通過閱讀,可以更好地理解和欣賞文學作品。在寫總結的時候,要注重正反兩個方面的描述,避免片面性的觀點。下面是小編為大家整理的一些總結的范文,希望對大家寫作有所幫助。
人教版因數和倍數教學設計篇一
教學目標:
1、從操作活動中理解因數的意義,會判斷一個數是不是另一個數的因數。
2、培養(yǎng)學生抽象、概括與觀察思考的能力,滲透事物之間相互聯系,相互依存的辨證唯物主義觀點。
3、培養(yǎng)學生的合作意識、探索意識以及熱愛數學學習的情感。
教學重點:理解因數的意義。
教學難點:能熟練地找一個數的因數。
教具準備:多媒體課件。
教學過程:
一、引入新課:
1、課件出示主題圖,讓學生各列一道乘法算式。
2、師:看你能不能讀懂下面的算式?
出示:因為2×6=12。
所以2是12的因數,6也是12的因數;
12是2的倍數,12也是6的倍數。
3、師:你能不能用同樣的方法說說另一道算式?你還能找出12的其他因數嗎?
(指名生說一說)。
4、你能不能寫一個算式來考考同桌?學生寫算式。
5、師:今天我們就來學習因數和倍數。(板書課題:因數和倍數)。
齊讀教材第12的注意。
二、自學預設:
2、怎樣找因數?例如18,36的因數是什么?
3、因數有什么特點?一個數的最小因數是多少?有幾個因數?(舉例說明)。
嘗試練習。
試著完成p13的做一做練習。
三、認識因數與倍數,展示交流。
(一)找因數:
1、出示例1:18的因數有哪幾個?
學生嘗試完成匯報:(18的因數有:1,2,3,6,9,18)。
2、用這樣的方法,請你再找一找36的因數有那些?
匯報36的因數有:1,2,3,4,6,9,12,18,36。
師:你是怎么找的?
舉錯例(1,2,3,4,6,6,9,12,18,36)。
師:這樣寫可以嗎?為什么?(不可以,因為重復的因數只要寫一個就可以了,所以不需要寫兩個6)。
3、你還想找哪個數的因數?(18、5、42……)請你選擇其中的一個在練本上寫一寫,然后匯報。
4、其實寫一個數的因數除了這樣寫以外,還可以用集合表示。課件出示。
5、小結:我們找了這么多數的因數,你覺得怎樣找才不容易漏掉?
從最小的自然數1找起,也就是從最小的因數找起,一直找到它的本身,找的過程中一對一對找,寫的時候從小到大寫。
(二).我的質疑。
1.誰能舉一個算式例子,并說說誰是誰的因數?
2.討論:0×30×100÷30÷10。
提問:通過剛才的計算,你有什么發(fā)現?
3.注意:(1)為了方便,在研究因數和倍數的時候,我們所說的數一般指的是整數,但不包括0。(2)這節(jié)課我們研究因數與倍數的關系中所說的因數不是以前乘法算式名稱的“因數”,兩者不能搞混淆。
四、反饋檢測。
1.下面每一組數中,誰是誰得因數?
16和24和2472和820和5。
2.下面得說法對嗎?說出理由。
(1)48是6的倍數。
(2)在13÷4=3……1中,13是4的倍數。
(3)因為3×6=18,所以18是倍數,3和6是因數。
3、完成p15第2題。
學生自己獨立完成,講評時讓學生說一說,是怎么想的?
五、課堂小結:
我們一起來回憶一下,這節(jié)課我們重點研究了一個什么問題?你有什么收獲呢?
18的因數有:1,2,3,6,9,18。
一個數的因數::最小的是1,最大的是它本身。
人教版因數和倍數教學設計篇二
教學內容:青島版教材小學數學五年級上冊88—91頁。
教學目標:
1、使學生初步認識因數和倍數的含義,探索求一個數的因數或倍數的方法,發(fā)現一個數的因數、倍數中最大的數、最小的數及其個數方面的特征。
2、使學生在認識因數和倍數以及探索一個數的因數或倍數的過程中,進一步體會數學知識之間的內在聯系,提高數學思考的水平,對數學產生好奇心,培養(yǎng)學習興趣。
教學重點:理解因數和倍數的意義,探索求一個數因數或倍數的方法。
教學難點:探索求一個數因數或倍數的方法。
教具準備:多媒體課件、學生練習題。
教學過程:
一、談話導入。
師:同學們看這是什么?
生:小正方形。
師:想不想知道王老師給大家?guī)砹硕嗌賯€這樣的小正方形?
生:想。
師:多少個?
生:12個。
師:想一想你能不能把這12個完全一樣的小正方形拼成一個長方形呢?
生:能。
人教版因數和倍數教學設計篇三
教學過程:。
一,創(chuàng)設情境,明確相互依存的關系。
師:同學們,我們人與人之間存在著各種關系,比如說(指某位同學)他同他的爸爸是什么關系呢?(父子關系)老師和你們是——師生關系。
師:“老師是師生關系”可以這樣說嗎?為什么?
生:師生關系是指老師和學生之間的相互關系,不能單獨說。
師:是呀,人與人之間的關系是相互的,在數學王國里,也有一些存在著相互依存關系的數,這節(jié)課我們就來學習。
二、動手操作,感受并認識因數和倍數。
(一)、新課引入:。
1、師:同學們的桌上都放著12個同樣大的正方形,請你用這12個正方形拼成一個長方形,注意每排擺幾個?擺了幾排?用乘法算式表示你的擺法.
2、進行交流:。
師:誰愿意把自己擺長方形的方法和列出的算式講給大家聽?
師:還有其它擺法嗎?
還有不同的乘法算式嗎?猜一猜,他是怎樣擺的?
學生交流幾種不同的擺法。隨著學生交流屏幕上一一演示。
師:12個同樣大小的正方形能擺出不同的的長方形,可以用乘法算式來表示,千萬別小看這些算式,這節(jié)課我們就從這些算式中學習兩個重要的數學概念”因數和倍數”。(板書課題)。
師:我們以一道乘法算式為例。(屏幕出示)。
4×3=12,。
師:在這個算式中,4、3、12有什么關系呢?
