式的算術(shù)平方根的積,利用整式的運(yùn)算法則、乘法公式等可以簡化二次根式,培養(yǎng)學(xué)生的運(yùn)算能力。

3、例題示范,學(xué)會(huì)應(yīng)用。

例1化簡:(1)二次根式的乘除;(2)二次根式的乘除。

師生活動(dòng)提問:你是怎么理解例(1)的?

師生合作回答上述問題、對(duì)于根式運(yùn)算的最后結(jié)果,一般被開方數(shù)中有開得盡方的因數(shù)或因式,應(yīng)依據(jù)二次根式的性質(zhì)二次根式的乘除將其移出根號(hào)外、。

再提問:你能仿照第(1)題的解答,能自己解決(2)嗎?

例2計(jì)算:(1)二次根式的乘除;(2)二次根式的乘除;(3)二次根式的乘除。

師生活動(dòng)學(xué)生計(jì)算,教師檢驗(yàn)。

(3)例(3)的運(yùn)算是選學(xué)內(nèi)容、讓學(xué)有余力的學(xué)生學(xué)到“根號(hào)下為字母的二次根式”的運(yùn)算、本題先利用積的算術(shù)平方根的性質(zhì),得到二次根式的乘除,然后利用二次根式的乘法法則,變成二次根式的乘除,由于二次根式的乘除可以判斷二次根式的乘除,因此直接將x移出根號(hào)外、。

【設(shè)計(jì)意圖】引導(dǎo)學(xué)生及時(shí)總結(jié),強(qiáng)調(diào)利用運(yùn)算律進(jìn)行運(yùn)算,利用乘法公式簡化運(yùn)算、讓學(xué)生認(rèn)識(shí)到,二次根式是一類特殊的實(shí)數(shù),因此滿足實(shí)數(shù)的運(yùn)算律,關(guān)于整式運(yùn)算的公式和方法也適用。

教材中雖然指明,如未特別說明,本章中所有的字母都表示正數(shù),但仍應(yīng)強(qiáng)調(diào),看到根號(hào)就要注意被開方數(shù)的符號(hào)、可以根據(jù)二次根式的概念對(duì)字母的符號(hào)進(jìn)行判斷,在移出根號(hào)時(shí)正確處理符號(hào)問題。

4、鞏固概念,學(xué)以致用。

練習(xí):教科書第7頁練習(xí)第1題、第10頁習(xí)題16、2第1題。

【設(shè)計(jì)意圖】鞏固性練習(xí),同時(shí)檢驗(yàn)乘法法則的掌握情況。

5、歸納小結(jié),反思提高。

師生共同回顧本節(jié)課所學(xué)內(nèi)容,并請(qǐng)學(xué)生回答以下問題:

(1)你能說明二次根式的乘法法則是如何得出的嗎?

(2)你能說明乘法法則逆用的意義嗎?

(3)化簡二次根式的基本步驟是怎樣?一般對(duì)最后結(jié)果有何要求?

6、布置作業(yè):教科書第7頁第2、3題、習(xí)題16、2第1,6題。

1、下列各式中,一定能成立的是()。

【設(shè)計(jì)意圖】考查二次根式的概念和性質(zhì),這是進(jìn)行二次根式的乘法運(yùn)算的基礎(chǔ)。

2、化簡二次根式的乘除______________________________。

【設(shè)計(jì)意圖】二次根式是特殊的實(shí)數(shù),實(shí)數(shù)的相關(guān)運(yùn)算法則也適用于二次根式。

3、已知二次根式的乘除,化簡二次根式二次根式的乘除的結(jié)果是()。

【設(shè)計(jì)意圖】鞏固二次根式的性質(zhì),利用積的算術(shù)平方根的性質(zhì)正確化簡二次根式。

最簡二次根式教學(xué)設(shè)計(jì)篇十

難點(diǎn):把被開方數(shù)是多項(xiàng)式和分式的二次根式化為最簡二次根式.

請(qǐng)說出第(3),(4)題的解題過程.

答:第(3)題的被開方數(shù)是一個(gè)多項(xiàng)式,先把它分解因式,再運(yùn)用積的算術(shù)平方根的性質(zhì),把根號(hào)中的平方式及平方數(shù)開出來,運(yùn)算結(jié)果應(yīng)化為最簡二次根式.

理化.

請(qǐng)說出各題的特點(diǎn)和解題思路.

答:(1)題的被開方數(shù)及(2)題的被開方數(shù)的分子是多項(xiàng)式,應(yīng)化成因式積的形式,可以先分解因式,再化簡.

(3)題的被開方數(shù)的分母是兩個(gè)數(shù)的平方差,先利用平方差公式把它化為乘積形式,再根據(jù)商的算術(shù)平方根和積的算術(shù)平方根的性質(zhì)及分母有理化的方法,使運(yùn)算結(jié)果為最簡二次根式.

