高中數(shù)學(xué)二次函數(shù)有哪些教案(實用15篇)

格式:DOC 上傳日期:2023-11-23 04:46:04
高中數(shù)學(xué)二次函數(shù)有哪些教案(實用15篇)
時間:2023-11-23 04:46:04     小編:靈魂曲

教案的編寫是教師教學(xué)的重要環(huán)節(jié),它能夠幫助教師更好地組織教學(xué)過程,提高教學(xué)效果。那么我們該如何撰寫一個高質(zhì)量的教案呢?首先,我們要明確教學(xué)目標和要求,合理設(shè)置教學(xué)步驟和時間分配;其次,我們要精心設(shè)計教學(xué)活動和方法,注重培養(yǎng)學(xué)生的主動參與和自主學(xué)習(xí)能力;最后,我們要合理選用教具和教材,做好課前準備工作。這些教案范文是經(jīng)過教師實際教學(xué)實踐檢驗過的,可信度較高。

高中數(shù)學(xué)二次函數(shù)有哪些教案篇一

老師講課認真聽講,不會的問題及時標記。在課堂上,做一個好學(xué)生,認真聽講,對于老師講的問題及時記錄,進行相應(yīng)的標記,在下課的時候,及時詢問老師,早日解決問題。

一定要課前預(yù)習(xí)一下知識點。在上課前或平時閑暇時間,一定要注意課下多多預(yù)習(xí),預(yù)習(xí)比復(fù)習(xí)更加重要,真的很重要,關(guān)乎到課堂的思維能力的轉(zhuǎn)變,多多看看,對自己的理解有幫助。

課上要學(xué)會學(xué)習(xí),記筆記,也要記住老師講的知識點。課堂上,自己要活躍一點,帶給老師感覺,讓老師對你有印象,便于日后學(xué)習(xí)高中數(shù)學(xué),與老師探討學(xué)習(xí)方法,記筆記,記住講的重點。

多做一些比較普通而又常出的問題,來熟悉自己學(xué)的知識。在課下的時候,自己找出適合自己做的題,在做題中找出適合自己的題目,來進行做和學(xué),總有一份題目適合自己做,便會更熟悉自己學(xué)的知識。

學(xué)會總結(jié)本節(jié)課的知識點,重點,做一個學(xué)會學(xué)習(xí)的人。及時總結(jié)所學(xué)的知識點,做一個學(xué)好習(xí)的人,讓自己的心中有著大致的思路,能夠解答出老師的,這便是可以了。

建立一個記錯本,錯誤的題記錄到本子上。將自己以前做過的錯題,及時的整理出來,并且能夠及時的回顧,便于日后在本子上學(xué)習(xí)到知識,能夠復(fù)習(xí)到自己以前錯過的題。

與老師經(jīng)常交流學(xué)習(xí)方法,總有一個適合你。多多的與老師交流,給老師留下一個好印象,便于自己和老師更深入的交流學(xué)習(xí),及時的詢問一下高中數(shù)學(xué)的學(xué)習(xí)方法,總有一個適合自己。

高中數(shù)學(xué)二次函數(shù)有哪些教案篇二

《考試說明》和《考綱》是每位考生必須熟悉的最權(quán)威最準確的高考信息,通過研究應(yīng)明確“考什么”、“考多難”、“怎樣考”這三個問題。

命題通常注意試題背景,強調(diào)數(shù)學(xué)思想,注重數(shù)學(xué)應(yīng)用;試題強調(diào)問題性、啟發(fā)性,突出基礎(chǔ)性;重視通性通法,淡化特殊技巧,凸顯數(shù)學(xué)的問題思考;強化主干知識;關(guān)注知識點的銜接,考察創(chuàng)新意識。

《考綱》明確指出“創(chuàng)新意識是理性思維的高層次表現(xiàn)”。因此試題都比較新穎活潑。所以復(fù)習(xí)中你就要加強對新題型的練習(xí),揭示問題的本質(zhì),創(chuàng)造性地解決問題。

2.多維審視知識結(jié)構(gòu)。

高考數(shù)學(xué)試題一直注重對思維方法的考查,數(shù)學(xué)思維和方法是數(shù)學(xué)知識在更高層次上的抽象和概括。知識是思維能力的載體,因此通過對知識的考察達到考察數(shù)學(xué)思維的目的。你需要建立各部分內(nèi)容的知識網(wǎng)絡(luò);全面、準確地把握概念,在理解的基礎(chǔ)上加強記憶;加強對易錯、易混知識的梳理;要多角度、多方位地去理解問題的實質(zhì);體會數(shù)學(xué)思想和解題的方法。

3.把答案蓋住看例題。

參考書上例題不能看一下就過去了,因為看時往往覺得什么都懂,其實自己并沒有理解透徹。所以,在看例題時,把解答蓋住,自己去做,做完或做不出時再去看,這時要想一想,自己做的與解答哪里不同,哪里沒想到,該注意什么,哪一種方法更好,還有沒有另外的解法。經(jīng)過上面的`訓(xùn)練,自己的思維空間擴展了,看問題也全面了。如果把題目的來源搞清了,在題后加上幾個批注,說明此題的“題眼”及巧妙之處,收益將更大。

4.研究每題都考什么。

數(shù)學(xué)能力的提高離不開做題,“熟能生巧”這個簡單的道理大家都懂。但做題不是搞題海戰(zhàn)術(shù),要通過一題聯(lián)想到多題。你需要著重研究解題的思維過程,弄清基本數(shù)學(xué)知識和基本數(shù)學(xué)思想在解題中的意義和作用,研究運用不同的思維方法解決同一數(shù)學(xué)問題的多條途徑,在分析解決問題的過程中既構(gòu)建知識的橫向聯(lián)系又養(yǎng)成多角度思考問題的習(xí)慣。