我們一起來讀一讀:。
因為:4×3=12,。
所以:4是12的因數,3也是12的因數。
12是4的倍數,12也是3的倍數。
師:讀讀看,能讀懂嗎?說一說讀后你想到了什么?
生:乘法算式中,兩個數存在因數和倍數的關系。
師:他的說法正確嗎?我們來繼續(xù)讀。
出示:因為:6×2=12,所以——。
因為:1×12=12,所以——。
師:請把書打到12頁,齊讀最后自然段的注意。
生:注意,為了方便,在研究因數和倍數的時候,我們所說的數指的是的整數(一般不包括0)。
師:現在你們能把存在因數和倍數關系的條件說得更準確些嗎?
生:在非0的整數乘法算式中,兩個數之間存在因數和倍數關系。
師:誰也來出個乘法算式說一說。(略)。
課件出示:32÷4=8,你能從這個算式中找到因數和倍數嗎?
師:我們不僅可以根據乘法算式找因數和倍數,也可以根據除法算式找因數和倍數。二、創(chuàng)設情境,自主探究找因數和倍數的方法.
1、師:我們剛才初步認識了因數和倍數,明白了因數和倍數都表示幾個數之間的關系?(兩個)。所以,不能單說哪個數是倍數,哪個數是因數。下面我們進一步來研究因數和倍數。
屏幕顯示:。
試一試:你能從中選兩個數,說一說誰是誰的因數?誰是誰的倍數?
2、3、5、9、18、20。
生:2、3、9、18都是18的因數。
師:18的因數只有這4個嗎?
師:看來要找出18的一個因數并不難,難就難在你能不能把18的所有因數既不重復又不遺漏地全部找出來。請你選擇你喜歡的方式,可以同桌合作,小組合作,也可以獨立完成,找出18的所有因數。如果能把怎么找到的方法寫在紙上就更好了。
生:寫后小組內交流。
學生填寫時師巡視搜集作業(yè)。
2、交流作業(yè)。(略)。
投影儀出示學生的不同作業(yè)。交流找因數的方法。
師:出示18的因數有:1、18;2、9;3、6;。
你知道這個同學是怎樣找出18的因數的嗎?看著這個答案你能猜出一點嗎?
生:他是有規(guī)律,一對一對找的,哪兩個整數相乘得18,就寫上。
師:他是用乘法找的,其他同學還有補充嗎?找到什么時候為止?
生:可以用除法找。用18除以1得18,18和1就是18的因數。再用18除以2……。
師:用乘法和除法找都可以,你們認為用什么方法更容易呢?
生:乘法。
板書:18的因數有:1、2、3、6、9、18。
師:18的因數也可以這樣表示。(課件出示集合圈圖)。
組織交流:。
通過剛才的交流,找一個數的因數有辦法了嗎?有沒有方法不重復也不遺漏?
突出要點:有序(從小往大寫),一對對找(哪兩個整數相乘得這個數),再按從小到大的順序寫出來。
用我們找到的方法,試一個。
課件出示:。
填空:。
24=1×24=2×()=()×()=()×()。
24的因數有:_______________。
再試一個:16的因數有。
師:一個數的因數,我們都是一對一對地找的,為什么16的因數只有5個呢?
生:因為4×4=16,只寫一個4就可以了。
師:觀察18、16的所有因數,你有什么發(fā)現嗎?可以從因數的個數,最小的因數和最大的因數三個方面觀察。
生:18的因數有6個,最小的是1,最大的是18.
16的因數有5個,最小的是1,最大的是16.
師:誰能把同學們的發(fā)現,用數學語言概括起來。先說給小組同學聽。
邊交流邊板書:。
個數最小最大。
倍數。
人教版因數和倍數教學設計篇四
1、使學生初步理解倍數和因數的含義,知道倍數和因數相互依存的關系。
2、使學生依據倍數和因數的含義以及已有乘除法知識,通過嘗試、交流等活動,探索并掌握找一個數倍數和因數的方法,能在1—100的自然數中找出10以內某個數的所有倍數,找出100以內某個數的所有因數。
3、使學生在認識倍數和因數以及找一個數的倍數和因數的過程中進一步感受數學知識的內在聯系,提高數學思考的水平。
理解因數和倍數的含義,知道它們的關系是相互依存的。
探索并掌握找一個數的因數的方法。
12個小正方形片、每個學生的學號紙。
一、認識倍數、因數的含義。
1、操作活動。
(1)明確操作要求:用12個同樣大的正方形拼成一個長方形。每排擺幾個?擺了幾排?用乘法算式把自己的擺法記錄下來。
(2)整理、交流,分別板書4×3=1212×1=126×2=12。
2、通過剛才的學習,我們發(fā)現用12個同樣的小正方形可以擺出3種不同的長方形,由此,還得出3道不一樣的乘法算式。4×3=12可以說12是4的倍數,12也是3的倍數;反過來,4和3都是12的因數。
3、今天我們就來研究倍數和因數的知識。
(揭示課題:倍數和因數)。
(1)那其它兩道算式,你能說出誰是誰的倍數嗎?你能說出誰是誰的因數嗎?
指名回答后,教師追問:如果說12是倍數,2是因數,是否可以?為什么?
小結:倍數和因數是指兩個數之間的關系,他們是相互依存的。
指出:為了方便,我們在研究倍數和因數時,所說的數都是指不是0的自然數。
二、探索找一個數倍數的方法。
1、從4×3=12中,知道12是3的倍數。3的倍數還有哪些?從小到大,你能找到幾個?同桌交流自己的思考方法。
3、議一議:你發(fā)現找3的倍數有什么小竅門?
明確:可以按從小到大的順序,依次用1、2、3……與3相乘,乘得的積就是3的倍數。
4、試一試:你能用學會的竅門很快地寫出2和5的倍數嗎?
生獨立完成,集體交流。注意用……表示結果。
5、觀察上面的3個例子,你發(fā)現一個數的倍數有什么特點?