計(jì)算:

依據(jù)二次根式的乘除法的法則進(jìn)行計(jì)算,最后要把計(jì)算結(jié)果化成最簡二次根式.

1.選擇題:

(7)下列化簡中,正確的是[]。

(8)下列化簡中,錯(cuò)誤的是[]。

3.計(jì)算:

答案:

1.把一個(gè)式子化為最簡二次根式時(shí),如果被開方數(shù)是多項(xiàng)式,應(yīng)把它化成積的形式,一般可考慮先分解因式,然后再化簡.

2.如果一個(gè)式子的被開方數(shù)的分母是一個(gè)多項(xiàng)式,而這個(gè)多項(xiàng)式又不能分解因式(如課堂練習(xí)2(2)),在分母有理化時(shí),把分子分母同乘以這個(gè)多項(xiàng)式.

3.二次根式的乘除法運(yùn)算,運(yùn)算結(jié)果一定要化為最簡二次根式.

2.計(jì)算:

答案:

最簡二次根式教學(xué)分二課時(shí)進(jìn)行.教學(xué)設(shè)計(jì)中首先安排討論二次根式的被開方數(shù)是單項(xiàng)式以及被開方數(shù)的分母是單項(xiàng)式的情況,然后再討論被開方數(shù)是多項(xiàng)式和分母是多項(xiàng)式的情況.通過5個(gè)例題及課堂練習(xí),最后達(dá)到使學(xué)生比較深刻地理解最簡二次根式的概念,達(dá)到熟練地掌握把二次根式化為最簡二次根式的教學(xué)目標(biāo)?.

最簡二次根式教學(xué)設(shè)計(jì)篇十一

教學(xué)過程。

一、復(fù)習(xí)引入。

1.把下列各根式化簡,并說出化簡的根據(jù):

2.引導(dǎo)學(xué)生觀察考慮:

化簡前后的根式,被開方數(shù)有什么不同?

化簡前的被開方數(shù)有分?jǐn)?shù),分式;化簡后的被開方數(shù)都是整數(shù)或整式,且被開方數(shù)中開得盡方的因數(shù)或因式,被移到根號(hào)外。

3.啟發(fā)學(xué)生回答:

二次根式,請(qǐng)同學(xué)們考慮一下被開方數(shù)符合什么條件的二次根式叫做最簡二次根式?

二、講解新課。

1.總結(jié)學(xué)生回答的內(nèi)容后,給出最簡二次根式定義:

滿足下列兩個(gè)條件的二次根式叫做最簡二次根式:

(1)被開方數(shù)的因數(shù)是整數(shù),因式是整式;

(2)被開方數(shù)中不含能開得盡的因數(shù)或因式。

最簡二次根式定義中第(1)條說明被開方數(shù)不含有分母;分母是1的例外。第(2)條說明被開方數(shù)中每個(gè)因式的指數(shù)小于2;特別注意被開方數(shù)應(yīng)化為因式連乘積的形式。

2.練習(xí):

下列各根式是否為最簡二次根式,不是最簡二次根式的說明原因:

3.例題:

4.總結(jié)。

把二次根式化成最簡二次根式的根據(jù)是什么?應(yīng)用了什么方法?

當(dāng)被開方數(shù)為整數(shù)或整式時(shí),把被開方數(shù)進(jìn)行因數(shù)或因式分解,根據(jù)積的算術(shù)平方根的性質(zhì),把開得盡方的因數(shù)或因式用它的算術(shù)平方根代替移到根號(hào)外面去。

當(dāng)被開方數(shù)是分?jǐn)?shù)或分式時(shí),根據(jù)分式的'基本性質(zhì)和商的算術(shù)平方根的性質(zhì)化去分母。

此方法是先根據(jù)分式的基本性質(zhì)把被開方數(shù)的分母化成能開得盡方的因式,然后分子、分母再分別化簡。

三、鞏固練習(xí)。

2.判斷下列各根式,哪些是最簡二次根式?哪些不是最簡二次根式?如果不是,把它化成最簡二次根式。

四、小結(jié)。

本節(jié)課學(xué)習(xí)了最簡二次根式的定義及化簡二次根式的方法。同學(xué)們掌握用最簡二次根式的定義判斷一個(gè)根式是否為最簡二次根式,要根據(jù)積的算術(shù)平方根和商的算術(shù)平方根的性質(zhì)把一個(gè)根式化成最簡二次根式,特別注意當(dāng)被開方數(shù)為多項(xiàng)式時(shí)要進(jìn)行因式分解,被開方數(shù)為兩個(gè)分?jǐn)?shù)的和則要先通分,再化簡。

五、布置作業(yè)。

最簡二次根式教學(xué)設(shè)計(jì)篇十二

要判斷幾個(gè)根式是不是同類二次根式,須先化簡根號(hào)里面的數(shù),把非最簡二次根式化成最簡二次根式,然后判斷。判斷兩個(gè)最簡二次根式是否為同類二次根式,其依據(jù)是“被開方數(shù)是否相同”,與根號(hào)外的因式無關(guān)。