與其一節(jié)課抓緊時間大汗淋淋地做二、三十道考查思路重復(fù)的題,不如深入透徹地掌握一道典型題。例如深入理解一個概念的多種內(nèi)涵,對一個典型題,盡力做到從多條思路用多種方法處理,即一題多解;對具有共性的問題要努力摸索規(guī)律,即多題一解;不斷改變題目的條件,從各個側(cè)面去檢驗自己的知識,即一題多變。習(xí)題的價值不在于做對、做會,而在于你明白了這道題想考你什么。

5.答題少費時多辦事。

解題上要抓好三個字:數(shù),式,形;閱讀、審題和表述上要實現(xiàn)數(shù)學(xué)的三種語言自如轉(zhuǎn)化(文字語言、符號語言、圖形語言)。要重視和加強選擇題的訓(xùn)練和研究。不能僅僅滿足于答案正確,還要學(xué)會優(yōu)化解題過程,追求解題質(zhì)量,少費時,多辦事,以贏得足夠的時間思考解答高檔題。要不斷積累解選擇題的經(jīng)驗,盡可能小題小做,除直接法外,還要靈活運用特殊值法、排除法、檢驗法、數(shù)形結(jié)合法、估計法來解題。在做解答題時,書寫要簡明、扼要、規(guī)范,不要“小題大做”,只要寫出“得分點”即可。

6.錯一次反思一次。

每次考試或多或少會發(fā)生一些錯誤,這并不可怕,要緊的是避免類似的錯誤在今后的考試中重現(xiàn)。

因此平時要注意把錯題記下來,做錯題筆記包括三個方面:

(1)記下錯誤是什么,最好用紅筆劃出。

(2)錯誤原因是什么,從審題、題目歸類、重現(xiàn)知識和找出答案四個環(huán)節(jié)來分析。

(3)錯誤糾正方法及注意事項。根據(jù)錯誤原因的分析提出糾正方法并提醒自己下次碰到類似的情況應(yīng)注意些什么。你若能將每次考試或練習(xí)中出現(xiàn)的錯誤記錄下來分析,并盡力保證在下次考試時不發(fā)生同樣錯誤,那么在高考時發(fā)生錯誤的概率就會大大減少。

7.分析試卷總結(jié)經(jīng)驗。

每次考試結(jié)束試卷發(fā)下來,要認真分析得失,總結(jié)經(jīng)驗教訓(xùn)。特別是將試卷中出現(xiàn)的錯誤進行分類。

(1)遺憾之錯。就是分明會做,反而做錯了的題。

(2)似非之錯。記憶不準確,理解不夠透徹,應(yīng)用不夠自如;回答不嚴密不完整等等。

(3)無為之錯。由于不會答錯了或猜錯了,或者根本沒有作答,這是無思路、不理解,更談不上應(yīng)用的問題。原因找到后就盡早消除遺憾、弄懂似非、力爭有為。切實解決“會而不對、對而不全”的老大難問題。

8.優(yōu)秀是一種習(xí)慣。

柏拉圖說:“優(yōu)秀是一種習(xí)慣”。好的習(xí)慣終生受益,不好的習(xí)慣終生后悔、吃虧。如“審題之錯”是否出在急于求成?可采取“一慢一快”戰(zhàn)術(shù),即審題要慢,要看清楚,步驟要到位,動作要快,步步為營,穩(wěn)中求快,立足于一次成功,不要養(yǎng)成唯恐做不完,匆匆忙忙搶著做,寄希望于檢查的壞習(xí)慣。

高中數(shù)學(xué)二次函數(shù)有哪些教案篇三

選擇題因其答案是四選一,必然只有一個正確答案,那么我們就可以采用排除法,從四個選項中排除掉易于判斷是錯誤的答案,那么留下的一個自然就是正確的答案。

即根據(jù)題目中的條件,選取某個符合條件的特殊值或作出特殊圖形進行計算、推理的方法。用特殊值法解題要注意所選取的值要符合條件,且易于計算。

這類方法在近年來的初中題中常被運用于探索規(guī)律性的問題,此類題的主要解法是運用不完全歸納法,通過試驗、猜想、試誤驗證、總結(jié)、歸納等過程使問題得解。

有些選擇題本身就是由一些填空題、判斷題、解答題改編而來的,因此往往可采用直接法,直接由從題目的條件出發(fā),通過正確的運算或推理,直接求得結(jié)論,再與選擇項對照來確定選擇項。我們在做解答題時大部分都是采用這種方法。

要求某個函數(shù)關(guān)系式,可先假設(shè)待定系數(shù),然后根據(jù)題意列出方程(組),通過解方程(組),求得待定系數(shù),從而確定函數(shù)關(guān)系式,這種方法叫待定系數(shù)法。

當(dāng)某個數(shù)學(xué)問題涉及到相關(guān)多乃至無窮多的情形,頭緒紛亂很難下手時,行之有效的方法是通過對若干簡單情形進行考查,從中找出一般規(guī)律,求得問題的解決。

高中數(shù)學(xué)二次函數(shù)有哪些教案篇四

1、中考數(shù)學(xué)試題的新穎性、靈活性越來越強。

不少師生把主要精力放在難度較大的綜合題上,認為只有通過解決難題才能培養(yǎng)能力,因而相對地忽視了基礎(chǔ)知識、基本技能、基本方法的復(fù)習(xí)。復(fù)習(xí)中首先給出概念、公式、定理,然后講幾道例題,就通過大量的題目來訓(xùn)練。其實定理、公式推證的過程就蘊含著重要的解題方法和規(guī)律,教師沒有充分暴露思維過程,沒有發(fā)掘其內(nèi)在的規(guī)律就去做題,試圖通過大量地做題去“悟”出某些道理。結(jié)果是“悟”不出方法、規(guī)律,理解膚淺,記憶不牢,只會機械地模仿,思維水平較低,有時甚至生搬硬套,照葫蘆畫瓢,將簡單問題復(fù)雜化,從而造成失分。