根據學生的交流歸納:一個數的倍數中,最小的是它本身,沒有最大的倍數,一個數倍數的個數是無限的。
6、做“想想做做”第2題。
二、探索求一個數因數的方法。
1、學會了找一個數倍數的方法,再來研究求一個數的因數。
你能找出36的所有因數嗎?
2、小組合作,把36的所有因數一個不漏的寫出來,看看哪個組挑戰(zhàn)成功。并盡可能把找的方法寫出來。教師巡視,發(fā)現不同的找法。
3、出示一份作業(yè):對照自己找出的36的因數,你想對他說點什么?
4、交流整理找36因數的方法,明確:哪兩個數相乘的積等于36,那么這兩個數就是36的因數。(一對一對地找,又要按次序排列)。
板書:(有序、全面)。正因為思考的有序,才會有答案的全面。
5、試一試:請你用有序的思考找一找15和16的因數。
指名寫在黑板上。
6、觀察發(fā)現一個數的因數的特點。
一個數的因數最小是1,最大是它本身,一個數因數的個數是有限的。
7、“想想做做”第3題。
生獨立填寫,交流。觀察表格,表中的排數和每排人數與24有怎樣的關系。
四、課堂總結:學到這兒,你有哪些收獲?
五、游戲:“看誰反應快”。
規(guī)則:學號符合下面要求的請站起來,并舉起學號紙。
(1、)學號是5的倍數的。
(2、)誰的學號是24的因數。
(3、)學號是30的因數。
(4、)誰的學號是1的倍數。
步理解的基礎上,再讓他們舉一反三,結合另兩道乘法算式說一說。在這一個環(huán)節(jié)中,我設計了一個練習。即“根據下面的算式,同桌互相說說誰是誰的倍數,誰是誰的因數”第一個是20×3=60,根據學生回答后質疑“能不能說3是因數,60是倍數”,從而強調倍數和因數是相互依存的。第二個是36÷4=9,讓學生根據除法算式說出誰是誰的因數,誰是誰的倍數,并追問:你是怎么想的?使學生知道把它轉化為乘法算式去說。
在學生有了倍數、因數的初步感受后,再向學生說明:我們在研究倍數和因數時,所說的數一般指不是0的自然數,明確了因數和倍數的研究范圍。
3、p71例一:找3的倍數,先讓學生獨立思考,“你還能再寫出幾個3的倍數?你是怎樣想的?”在學生交流的基礎上,適時提出:什么樣的數就是3的倍數?你能按照從小到大的順序有條理地說出3的倍數嗎?使學生明確:找3的倍數時,可以按從到大的順序,依次用1、2、3……與3相乘,而每次乘得的積都是3的倍數。在此基礎上,引導學生進一步思考:你能把3的倍數全都說完嗎?從而使學生學會規(guī)范地表示一個數的所有倍數,并初步體會到一個數的個數是無限的。隨后,讓學生試著找出2和5的倍數,并正確表達2和5的所有倍數。最后引導學生觀察寫出的3、2和5的所有倍數,發(fā)現一個數的倍數的特點,即:一個數的最小的倍數是它本身,沒有最大的倍數。一個數的倍數的個數是無限的。
4、例二:找36的所有因數,準備讓學生獨立嘗試,但這部分內容對學生來說是個難點,所以我采用了四人小組合作的方式讓學生試著找出36的所有因數。在找36的因數時,無論想乘法算式還是想除法算式,學生一般都從無序到有序,從有重復或遺漏到不重復不遺漏。所以,我在教學時允許他們經歷這樣的過程。先按自己的思路、用自己的方法寫36的因數,能寫幾個就寫幾個,是什么順序就什么順序。然后在交流中互相評價,讓他們知道一組一組地找比較方便,可以利用乘法算式,按一個因數從小到大的順序,同時又讓他們掌握按次序地書寫。此外,結合例題和試一試,通過比較和歸納,使學生明確:一個數的因數的個數是有限的,一個數的因數中最小的是1,最大的是它本身。
5、教材p72第2題讓學生解決實際問題在表里填數,把4依次乘1、2、3、……得出“應付元數”,然后思考下面的問題,可以使學生進一步認識把4依次乘1,2,3,……所得的積,就是4的倍數,進一步理解找倍數的方法。第3題也是解決實際問題填寫表里的數,并提出問題讓學生思考,使學生明確兩個相乘的數都是它們積的因數,求一個數的所有因數,可以想乘法一對一對地找出來,理解找一個數的因數的方法。
為了提高學生學習興趣,鞏固所學的知識。最后安排了一個游戲,讓學生在游戲中進一步練習找一個數倍數或因數的方法。
人教版因數和倍數教學設計篇五
(課標人教實驗教科書24頁的學習內容)。
一、教學目標。
理解質因數和分解質因數的意義,并會用一種方法或自己喜歡的方法分解質因數。
二、教學重點、難點。
重點:分解質因數。
難點:準確分解。
三、預計教學時間:1節(jié)。
四、教學活動。
(一)基礎訓練。
【口答】。
什么是質數?什么是合數?1是什么?
【解答題】。
下面各數是質數還是合數?把你判斷的填在指定的圈里。
質數合數。
(二)新知學習。
引入:今天,我們學習合數與質數之間關系。
揭示課題-------分解質因數。
【典型例題】。
合數。
1.看合數21。
(1)有多少個因數?并寫出:1、3、7、21。
(2)回到今天討論的問題是合數與質數之間的關系,排除1和它本身21,即1×21=21。
(4)質因數與因數的分別?(也就是1和合數做質因數,也就是分解質因數中不能有1和合數;什么數都可以做因數)。
2.研究討論合數的分解方法。
(1)“樹枝”圖式分解法。
(2)“短除法”分解質因數。
3.把27,51,57,87,81分解質因數。
【小結】(分解質因數時,你認為應注意什么?)。
(三)鞏固練習(10題)。
【基礎練習】。
1.判斷下面的橫式哪些是分解質因數?哪些不是?理由?