1、被開方數(shù)中不含能開得盡方的.因數(shù)或因式;

2、被開方數(shù)的因數(shù)是整數(shù),因式是整式。

最簡二次根式教學(xué)設(shè)計(jì)篇十三

2學(xué)情分析。

本節(jié)內(nèi)容主要是在做二次根式的除法運(yùn)算時(shí),分母含根號(hào)的處理方式上,學(xué)生可能會(huì)出現(xiàn)困難或容易失誤,在除法運(yùn)算中,可以先計(jì)算后利用商的算術(shù)平方根的性質(zhì)來進(jìn)行,也可以先利用分式的性質(zhì),去掉分母中的根號(hào),再結(jié)合乘法法則和積的算術(shù)平方根的性質(zhì)來進(jìn)行。二次根式的除法與分式的運(yùn)算類似,如果分子、分母中含有相同的因式,可以直接約去,以簡化運(yùn)算。教學(xué)中不能只是列舉題型,應(yīng)以各級(jí)各類習(xí)題為載體,引導(dǎo)學(xué)生把握運(yùn)算過程,估計(jì)運(yùn)算結(jié)果,明確運(yùn)算方向。

3重點(diǎn)難點(diǎn)。

重點(diǎn):二次根式的乘法法則與積的算術(shù)平方根的性質(zhì).。

難點(diǎn):二次根式的除法法則與商的算術(shù)平方根的性質(zhì)之間的關(guān)系和應(yīng)用。

4教學(xué)過程。

4。1第一學(xué)時(shí)。

教學(xué)活動(dòng)。

活動(dòng)1【導(dǎo)入】復(fù)習(xí)提問,探究規(guī)律。

師生活動(dòng)學(xué)生回答。

最簡二次根式教學(xué)設(shè)計(jì)篇十四

2.會(huì)運(yùn)用積和商的算術(shù)平方根的性質(zhì),把一個(gè)二次根式化為最簡二次根式,數(shù)學(xué)教案-最簡二次根式 教學(xué)設(shè)計(jì)示例2。

最簡二次根式的定義。

一個(gè)二次根式化成最簡二次根式的方法。

1.把下列各根式化簡,并說出化簡的根據(jù):

2.引導(dǎo)學(xué)生觀察考慮:

化簡前后的根式,被開方數(shù)有什么不同?

化簡前的被開方數(shù)有分?jǐn)?shù),分式;化簡后的被開方數(shù)都是整數(shù)或整式,且被開方數(shù)中開得盡方的因數(shù)或因式,被移到根號(hào)外。

3.啟發(fā)學(xué)生回答:

二次根式,請(qǐng)同學(xué)們考慮一下被開方數(shù)符合什么條件的二次根式叫做最簡二次根式?

滿足下列兩個(gè)條件的二次根式叫做最簡二次根式:

(1)被開方數(shù)的因數(shù)是整數(shù),因式是整式;

(2)被開方數(shù)中不含能開得盡的'因數(shù)或因式,初中數(shù)學(xué)教案《數(shù)學(xué)教案-最簡二次根式 教學(xué)設(shè)計(jì)示例2》。

最簡二次根式定義中第(1)條說明被開方數(shù)不含有分母;分母是1的例外。第(2)條說明被開方數(shù)中每個(gè)因式的指數(shù)小于2;特別注意被開方數(shù)應(yīng)化為因式連乘積的形式。

下列各根式是否為最簡二次根式,不是最簡二次根式的說明原因:

例1 把下列各式化成最簡二次根式:

例2 把下列各式化成最簡二次根式:

把二次根式化成最簡二次根式的根據(jù)是什么?應(yīng)用了什么方法?

當(dāng)被開方數(shù)為整數(shù)或整式時(shí),把被開方數(shù)進(jìn)行因數(shù)或因式分解,根據(jù)積的算術(shù)平方根的性質(zhì),把開得盡方的因數(shù)或因式用它的算術(shù)平方根代替移到根號(hào)外面去。

當(dāng)被開方數(shù)是分?jǐn)?shù)或分式時(shí),根據(jù)分式的基本性質(zhì)和商的算術(shù)平方根的性質(zhì)化去分母。

此方法是先根據(jù)分式的基本性質(zhì)把被開方數(shù)的分母化成能開得盡方的因式,然后分子、分母再分別化簡。

1.把下列各式化成最簡二次根式:

2.判斷下列各根式,哪些是最簡二次根式?哪些不是最簡二次根式?如果不是,把它化成最簡二次根式。

【本文地址:http://www.aiweibaby.com/zuowen/13087829.html】

全文閱讀已結(jié)束,如果需要下載本文請(qǐng)點(diǎn)擊

下載此文檔