2、以課本為主,從教科書中尋找中考題的“影子”。

許多試題的構(gòu)成是在教科書中的例題、習(xí)題的基礎(chǔ)上通過類比、加工改造、加強條件或減弱條件、延伸或擴展而成的,所以在復(fù)習(xí)的第一階段,應(yīng)以新課程標準為依據(jù),以教科書為藍本進行基礎(chǔ)知識的復(fù)習(xí)。

3、突出復(fù)習(xí)的特點。

從復(fù)習(xí)安排上來看,搞好基礎(chǔ)知識的復(fù)習(xí)主要依賴于系統(tǒng)的復(fù)習(xí),在每一個章節(jié)復(fù)習(xí)中,為了有效地使學(xué)生弄清知識的結(jié)構(gòu),應(yīng)讓學(xué)生按照自己的實際查漏補缺,有目的地自由復(fù)習(xí)。然后讓學(xué)生通過恰當(dāng)?shù)挠?xùn)練,加強對概念的理解、結(jié)論的掌握、方法的運用和能力的提高。進而達到培養(yǎng)學(xué)生的抽象思維能力。

4、梳理知識,加強變式訓(xùn)練。

中考命題是“依據(jù)課標,緊扣課本”的,試卷中的.許多題目是以課本中的例題和習(xí)題為例加以變化而來的。因此無論什么復(fù)習(xí)資料都不能代替教材,只有認真地復(fù)習(xí)教材中的基礎(chǔ)知識,掌握基本技能,同時對課本的典型題目做一些變式練習(xí),才能靈活掌握雙基,中考中才能正確解答試題。在進行雙基復(fù)習(xí)時,要對課本知識進行梳理,重點知識在梳理中同時加強變式訓(xùn)練,常用輔助。

教學(xué)。

方法,常用輔助線進行整理,以求熟練掌握。

5、理清脈絡(luò)抓基礎(chǔ)。

復(fù)習(xí)中要緊扣教材,夯實基礎(chǔ),以基礎(chǔ)題型的復(fù)習(xí)和基本數(shù)學(xué)思想、數(shù)學(xué)方法等的訓(xùn)練為主,穿插少量的綜合復(fù)習(xí),同時關(guān)注新學(xué)的知識,對課本知識進行系統(tǒng)梳理,形成知識網(wǎng)絡(luò),對典型問題進行變式訓(xùn)練,達到舉一反三觸類旁通的目的,做到以不變應(yīng)萬變,提高應(yīng)試能力。

6、分別對待各有側(cè)重。

學(xué)習(xí)拔尖的學(xué)生,在復(fù)習(xí)中不妨加強習(xí)題訓(xùn)練,在解題過程中注重邏輯關(guān)系。另外還要針對知識點的難易程度,在中考中所占的比例,有區(qū)別、側(cè)重的重點復(fù)習(xí)。同時,有目的地進行糾錯訓(xùn)練,分析易錯問題。

高中數(shù)學(xué)二次函數(shù)有哪些教案篇五

通過學(xué)生的討論,使學(xué)生更清楚以下事實:

(1)分解因式與整式的乘法是一種互逆關(guān)系;。

(2)分解因式的結(jié)果要以積的形式表示;。

(3)每個因式必須是整式,且每個因式的次數(shù)都必須低于原來的多項式的次數(shù);。

(4)必須分解到每個多項式不能再分解為止。

活動5:應(yīng)用新知。

例題學(xué)習(xí):

p166例1、例2(略)。

在教師的引導(dǎo)下,學(xué)生應(yīng)用提公因式法共同完成例題。

讓學(xué)生進一步理解提公因式法進行因式分解。

活動6:課堂練習(xí)。

1.p167練習(xí);。

2.看誰連得準。

x2-y2(x+1)2。

9-25x2y(x-y)。

x2+2x+1(3-5x)(3+5x)。

xy-y2(x+y)(x-y)。

3.下列哪些變形是因式分解,為什么?

(1)(a+3)(a-3)=a2-9。

(2)a2-4=(a+2)(a-2)。

(3)a2-b2+1=(a+b)(a-b)+1。

(4)2πr+2πr=2π(r+r)。

學(xué)生自主完成練習(xí)。

通過學(xué)生的反饋練習(xí),使教師能全面了解學(xué)生對因式分解意義的理解是否到位,以便教師能及時地進行查缺補漏。

活動7:課堂小結(jié)。

從今天的課程中,你學(xué)到了哪些知識?掌握了哪些方法?明白了哪些道理?

學(xué)生發(fā)言。

通過學(xué)生的回顧與反思,強化學(xué)生對因式分解意義的理解,進一步清楚地了解分解因式與整式的乘法的互逆關(guān)系,加深對類比的數(shù)學(xué)思想的理解。

活動8:課后作業(yè)。

課本p170習(xí)題的第1、4大題。

學(xué)生自主完成。

通過作業(yè)的鞏固對因式分解,特別是提公因式法理解并學(xué)會應(yīng)用。

板書設(shè)計(需要一直留在黑板上主板書)。

15.4.1提公因式法例題。

1.因式分解的定義。

2.提公因式法。

高中數(shù)學(xué)二次函數(shù)有哪些教案篇六

一、教材分析:

《34.4二次函數(shù)的應(yīng)用》選自義務(wù)教育課程標準試驗教科書《數(shù)學(xué)》(冀教版)九年級上冊第三十四章第四節(jié),這節(jié)課是在學(xué)生學(xué)習(xí)了二次函數(shù)的概念、圖象及性質(zhì)的基礎(chǔ)上,讓學(xué)生繼續(xù)探索二次函數(shù)與一元二次方程的關(guān)系,教材通過小球飛行這樣的實際情境,創(chuàng)設(shè)三個問題,這三個問題對應(yīng)了一元二次方程有兩個不等實根、有兩個相等實根、沒有實根的三種情況。這樣,學(xué)生結(jié)合問題實際意義就能對二次函數(shù)與一元二次方程的關(guān)系有很好的體會;從而得出用二次函數(shù)的圖象求一元二次方程的方法。這也突出了課標的要求:注重知識與實際問題的聯(lián)系。

本節(jié)教學(xué)時間安排1課時。

二、教學(xué)目標:

知識技能:

1.經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,體會方程與函數(shù)之間的聯(lián)系.

2.理解拋物線交x軸的點的個數(shù)與一元二次方程的根的個數(shù)之間的關(guān)系,理解何時方程有兩個不等的實根、兩個相等的實數(shù)和沒有實根.

3.能夠利用二次函數(shù)的圖象求一元二次方程的近似根。

數(shù)學(xué)思考:

1.經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,培養(yǎng)學(xué)生的探索能力和創(chuàng)新精神.

2.經(jīng)歷用圖象法求一元二次方程的近似根的過程,獲得用圖象法求方程近似根的體驗.

3.通過觀察二次函數(shù)圖象與x軸的交點個數(shù),討論一元二次方程的根的情況,進一步培養(yǎng)學(xué)生的數(shù)形結(jié)合思想。

解決問題:

1.經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,體驗數(shù)學(xué)活動充滿著探索與創(chuàng)造,感受數(shù)學(xué)的嚴謹性以及數(shù)學(xué)結(jié)論的確定性。

2.通過利用二次函數(shù)的圖象估計一元二次方程的根,進一步掌握二次函數(shù)圖象與x軸的交點坐標和一元二次方程的根的關(guān)系,提高估算能力。

情感態(tài)度:

1.從學(xué)生感興趣的問題入手,讓學(xué)生親自體會學(xué)習(xí)數(shù)學(xué)的價值,從而提高學(xué)生學(xué)習(xí)數(shù)學(xué)的好奇心和求知欲。

2.通過學(xué)生共同觀察和討論,培養(yǎng)大家的合作交流意識。

三、教學(xué)重點、難點:

教學(xué)重點:

1.體會方程與函數(shù)之間的聯(lián)系。

2.能夠利用二次函數(shù)的圖象求一元二次方程的近似根。

教學(xué)難點:

1.探索方程與函數(shù)之間關(guān)系的過程。

2.理解二次函數(shù)與x軸交點的個數(shù)與一元二次方程的根的個數(shù)之間的關(guān)系。

四、教學(xué)方法:啟發(fā)引導(dǎo)合作交流。

五:教具、學(xué)具:課件。

六、教學(xué)過程:

[活動1]檢查預(yù)習(xí)引出課題。

預(yù)習(xí)作業(yè):

1.解方程:(1)x2+x-2=0;(2)x2-6x+9=0;(3)x2-x+1=0;(4)x2-2x-2=0.

2.回顧一次函數(shù)與一元一次方程的關(guān)系,利用函數(shù)的圖象求方程3x-4=0的解.

師生行為:教師展示預(yù)習(xí)作業(yè)的內(nèi)容,指名回答,師生共同回顧舊知,教師做出適當(dāng)總結(jié)和評價。

教師重點關(guān)注:學(xué)生回答問題結(jié)論準確性,能否把前后知識聯(lián)系起來,2題的格式要規(guī)范。

設(shè)計意圖:這兩道預(yù)習(xí)題目是對舊知識的回顧,為本課的教學(xué)起到鋪墊的作用,1題中的三個方程是課本中觀察欄目中的三個函數(shù)式的變式,這三個方程把二次方程的根的三種情況體現(xiàn)出來,讓學(xué)生回顧二次方程的相關(guān)知識;2題是一次函數(shù)與一元一次方程的關(guān)系的問題,這題的設(shè)計是讓學(xué)生用學(xué)過的熟悉的知識類比探究本課新知識。

[活動2]創(chuàng)設(shè)情境探究新知。

問題。

1.課本p94問題.

3.結(jié)合預(yù)習(xí)題1,完成課本p94觀察中的題目。

師生行為:教師提出問題1,給學(xué)生獨立思考的時間,教師可適當(dāng)引導(dǎo),對學(xué)生的解題思路和格式進行梳理和規(guī)范;問題2學(xué)生獨立思考指名回答,注重數(shù)形結(jié)合思想的滲透;問題3是由學(xué)生分組探究的,這個問題的探究稍有難度,活動中教師要深入到各個小組中進行點撥,引導(dǎo)學(xué)生總結(jié)歸納出正確結(jié)論。

教師重點關(guān)注:

1.學(xué)生能否把實際問題準確地轉(zhuǎn)化為數(shù)學(xué)問題;。

2.學(xué)生在思考問題時能否注重數(shù)形結(jié)合思想的應(yīng)用;。

3.學(xué)生在探究問題的過程中,能否經(jīng)歷獨立思考、認真傾聽、獲得信息、梳理歸納的過程,使解決問題的方法更準確。

設(shè)計意圖:由現(xiàn)實中的實際問題入手給學(xué)生創(chuàng)設(shè)熟悉的問題情境,促使學(xué)生能積極地參與到數(shù)學(xué)活動中去,體會二次函數(shù)與實際問題的關(guān)系;學(xué)生通過小組合作分析、交流,探求二次函數(shù)與一元二次方程的關(guān)系,培養(yǎng)學(xué)生的合作精神,積累學(xué)習(xí)經(jīng)驗。

[活動3]例題學(xué)習(xí)鞏固提高。

問題。

例利用函數(shù)圖象求方程x2-2x-2=0的實數(shù)根(精確到0.1).