24=2×2×66=1×2×360=2×2×3×5。
2.把分解不正確的改正過來。
【提高練習】。
把16,12,45,56分解質因數。
【拓展練習】。
把下面各數分解質因數,并分別寫出它們所有的因數。
分解質因數因數。
1515=。
1818=。
2020=。
(五)教學效果評價(小測題2-3題)。
把8,72分解質因數。
人教版因數和倍數教學設計篇六
教材分析:
這部分教材首先以例題的形式介紹因數和倍數的概念,然后在例1和例2中分別介紹了求一個數的因數和倍數的方法,引導學生從本質上理解概念,避免死記硬背,向學生滲透從具體到一般的抽象歸納的思想方法。
了解學生:
學生已經學習了四年的數學,有了四年整數知識的基礎,本課利用實物圖引出乘法算式,然后引出因數和倍數的含義,培養(yǎng)了學生的抽象概括能力。
教學目標:
1、知識技能:(1)理解和掌握因數、倍數的概念,認識它們之間的聯系和區(qū)別。(2)學會求一個數的因數或倍數的方法,能夠熟練地求出一個數的因數或倍數。(3)知道一個數的因數的個數是有限的,一個數的倍數的個數是無限的。
2、過程方法:經歷因數和倍數的認識以及求一個數的因數或倍數的過程,體驗類推、列舉和歸納總結等學習方法。
3、情感態(tài)度:在學習活動中,感受數學知識之間的內在聯系,體驗發(fā)現知識的樂趣。
教學重點:學會求一個數的因數或倍數的方法。
教學準備:課件、作業(yè)紙。
教學過程:
一、創(chuàng)設情境——找朋友。
1、唱一唱:你們聽過“找朋友”這首歌嗎?誰愿意大聲的唱給大家聽?(一名學生唱,師評價:老師很喜歡你的聲音,你敢于表現自己,老師很愿意和你成為好朋友)。
2、說一說:誰能具體的說一說“誰是誰的好朋友”?(鼓勵:老師希望能聽到更多人的聲音)。
學生完整敘述:“××是李老師的朋友,李老師是××的朋友”。
3、引入新課:同學們說的很好,那能不能說老師是朋友,××是朋友?看來,朋友是相互依存的,一個人不會是朋友。今天我們就來認識數學中的一對朋友“因數和倍數”(板書課題)。
二、探究新知。
1、提出問題:現在有12名同學參加訓練,要排成整齊的隊伍,可以怎樣排?用一個簡單的乘法算式表示出排列的方法。
學生可能得到:每排6人,排成2排,2×6=12;
每排4人,排成3排,4×3=12;
每排12人,排成1排,1×12=12。
課件出示相應的圖和算式。
2、揭示概念:以2×6=12為例。
邊說邊板書:()是12的因數,()是12的因數;
12是()的倍數,12是()的倍數。
學生同桌互相說,指名兩名同學說。(評價:這么短的時間內,同學們就能準確、完整的表述它們之間的因倍關系,真了不起。)。
突出強調:能不能說12是倍數,2是因數?(學生回答,揭示并板書:相互依存)。
3、強化概念:另外兩道乘法算式,你也能像這樣準確地寫出它們之間的關系嗎?分組比賽,在作業(yè)紙上完成,看哪個組能完全做對。
學生在作業(yè)紙上完成,同時課件出示:(指名兩名學生在白板上利用普通筆標注答案)。
將本文的word文檔下載到電腦,方便收藏和打印。
人教版因數和倍數教學設計篇七
我在教學時做到了以下幾點:
(1)密切聯系生活中的數學,幫助學生理解概念間的關系。
(2)改動呈現倍數和因數概念的方式。我改變了例題,用杯子翻動的次數與杯口朝上的次數之間的關系,列出乘法算式,初步感知倍數關系的存在,從而引出倍數和因數的概念,并為下面學習如何找一個數的倍數奠定了良好的基礎。這樣不僅溝通了乘法和除法的關系,也讓學生很容易感悟到不管是根據乘法還是除法算式都可以找到因數和倍數。
(3)根據學生的實際情況,教學找一個數的因數的方法,雖然學生不能有序地找出來,但是基本能全部找到,再此基礎上讓體會有序找一個數因數的辦法學生容易接受,這樣的設計由易到難,由淺入深,我覺得能起到鞏固新知,發(fā)展思維的效果。
人教版因數和倍數教學設計篇八
一、創(chuàng)設情境,明確相互依存的關系。
1、師:同學們,我們人與人之間存在著各種關系,比如說(指某位同學)他同他爸爸是什么關系呢?(父子關系)老師和你們是——師生關系。
師:“老師是師生關系”可以這樣說嗎?為什么?
生:師生關系是指老師和學生之間的相互關系,不能單獨說。師:是呀,人與人之間的關系是相互的,在數學王國里,也有一些存在著相互依存關系的數,這節(jié)課我們就一起來學習。
2、談話導入:
3×4=1。
2(2)擺2行,一行擺6個。
2×6=12。
(3)擺1行,一行擺12個。
1×12=12師:一行擺5個可以嗎?一行擺7個呢?師:大家仔細觀察這些算式,它里面藏著許多小秘密,這就是我們今天這節(jié)課要探究的因數和倍數。(板書課題)。
師:誰能用2×6=12像這樣說一說因數和倍數嗎?(指生匯報)同桌說一說1×12=12的因數和倍數。
師:現在你能快速的說出12所有的因數嗎?