師生行為:教師提出問題,引導(dǎo)學(xué)生根據(jù)預(yù)習(xí)題2獨立完成,師生互相訂正。

教師關(guān)注:(1)學(xué)生在解題過程中格式是否規(guī)范;(2)學(xué)生所畫圖象是否準確,估算方法是否得當(dāng)。

設(shè)計意圖:通過預(yù)習(xí)題2的鋪墊,同學(xué)們已經(jīng)從舊知識中尋找到新知識的生長點,很容易明確例題的解題思路和方法,這樣既降低難點且突出重點。

[活動4]練習(xí)反饋鞏固新知。

高中數(shù)學(xué)二次函數(shù)有哪些教案篇七

3.能夠綜合運用各種法則求函數(shù)的導(dǎo)數(shù).。

函數(shù)的和、差、積、商的求導(dǎo)法則的推導(dǎo)與應(yīng)用.。

1.問題情境.。

(1)常見函數(shù)的導(dǎo)數(shù)公式:(默寫)。

(2)求下列函數(shù)的`導(dǎo)數(shù):;;.。

(3)由定義求導(dǎo)數(shù)的基本步驟(三步法).。

2.探究活動.。

例1求的導(dǎo)數(shù).。

思考已知,怎樣求呢?

函數(shù)的和差積商的導(dǎo)數(shù)求導(dǎo)法則:

練習(xí)課本p22練習(xí)1~5題.。

點評:正確運用函數(shù)的四則運算的求導(dǎo)法則.。

函數(shù)的和差積商的導(dǎo)數(shù)求導(dǎo)法則.。

1.見課本p26習(xí)題1.2第1,2,5~7題.。

高中數(shù)學(xué)二次函數(shù)有哪些教案篇八

1、先做簡單題,后做難題。

2、遇到較難的大題,把所有跟該題有關(guān)的知識點都寫出來,要知道數(shù)學(xué)講究步驟分。

3、若是證明題,萬一不會,可以先寫出已知條件,再寫出要證明的最后一步,再一步一步往上推,中間步驟隨便寫點。(使用于粗心的教師,但我們不提倡,重點是要平時學(xué)好)。

一、整體把握、抓大放小。

拿到試卷后可以先快速瀏覽一下所有題目,根據(jù)積累的考試經(jīng)驗,大致估計一下每部分應(yīng)該分配的時間。對于能夠很快做出來的.題目,一定要拿到應(yīng)得的分數(shù)。

二、確定每部分的答題時間。

1、考試時占用了很多時間卻一點也沒有做出來的題目。對于這類題目,你以后考試時就應(yīng)該盡量減少時間,或者放棄,等以后學(xué)習(xí)進階了再嘗試著做。

2、考試時花了過多的時間才做出來的題目。對于這類題目,你以后平時做題時要盡量加快速度,或者通過“反復(fù)訓(xùn)練”等提高反應(yīng)速度,這樣,你下次考試時能用較少的時間做出來。

三、碰到難題時。

1、你可以先用“直覺”最快的找到解題思路;。

2、如果“直覺”不管用,你可以聯(lián)想以前做過的類似的題目,從而找到解題思路;。

3、如果這樣也不行,你可以猜測一下這道題目可能涉及到的知識點和解題技巧。

4、對于花了一定時間仍然不能做出來的題目,要勇于放棄。

四、卷面整潔、字跡清楚、注意小節(jié)。

做到卷面整潔、字跡清楚,把標點、符號、解題步驟等小的地方盡量做好,不要丟掉應(yīng)得的每一分。

高中數(shù)學(xué)二次函數(shù)有哪些教案篇九

二、立足課堂,提高效率:做到教師入題海,學(xué)生出題海.教師應(yīng)多做題、多研究近幾年的中考試題,并根據(jù)本班學(xué)生的實際情況,從眾多復(fù)習(xí)資料中,選擇適合本班學(xué)生的最佳練習(xí),也可通過對題目的重組。

三、教師在設(shè)計教學(xué)目標時,要做到胸中有書,目中有人,讓每一節(jié)課都給學(xué)生留有時間,讓他們有獨立思考、合作探究交流的過程,最大限度的調(diào)動學(xué)生的參與度,激發(fā)他們的學(xué)習(xí)興趣,達到最佳的復(fù)習(xí)效果.

四、激發(fā)興趣,提高質(zhì)量:興趣是學(xué)習(xí)最好的動力,在上復(fù)習(xí)課時尤為重要.因此,我們在授課的過程中,在關(guān)注知識復(fù)習(xí)的同時,也要關(guān)注學(xué)生的學(xué)習(xí)欲望和學(xué)習(xí)效果,要讓學(xué)生在學(xué)習(xí)的過程中體驗成功的快感.這樣他們才會更有興趣的學(xué)習(xí)下去.