(1和12、2和6、3和4)師:為了研究的需要,一般將它們從小到大排列。大家一起說,老師記下來。
學生回答,老師板書(1、2、3、4、6、12)。
師:像這樣按照一定的順序,把所有的可能一一列舉出來,最終找到答案的方法,在數學上叫作列舉法。
(課件出示:0.3×40=12)師:0.3乘40也等于12,我們這樣說:0.3是12的因數,可以嗎?(不可以)。
師小結(出示課件):我們研究因數和倍數時,所指的數是自然數,0除外。
4、找出24所有的因數。
師:現在大家對因數和倍數有了一定的認識了,下面拿出你的練習本,寫出24所有的因數,咱們比一比誰的方法最巧妙,能做到既不重復也不遺漏。先獨立思考,然后把你的想法在小組內說一說。
(生交流找因數的方法)生匯報:師:對比三個同學的方法,有什么相同點?(都是用乘法算式找因數)你喜歡哪種方法?為什么?(強調有序的方法)。
師講解方法:按順序的寫出積是24的乘法算式,然后依次一對一對地找,這樣既不重復也不遺漏。
5、即時小練習。
師:這么好的方法我們得用一用,你能找出16的因數嗎?你能快速說出16的因數嗎?(出示課件:1、16、2、8、4)重復的只保留一個。
師:剛才我們找出了12的因數、24的因數和16的因數,仔細觀察這些數的因數,你有什么發(fā)現?(一個數的因數的個數是有限的,最小的因數是1,最大的因數是它本身)看來你是一位既會觀察又會思考的同學,我建議此處應該有掌聲。
6、游戲鞏固。
師:大家的表現真是太精彩了,玩?zhèn)€猜數游戲放松一下怎么樣?(出示課件猜數游戲)。
7、找倍數的方法以及一個數的倍數的特征。
師:能告訴我你為什么停下來了呢?(寫不完)那怎么辦(省略號)現在誰還給大家說一說你的想法。
生匯報:師:用這個方法你能分別找出5的倍數、9的倍數嗎?(生匯報)師:在大家的共同努力下,我們找出了4、5、9的倍數,仔細觀察,你能發(fā)現什么?(板書:一個數的倍數是無限的,最小的倍數是它本身,沒有最大的倍數)(說的怎么樣?掌聲送給他吧)。
三、練習鞏固。
師:因數和倍數的知識我們研究完了,敢不敢接受挑戰(zhàn)?
1、判斷。
2、分別找出18和20的所有因數。
四、數學文化。
師:其實,在我們的數學中,還存在著一些神奇的數。
(課件出示:50、60、70、80、90、100)猜一猜這些數的因數的個數,哪個數的因數最多?(生猜)(師出示結果)原來一個數的因數的多少與數的大小無關,我們知道:1分=60秒1時=60分,將60作為時間的進率,是因為60的因數多。
數學上還有一種數:例如6的因數是1、2、3、6,去掉它本身,1+2+3=6;28的因數是1、2、4、7、14、28去掉它本身,1+2+4+7+14=28,數學上將這樣的數叫做完美數,完美數非常稀少,至今數學家只發(fā)現了29個完美數。
五、總結收獲。
師:好了,回想一下我們本節(jié)課學習的內容,說一說你有哪些收獲。
人教版因數和倍數教學設計篇九
理解因數和倍數的意義以及兩者之間相互依存的關系,掌握找一個數的因數和倍數的方法,發(fā)現一個數的倍數、因數中最大的數、最小的數,及因數和倍數個數方面的特征。
(二)過程與方法。
通過整數的乘除運算認識因數和倍數的意義,自主探索和總結出求一個數的因數和倍數的方法。
(三)情感態(tài)度和價值觀。
在探索的過程中體會數學知識之間的內在聯系,在解決問題的過程中培養(yǎng)學生思維的有序性和條理性。
教學重點:理解因數和倍數的含義。
教學難點:自主探索有序地找一個數的因數和倍數的方法。
教學課件。
(一)理解因數和倍數的意義。
教學例1:
1.觀察算式的特點,進行分類。
(1)仔細觀察算式的特點,你能把這些算式分類嗎?
(2)交流學生的分類情況。(預設:學生會根據算式的計算結果分成兩類)。
第一類是被除數、除數、商都是整數;第二類是被除數、除數都是整數,而商不是整數。
2.明確因數和倍數的意義。
(1)同學們,在整數除法中,如果商是整數而沒有余數,我們就說被除數是除數的倍數,除數是被除數的因數。例如,12÷2=6,我們就說12是2的倍數,2是12的因數。12÷6=2,我們就說12是6的倍數,6是12的因數。
(2)在第一類算式中找一個算式,說一說,誰是誰的因數?誰是誰的倍數?
(3)強調一點:為了方便,在研究倍數與因數的時候,我們所說的數指的是自然數(一般不包括0)。
【設計意圖】引導學生從“整數的除法算式”中認識因數和倍數的意義,簡潔明了,同時為學習因數和倍數的依存關系進行有效鋪墊。
3.理解因數和倍數的依存關系。
(1)獨立完成教材第5頁“做一做”。
(2)我們能不能說“4是因數”“24是倍數”呢?表述時應該注意什么?
【設計意圖】引導學生在理解的基礎上進行正確表述:因數和倍數是相互依存的,不是單獨存在的。我們不能說4是因數,24是倍數,而應該說4是24的因數,24是4的倍數。
4.理解一個數的“因數”和乘法算式中的“因數”的區(qū)別以及一個數的“倍數”與“倍”的區(qū)別。
(1)今天學的一個數的“因數”與以前乘法算式中的“因數”有什么區(qū)別呢?
課件出示:
乘法算式中的“因數”是相對于“積”而言的,可以是整數,也可以是小數、分數;而一個數的“因數”是相對于“倍數”而言的,它只能是整數。
(2)今天學的“倍數”與以前的“倍”又有什么不同呢?
“倍數”是相對于“因數”而言的,只適用于整數;而“倍”適用于小數、分數、整數。
(3)交流匯報。
【設計意圖】“一個數的因數和倍數”與學生已學過的乘法算式中的“因數”以及“倍”的概念既有聯系又有區(qū)別,學生比較容易混淆,這也是學習一個數的“因數”和“倍數”意義的難點。通過觀察、對比、交流,引導學生發(fā)現一個數的“因數”和乘法算式中的“因數”的區(qū)別以及一個數的“倍數”與“倍”的區(qū)別。
(二)找一個數的因數。
教學例2:
1.探究找18的因數的方法。
(1)18的因數有哪些?你是怎么找的?
(2)交流方法。
預設:方法一:根據因數和倍數的意義,通過除法算式找18的因數。
因為18÷1=18,所以1和18是18的因數。
因為18÷2=9,所以2和9是18的因數。
因為18÷3=6,所以3和6是18的因數。
方法二:根據尋找哪兩個整數相乘的積是18,尋找18的因數。
因為1×18=18,所以1和18是18的因數。
因為2×9=18,所以2和9是18的因數。
因為3×6=18,所以3和6是18的因數。
2.明確18的因數的表示方法。
(1)我們怎樣來表示18的因數有哪些呢?怎樣表示簡潔明了?
(2)交流方法。
預設:列舉法,18的因數有:1,2,3,6,9,18。
3.練習找一個數的因數。
(1)你能找出30的因數有哪些嗎?36的因數呢?
(2)怎樣找才能不遺漏、不重復地找出一個數的所有因數?
【設計意圖】讓學生通過自主探索、交流,獲得找一個數的因數的不同方法,在練習中體會“一對一對”有序地找一個數的因數,避免遺漏或重復。初步感受一個數的因數的個數是有限的,以及“最大因數、最小因數”的特征。
(三)找一個數的倍數。
教學例3:
1.探究找2的倍數的方法。
(1)2的倍數有哪些?你是怎么找的?
(2)交流方法。
預設:方法一:利用除法算式找2的倍數。
因為2÷2=1,所以2是2的倍數。
因為4÷2=2,所以4是2的倍數。
因為6÷2=3,所以6是2的倍數。
方法二:利用乘法算式找2的倍數。
因為2×1=2,所以2是2的倍數。
因為2×2=4,所以4是2的倍數。
因為2×3=6,所以6是2的倍數。……。
(3)2的倍數能寫完嗎?你能繼續(xù)找嗎?寫不完怎么辦?
(4)根據前面的經驗,試著表示出2的倍數有哪些?(預設:列舉法、圖示法)。
2.練習找一個數的倍數。
你能找出3的倍數有哪些嗎?5的倍數呢?
【設計意圖】在理解“倍數”的基礎上,讓學生進一步體會有序思考的必要性。初步感受一個數的倍數的個數是無限的,以及“最小倍數”的特征。
1.從前面找因數和倍數的過程中,你有什么發(fā)現?
2.討論交流。
3.歸納總結。
預設:一個數的因數的個數是有限的,最小的因數是1,最大的因數是它本身;一個數的倍數的個數是無限的,沒有最大的倍數,最小的倍數是它本身。1是所有非零自然數的因數。
(五)鞏固練習。
1.課件出示教材第7頁練習二第1題。
(1)想一想,怎樣找不會遺漏、不會重復?
(2)哪些數既是36的因數,也是60的因數?
【設計意圖】通過練習,讓學生再次體會“1是所有非零自然數的因數”“一個數最大的因數是它本身”和“一個數的因數的個數是有限的”。同時,滲透兩個數的“公因數”的意義。
2.課件出示教材第7頁練習二第3題。
(1)學生獨立完成,交流答案。
(2)思考:5的倍數有什么特征?
【設計意圖】滲透5的倍數的特征。
3.課件出示教材第7頁練習二第5題。
(1)學生獨立完成,交流答案。
(2)你能改正錯誤的說法嗎?
(六)全課總結,交流收獲。
這節(jié)課我們學了哪些知識?你有什么收獲?
人教版因數和倍數教學設計篇十
教學目標:
1、理解和掌握因數和倍數的概念,認識他們之間的聯系和區(qū)別。
2、學會求一個數的因數或倍數的方法,能夠熟練的求出一個數的因數或倍數。
3、知道一個數的因數的個數是有限的,一個數的倍數的個數是無限的。
教學重點:
掌握找一個數的因數和倍數的方法。
教學難點:
教學準備:
課件。
教學過程:
一、創(chuàng)設情境,引入新課。
師:我和你們的關系是……?
生:師生關系。
師:對,我是你們的老師,你們是我的學生,我們的關系是師生關系。是啊,人與人之間的關系是相互的。再比如:我們班的曹雪飛與賀正博之間是同桌關系,他們之間的關系是相互依存的,不能單獨存在,我們可以說曹雪飛是賀正博的同桌,或者說賀正博是曹雪飛的同桌,而不能說曹雪飛是同桌!在數學王國里,在整數乘法中也存在著這樣相互依存的關系,這節(jié)課,我們一起探討兩數之間的因數與倍數關系。(板書課題:因數與倍數)。
(設計意圖:先讓學生體會關系,再通過同桌關系讓學生體會相互依存,不能獨立存在,進而為因數與倍數的相互依存關系打下基礎。)。
二、探究新知。
(一)1、出示主題圖,仔細觀察,你得到了哪些數學信息?
學生說:圖上有兩行飛機,每行六架,一共有12架。(注意培養(yǎng)學生提取數學信息的能力和語言表達能力,即:數學語言要求簡練嚴謹)。
教師:你們能夠用乘法算式表示出來嗎?
學生說出算式,教師板書:2×6=12。
2.出示:因為2×6=12。
所以2是12的因數,6也是12的因數;。
12是2的倍數,12也是6的倍數。
(注:由乘法算式理解因數和倍數相互依存,不能獨立存在。)。
3.教師出示圖2:師:根據圖上的內容,可以寫出怎樣的算式?
3×4=12。
從這道算式中,你知道誰是誰的因數?誰是誰的倍數嗎?(讓學生自己說一說,進而加深因數倍數關系的認識。)。
教師小結:因數和倍數是相互依存的,為了方便,我們在研究因數與倍數時,我們所說的數是整數,一般不包括0.
4、師:誰來說一道乘法算式考考大家。
(指名生說一說)。
5、讓其他學生來說一說誰是誰的因數誰是誰的倍數。
(注:可以讓幾位學生互相說一說。)。
6、看來都難不住你們,那老師來考考你們:18÷3=6在這道算式中,誰來說說誰是誰的因數誰是誰的倍數。
(設計意圖:18÷3=6是為了培養(yǎng)學生思維的逆向性)。
(二)找因數:
出示例1:18的因數有哪幾個?
注意:請同學們四人以小組討論,在找18的因數中如何做到不重復,不遺漏。
學生嘗試完成:匯報。
(18的因數有:1,2,3,6,9,18)。
師:說說看你是怎么找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;用乘法一對一對找,如1×18=18,2×9=18…)。
師:18的因數中,最小的是幾?最大的是幾?我們在寫的時候一般都是從小到大排列的。
2、用這樣的方法,請你再找一找36的因數有那些?