高中數(shù)學(xué)二次函數(shù)有哪些教案篇十

會運用圖象判斷單調(diào)性;理解函數(shù)的單調(diào)性,能判斷或證明一些簡單函數(shù)單調(diào)性;注意必須在定義域內(nèi)或其子集內(nèi)討論函數(shù)的單調(diào)性。

重點。

難點。

一、復(fù)習(xí)引入。

1、函數(shù)的定義域、值域、圖象、表示方法。

(1)單調(diào)增函數(shù)。

(2)單調(diào)減函數(shù)。

(3)單調(diào)區(qū)間。

二、例題分析。

1、畫出下列函數(shù)圖象,并寫出單調(diào)區(qū)間:

(1)(2)(2)。

2、求證:函數(shù)在區(qū)間上是單調(diào)增函數(shù)。

3、討論函數(shù)的單調(diào)性,并證明你的結(jié)論。

變(1)討論函數(shù)的單調(diào)性,并證明你的結(jié)論。

變(2)討論函數(shù)的單調(diào)性,并證明你的結(jié)論。

三、隨堂練習(xí)。

1、判斷下列說法正確的是。

(1)若定義在上的函數(shù)滿足,則函數(shù)是上的單調(diào)增函數(shù);。

(2)若定義在上的函數(shù)滿足,則函數(shù)在上不是單調(diào)減函數(shù);。

(4)若定義在上的函數(shù)在區(qū)間上是單調(diào)增函數(shù),在區(qū)間上也是單調(diào)增函數(shù),則函數(shù)是上的單調(diào)增函數(shù)。

2、若一次函數(shù)在上是單調(diào)減函數(shù),則點在直角坐標平面的()。

a.上半平面b.下半平面c.左半平面d.右半平面。

3、函數(shù)在上是______;函數(shù)在上是_______。

3.下圖分別為函數(shù)和的圖象,求函數(shù)和的單調(diào)增區(qū)間。

4、求證:函數(shù)是定義域上的單調(diào)減函數(shù)。

四、回顧小結(jié)。

課后作業(yè)。

一、基礎(chǔ)題。

(1)(2)。

2、畫函數(shù)的圖象,并寫出單調(diào)區(qū)間。

二、提高題。

3、求證:函數(shù)在上是單調(diào)增函數(shù)。

4、若函數(shù),求函數(shù)的單調(diào)區(qū)間。

5、若函數(shù)在上是增函數(shù),在上是減函數(shù),試比較與的大小。

三、能力題。

6、已知函數(shù),試討論函數(shù)f(x)在區(qū)間上的單調(diào)性。

變(1)已知函數(shù),試討論函數(shù)f(x)在區(qū)間上的單調(diào)性。

高中數(shù)學(xué)二次函數(shù)有哪些教案篇十一

1.質(zhì)疑問難是學(xué)生自主學(xué)習(xí)的重要表現(xiàn),優(yōu)化課堂結(jié)構(gòu),激活學(xué)生的主體意識,必須鼓勵學(xué)生質(zhì)疑問難。教師要創(chuàng)造和諧融合的課堂氣氛,允許學(xué)生隨時“插嘴”、提問、爭辯,甚至提出與教師不同的看法。

2.二次函數(shù)是初中階段繼一次函數(shù)、反比例函數(shù)之后,學(xué)生要學(xué)習(xí)的最后一類重要的代數(shù)函數(shù),它也是描述現(xiàn)實世界變量之間關(guān)系的重要的數(shù)學(xué)模型。

3.學(xué)生有疑而問、質(zhì)疑問難,是用心思考、自主學(xué)習(xí)、主動探究的可貴表現(xiàn),理應(yīng)得到老師的熱情鼓勵和贊揚?,F(xiàn)在對學(xué)生的隨時“插嘴”,提出的各種疑難問題,應(yīng)抱歡迎、鼓勵的態(tài)度給與肯定,并做出正確的解釋。

4.初中階段主要研究二次函數(shù)的概念、圖像和性質(zhì),用二次函數(shù)的觀點審視一元二次方程,用二次函數(shù)的相關(guān)知識分析和解決簡單的實際問題。

高中數(shù)學(xué)二次函數(shù)有哪些教案篇十二

1.經(jīng)歷探索二次函數(shù)y=ax2的圖象的作法和性質(zhì)的過程,獲得利用圖象研究函數(shù)性質(zhì)的經(jīng)驗。

2.能夠利用描點法作出函數(shù)y=ax2的圖象,并能根據(jù)圖象認識和理解二次函數(shù)y=ax2的性質(zhì),初步建立二次函數(shù)表達式與圖象之間的聯(lián)系。

3.能根據(jù)二次函數(shù)y=ax2的圖象,探索二次函數(shù)的性質(zhì)(開口方向、對稱軸、頂點坐標)。

教學(xué)重點:二次函數(shù)y=ax2的圖象的作法和性質(zhì)。

教學(xué)難點:建立二次函數(shù)表達式與圖象之間的聯(lián)系。

教學(xué)方法:自主探索,數(shù)形結(jié)合。

利用具體的二次函數(shù)圖象討論二次函數(shù)y=ax2的性質(zhì)時,應(yīng)盡可能多地運用小組活動的形式,通過學(xué)生之間的合作與交流,進行圖象和圖象之間的比較,表達式和表達式之間的比較,建立圖象和表達式之間的聯(lián)系,以達到學(xué)生對二次函數(shù)性質(zhì)的真正理解。

一、認知準備:

1.正比例函數(shù)、一次函數(shù)、反比例函數(shù)的圖象分別是什么?

2.畫函數(shù)圖象的方法和步驟是什么?(學(xué)生口答)。

你會作二次函數(shù)y=ax2的圖象嗎?你想直觀地了解它的性質(zhì)嗎?本節(jié)課我們一起探索。

二、新授:

(一)動手實踐:作二次函數(shù)y=x2和y=-x2的圖象。

(同桌二人,南邊作二次函數(shù)y=x2的圖象,北邊作二次函數(shù)y=-x2的圖象,兩名學(xué)生黑板完成)。

(二)對照黑板圖象議一議:(先由學(xué)生獨立思考,再小組交流)。

1.你能描述該圖象的形狀嗎?

2.該圖象與x軸有公共點嗎?如果有公共點坐標是什么?