匯報36的因數有:1,2,3,4,6,9,12,18,36。
師:你是怎么找的?
舉錯例(1,2,3,4,6,6,9,12,18,36)。
師:這樣寫可以嗎?為什么?(不可以,因為重復的因數只要寫一個就可以了,所以不需要寫兩個6)。
師:18和36的因數中,最小的是幾?最大的是幾?我們在寫的時候一般都是從小到大排列的。
請同學們觀察一個數的因數有什么特點。
在教師引導下,學生總結出:任何一個數的因數,最小的一定是(),而最大的一定是(),因數的個數是有限的。
(設計意圖:培養(yǎng)學生探索、歸納、總結、概括的能力。)。
3、其實寫一個數的因數除了這樣寫以外,還可以用集合表示:如18的因數。
1、2、3、6、9、18。
小結:我們找了這么多數的因數,你覺得怎樣找才不容易漏掉?
從最小的自然數1找起,也就是從最小的因數找起,一直找到它的本身,找的過程中一對一對找,寫的時候從小到大寫。
(三)找倍數:
1、我們學會找一個數的因數了,那如何找一個數的倍數呢?2的倍數你能找出來嗎?
匯報:2、4、6、8、10、16、……。
師:為什么找不完?
你是怎么找到這些倍數的?
(生:只要用2去乘1、乘2、乘3、乘4、…)。
那么2的倍數最小是幾?最大的你能找到嗎?
2、再找3和5的倍數。
3的倍數有:3,6,9,12,……。
你是怎么找的?(用3分別乘以1,2,3,……倍)。
5的倍數有:5,10,15,20,……。
師:我們知道一個數的因數的個數是有限的,那么一個數的倍數個數是怎么樣的呢?讓學生觀察2、3、5的倍數,說一說一個數的倍數有什么特點。
學生試著總結:一個數的倍數的個數是無限的,最小的倍數是它本身,沒有最大的倍數。
三、課堂小結:
通過今天這節(jié)課的學習,你有什么收獲?
學生匯報這節(jié)課的學習所得。
四、拓展延伸。
2、教材第15頁練習二第1題。組織學生獨立完成,然后在小組中互相交流檢查。
人教版因數和倍數教學設計篇十一
教學內容:義務教育課標實驗教科書青島版數學三年級下冊p109――p110。
教學目標:
知識與技能:使學生結合具體情境初步理解因數和倍數的含義,初步理解因數和倍數相互依存的關系。
過程與方法:使學生依據因數和倍數的含義以及已有乘除法知識,通過嘗試、交流等活動,探索并掌握找一個數的因數和倍數的方法。
情感與態(tài)度:使學生在認識因數和倍數以及找一個數的因數和倍數的過程中進一步感受數學知識的內在聯系,提高數學思考的水平。
教學重點:理解因數和倍數的含義。
教學難點:探索并掌握找一個數的因數和倍數的方法。
教學過程:
1、操作:用這12個正方形拼成一個長方形,每排擺幾個,擺了幾排,擺完后在練習本上寫出乘法算式。
匯報:你是怎么擺?算式是什么?
指名說,師板書:1×12=122×6=123×4=12。
師:剛才通過擺不同的長方形,我們得到了3道不同的乘法算式,別小看這3個算式,其實在這里面有許多數學奧秘。今天我們就來研究數學的新奧秘。
師指3×4=12說:因為3×4=12,所以我們就說3是12的因數(板書:因數),4是12的因數;12是3的倍數(板書:倍數);12是4的倍數。
小結:是呀,我們不能直接說誰是因數,誰是倍數,而要清楚的表達出來誰是誰的因數,誰是誰的倍數??磥?,因數和倍數是相互依存的(板書:和)。為了方便,在研究因數和倍數時,一般不討論0。
二、探索找一個數的因數的方法。
1、師:看黑板上的3個算式,你能找到12的所有的因數嗎?(學生齊說。)。
問:如果沒有算式,你能找出24所有的因數嗎?先想想怎樣找?然后寫在練習本上。
學生寫一寫,師巡視。
匯報展示:(2人)。
問:你是怎么找的?(學生說方法)。
評價:他找的怎么樣?(學生評一評)。
小結:其實老師就是按從小到大的順序一對一對找的,這樣就能做到既不重復又不遺漏了??磥?,有序的思考問題對我們的幫助確實很大。
2、練習。
師:用這種方法寫出18的因數。
匯報:你找的18的因數都有哪些?(指名說,師板書)。
3、發(fā)現規(guī)律。
問:仔細觀察這幾個數的因數,你能發(fā)現什么規(guī)律?
小結:一個數的因數最小的是1,最大的是它本身。
三、探索找一個數的倍數的方法。
1、方法。
學生找3的倍數,寫在練習本上。
匯報:指名說,師寫在黑板上。(3的倍數有:3,6,9,12,15……)。
問:你能說的完嗎?寫不完怎么辦?(用省略號)。
你是怎么找的?
評一評:他的方法怎么樣?
問:還有別的方法嗎?
問:怎么找一個數的倍數?
指名說。
師:按從小到大的順序,用3依次去乘1、2、3、4……,乘得的積就是3的倍數。
2、練習。
找出5的倍數,寫在練習本上。
指名說,師板書,問:你是用什么方法找的5的倍數?
3、發(fā)現規(guī)律。
問:觀察一下,你發(fā)現一個數的倍數有什么特點?
師小結:一個數的倍數的個數是無限的,最小的是它本身,沒有最大的。
問:一個數的倍數個數是無限的,一個數的因數的個數呢?(有限)。
(課件出示)。
四、鞏固練習。
1、寫一寫:6的因數、9的因數、50以內7的倍數。
集體訂正。
2、選一選。
8的倍數有哪些?48的因數又有哪些?