3.當(dāng)x0時,隨著x的增大,y如何變化?當(dāng)x0時呢?

4.當(dāng)x取什么值時,y值最???最小值是什么?你是如何知道的?

5.該圖象是軸對稱圖形嗎?如果是,它的對稱軸是什么?請你找出幾對對稱點。

(三)學(xué)生交流:

1.交流上面的五個問題(由問題1引出拋物線的概念,由問題2引出拋物線的頂點)。

2.二次函數(shù)y=x2和y=-x2的圖象有哪些相同點和不同點?

3.教師出示同一直角坐標系中的兩個函數(shù)y=x2和y=-x2圖象,根據(jù)圖象回答:

(1)二次函數(shù)y=x2和y=-x2的圖象關(guān)于哪條直線對稱?

(2)兩個圖象關(guān)于哪個點對稱?

(3)由y=x2的圖象如何得到y(tǒng)=-x2的圖象?

(四)動手做一做:

1.作出函數(shù)y=2x2和y=-2x2的圖象。

(同桌二人,南邊作二次函數(shù)y=-2x2的圖象,北邊作二次函數(shù)y=2x2的圖象,兩名學(xué)生黑板完成)。

2.對照黑板圖象,數(shù)形結(jié)合,研討性質(zhì):

(1)你能說出二次函數(shù)y=2x2具有哪些性質(zhì)嗎?

(2)你能說出二次函數(shù)y=-2x2具有哪些性質(zhì)嗎?

(3)你能發(fā)現(xiàn)二次函數(shù)y=ax2的圖象有什么性質(zhì)嗎?

(學(xué)生分小組活動,交流各自的發(fā)現(xiàn))。

3.師生歸納總結(jié)二次函數(shù)y=ax2的圖象及性質(zhì):

(2)性質(zhì)。

a:開口方向:a0,拋物線開口向上,a〈0,拋物線開口向下[。

b:頂點坐標是(0,0)。

c:對稱軸是y軸。

d:最值:a0,當(dāng)x=0時,y的最小值=0,a〈0,當(dāng)x=0時,y的最大值=0。

e:增減性:a0時,在對稱軸的左側(cè)(x0),y隨x的增大而減小,在對稱軸的右側(cè)(x0),y隨x的增大而增大,a〈0時,在對稱軸的左側(cè)(x0),y隨x的增大而增大,在對稱軸的右側(cè)(x0),y隨x的增大而減小。

4.應(yīng)用:(1)說出二次函數(shù)y=1/3x2和y=-5x2有哪些性質(zhì)。

(2)說出二次函數(shù)y=4x2和y=-1/4x2有哪些相同點和不同點?

三、小結(jié):

通過本節(jié)課學(xué)習(xí),你有哪些收獲?(學(xué)生小結(jié))。

1.會畫二次函數(shù)y=ax2的圖象,知道它的圖象是一條拋物線。

2.知道二次函數(shù)y=ax2的性質(zhì):

a:開口方向:a0,拋物線開口向上,a〈0,拋物線開口向下。

b:頂點坐標是(0,0)。

c:對稱軸是y軸。

d:最值:a0,當(dāng)x=0時,y的最小值=0,a〈0,當(dāng)x=0時,y的最大值=0。

e:增減性:a0時,在對稱軸的左側(cè)(x0=,y隨x的增大而減小,在對稱軸的右側(cè)(x0),y隨x的增大而增大,a〈0時,在對稱軸的左側(cè)(x0),y隨x的增大而增大,在對稱軸的右側(cè)(x0),y隨x的增大而減小。

高中數(shù)學(xué)二次函數(shù)有哪些教案篇十三

教材分析:

冪函數(shù)作為一類重要的函數(shù)模型,是學(xué)生在系統(tǒng)地學(xué)習(xí)了指數(shù)函數(shù)、對數(shù)函數(shù)之后研究的又一類基本的初等函數(shù)。?冪函數(shù)模型在生活中是比較常見的,學(xué)習(xí)時結(jié)合生活中的具體實例來引出常見的冪函數(shù)?.組織學(xué)生畫出他們的圖象,根據(jù)圖象觀察、總結(jié)這幾個常見冪函數(shù)的性質(zhì)。對于冪函數(shù),只需重點掌握?這五個函數(shù)的圖象和性質(zhì)。學(xué)習(xí)中學(xué)生容易將冪函數(shù)和指數(shù)函數(shù)混淆,因此在引出冪函數(shù)的概念之后,可以組織學(xué)生對兩類不同函數(shù)的表達式進行辨析。學(xué)生已經(jīng)有了學(xué)習(xí)冪函數(shù)和對象函數(shù)的學(xué)習(xí)經(jīng)歷,這為學(xué)習(xí)冪函數(shù)做好了方法上的準備。因此,學(xué)習(xí)過程中,引入冪函數(shù)的概念之后,嘗試放手讓學(xué)生自己進行合作探究學(xué)習(xí)。

課時分配1課時。

教學(xué)目標。

重點:從五個具體的冪函數(shù)中認識的概念和性質(zhì)。

難點:從冪函數(shù)的圖象中概括其性質(zhì),據(jù)冪函數(shù)的單調(diào)性比較兩個同指數(shù)的指數(shù)式的大小。

知識點:冪函數(shù)的定義、五個冪函數(shù)圖象特征。

能力點:通過具體實例了解冪函數(shù)的圖象和性質(zhì),并能進行簡單的應(yīng)用。

自主探究點:通過作圖歸納總結(jié)冪函數(shù)的相關(guān)性質(zhì)。

考試點:了解冪函數(shù)的概念,

結(jié)合函數(shù)的圖象了解它們的變化情況。

易錯易混點:學(xué)生容易將冪函數(shù)和指數(shù)函數(shù)混淆。

拓展點:通過指數(shù)函數(shù)的圖象性質(zhì)研究冪函數(shù)指數(shù)的變化。

教具準備:多媒體輔助教學(xué)。

課堂模式:導(dǎo)學(xué)案。

一、引入新課。

(一)回顧引入。

【師生互動】師:數(shù)學(xué)的內(nèi)在美常常讓我感動,下面我們共同來欣賞運算的完美性,

思考:由8、2、3、這四個數(shù),運用數(shù)學(xué)符號可組成哪些等式?