學生填一填,集體訂正。
3、數學小知識:完美數。
師:6的因數有(1,2,3,6),把前三個因數相加,你會發(fā)現什么?(1+2+3=6)。
人教版因數和倍數教學設計篇十二
本單元是在學生學過整數的認識、整數的四則計算、小數、分數的認識等知識的基礎上展開教學的。本單元的內容主要包括因數和倍數,2、5、3的倍數的特征,質數和合數等知識。通過這部分內容的學習,既可以讓學生在前面所學的整數知識基礎上進一步探索整數的性質,又有助于發(fā)展他們的抽象思維。這些知識的學習是以后學生學習公倍數與公因數、約分、通分、分數四則運算等知識的重要基礎。
學生已經學過整數的認識、整數的四則計算、小數、分數的認識等知識,但本單元的知識屬于“數論”的初步知識,概念比較多,有些概念比較抽象,概念的前后聯系又很緊密,部分學生學習時可能會有一定的困難。教材明確規(guī)定在研究因數與倍數時,限制在不包括0的自然數范圍內研究,避免由此帶來一些小學生尚不必研究的問題。教學時要注意以下兩點:
學情分析。
1.利用乘法引導學生認識因數和倍數。教材在揭示倍數和因數的概念時,沒有像原來的教材那樣,先揭示整除的概念,再利用整除認識倍數和因數,而是讓學生通過分類,用除法算式認識倍數和因數。在找一個數的倍數時,也是讓學生運用乘除法的知識,探索找一個數的倍數的方法。
2.注重引導學生在數學活動中探索數的特征。教材非常強調學生的數學學習活動,倡導多樣化的學習方式,組織學生在活動中探索、發(fā)現數的特征。如在探索2、5和3的倍數的特征時,都是先讓學生在100以內數的表格中圈出2、5的倍數,再通過分析歸納或猜想驗證等方法發(fā)現它們的倍數的特征。
教學目標。
知識技能:
1.使學生掌握因數、倍數、質數、合數等概念,知道相關概念之間的聯系和區(qū)別。
2.讓學生通過自主探索,掌握2、5、3的倍數的特征。
數學思考:逐步培養(yǎng)學生的數學抽象能力,以及滲透分類的思想。
問題解決:經歷與他人合作交流解決問題的過程,嘗試解釋自己的思考過程。
情感態(tài)度:通過利用因數和倍數的相關知識來解決相應的實際問題,使學生進一步體會數學的應用價值。
課時劃分:8課時。
1.因數和倍數……………………2課時。
2.2、5、3的倍數的特征………2課時。
3.質數和合數……………………3課時。
4.整理和復習……………………3課時。
人教版因數和倍數教學設計篇十三
知識與技能:使學生結合具體情境初步理解因數和倍數的含義,初步理解因數和倍數相互依存的關系。
過程與方法:使學生依據因數和倍數的含義以及已有乘除法知識,通過嘗試、交流等活動,探索并掌握找一個數的因數和倍數的方法。
情感與態(tài)度:使學生在認識因數和倍數以及找一個數的因數和倍數的過程中進一步感受數學知識的內在聯系,提高數學思考的水平。
理解因數和倍數的含義。
探索并掌握找一個數的因數和倍數的方法。
1、操作:用這12個正方形拼成一個長方形,每排擺幾個,擺了幾排,擺完后在練習本上寫出乘法算式。
匯報:你是怎么擺?算式是什么?
指名說,師板書:1×12=12、2×6=12、3×4=12。
師:剛才通過擺不同的長方形,我們得到了3道不同的乘法算式,別小看這3個算式,其實在這里面有許多數學奧秘。今天我們就來研究數學的新奧秘。
師指3×4=12說:因為3×4=12,所以我們就說3是12的因數(板書:因數),4是12的因數;12是3的倍數(板書:倍數);12是4的倍數。
小結:是呀,我們不能直接說誰是因數,誰是倍數,而要清楚的表達出來誰是誰的因數,誰是誰的倍數??磥?,因數和倍數是相互依存的(板書:和)。為了方便,在研究因數和倍數時,一般不討論0。
二、探索找一個數的因數的方法。
1、師:看黑板上的3個算式,你能找到12的所有的因數嗎?(學生齊說。)。
問:如果沒有算式,你能找出24所有的因數嗎?先想想怎樣找?然后寫在練習本上。
學生寫一寫,師巡視。
匯報展示:(2人)。
問:你是怎么找的?(學生說方法)。
評價:他找的怎么樣?(學生評一評)。
小結:其實老師就是按從小到大的順序一對一對找的,這樣就能做到既不重復又不遺漏了??磥恚行虻乃伎紗栴}對我們的幫助確實很大。
2、練習。
師:用這種方法寫出18的因數。
匯報:你找的18的因數都有哪些?(指名說,師板書)。
3、發(fā)現規(guī)律。
問:仔細觀察這幾個數的因數,你能發(fā)現什么規(guī)律?
小結:一個數的因數最小的是1,最大的是它本身。
三、探索找一個數的倍數的方法。
1、方法。
學生找3的倍數,寫在練習本上。
匯報:指名說,師寫在黑板上。(3的倍數有:3,6,9,12,15……)。
問:你能說的完嗎?寫不完怎么辦?(用省略號)。
你是怎么找的?
評一評:他的方法怎么樣?
問:還有別的方法嗎?
問:怎么找一個數的倍數?
指名說。
師:按從小到大的順序,用3依次去乘1、2、3、4……,乘得的積就是3的倍數。
2、練習。
找出5的倍數,寫在練習本上。
指名說,師板書,問:你是用什么方法找的5的倍數?
3、發(fā)現規(guī)律。
問:觀察一下,你發(fā)現一個數的倍數有什么特點?
師小結:一個數的倍數的個數是無限的,最小的是它本身,沒有最大的。
問:一個數的倍數個數是無限的,一個數的因數的個數呢?(有限)。
(課件出示)。
四、鞏固練習。
1、寫一寫:6的因數、9的因數、50以內7的倍數。
集體訂正。
2、選一選。
8的倍數有哪些?48的因數又有哪些?
3、數學小知識:完美數。
師:6的因數有(1,2,3,6),把前三個因數相加,你會發(fā)現什么?(1+2+3=6)。
【本文地址:http://www.aiweibaby.com/zuowen/13994086.html】