生:探討,交流。

師生共同分析:

師:我們知道對于等式。

1.如果一定,隨著的變化而變化,我們建立了指數(shù)函數(shù)。

2.如果一定,隨著的變化而變化,我們建立了對數(shù)函數(shù)。

設(shè)想:如果一定,隨著的變化而變化,是不是也可以確定一個函數(shù)呢?

【設(shè)計說明】使學(xué)生回憶所學(xué)兩個基本初等函數(shù),為所要學(xué)習(xí)的冪函數(shù)作鋪墊。

(二)觀察下列對象:

問題(1):如果張紅購買了每千克1元的蔬菜千克,那么她需要付的錢數(shù)=元,

問題(2):如果正方形的邊長為,那么正方形的面是=。

問題3):如果正方體的邊長為,那么正方體的體積是=。

問題(4):如果正方形場地面積為,那么正方形的邊長=。

問題(5):如果某人s內(nèi)騎車行進了1km,那么他騎車的平均速度=。

【師生互動】師:(1)它們的對應(yīng)法則分別是什么?

(2)以上問題中的函數(shù)有什么共同特征?

讓學(xué)生獨立思考后交流,引導(dǎo)學(xué)生概括出結(jié)論。

生:(1)乘以1(2)求平方(3)求立方。

(4)求算術(shù)平方根(5)求-1次方。

師:上述的問題涉及到的函數(shù),都是形如:,其中是自變量,是常數(shù)。

師生:共同辨析這種新函數(shù)與指數(shù)函數(shù)的異同。

二、探究新知。

組織探究。

1.冪函數(shù)的定義。

一般地,形如(r)的函數(shù)稱為冪函數(shù),其中是自變量,是常數(shù)。

如等都是冪函數(shù),冪函數(shù)與指數(shù)函數(shù),對數(shù)函數(shù)一樣,都是基本初等函數(shù)。

【師生互動】師:1.冪函數(shù)的定義來自于實踐,它同指數(shù)函數(shù)、對數(shù)函數(shù)一樣,也是基本初等函數(shù),同樣也是一種“形式定義”的函數(shù),引導(dǎo)學(xué)生注意辨析。

2.研究函數(shù)的圖像。

(1)(2)(3)。

(4)(5)。

生:利用所學(xué)知識和方法嘗試作出五個具體冪函數(shù)的圖象,觀察所作圖象,體會冪函數(shù)的變化規(guī)律。

師:引導(dǎo)學(xué)生應(yīng)用函數(shù)的性質(zhì)畫圖象,如:定義域、奇偶性。

師生共同分析:強調(diào)畫圖象易犯的錯誤。

【設(shè)計意圖】(1)通過具體作圖,可使學(xué)生加深對圖象的直觀印象,記憶比較牢固;同時也提高了學(xué)生數(shù)形結(jié)合的思維能力;(2)符合學(xué)生的認知規(guī)律,由特殊到一般,從具體到抽象;(3)充分發(fā)揮學(xué)生學(xué)習(xí)的能動性,以學(xué)生為主體,展開課堂教學(xué)。

【師生互動】師:引導(dǎo)學(xué)生觀察圖象,歸納概括冪函數(shù)的的性質(zhì)及圖象變化規(guī)律。

生:觀察圖象,分組討論,探究冪函數(shù)的性質(zhì)和圖象的變化規(guī)律,并展示各自的結(jié)論進行交流評析,并填表。

定義域值域奇偶性單調(diào)性定點。

師生共同分析冪函數(shù)性質(zhì):

(1)所有的冪函數(shù)在(0,+∞)都有定義,并且圖象都過點(1,1);。

高中數(shù)學(xué)二次函數(shù)有哪些教案篇十四

今天我說課的課題是二次函數(shù)圖像及其性質(zhì)。下面我將從以下幾個方面進行闡述:

首先,我對本節(jié)教材進行簡要分析。

本節(jié)內(nèi)容是人民教育出版的九年級數(shù)學(xué)課程標準實驗教科書《數(shù)學(xué)》第二冊第二十七章第二節(jié)第三課時,屬于數(shù)與代數(shù)領(lǐng)域的知識。在此之前,學(xué)生已學(xué)習(xí)了二次函數(shù)的概念和二次函數(shù)的圖像及其性質(zhì)。本節(jié)內(nèi)容是對二次函數(shù)圖像及其性質(zhì)的相關(guān)知識的復(fù)習(xí)總結(jié)和綜合運用,是后續(xù)研究二次函數(shù)圖像的變換的基礎(chǔ)。二次函數(shù)在初中函數(shù)的教學(xué)中有重要地位,它不僅是初中代數(shù)內(nèi)容的引申,也是初中數(shù)學(xué)教學(xué)的重點和難點之一,更為高中學(xué)習(xí)一元二次不等式和圓錐曲線奠定基礎(chǔ)。

本節(jié)課中的教學(xué)重點是梳理所學(xué)過的二次函數(shù)及其性質(zhì)的相關(guān)內(nèi)容,建構(gòu)符合學(xué)生認知結(jié)構(gòu)的知識體系,教學(xué)難點是運用數(shù)形結(jié)合的思想,選用恰當(dāng)?shù)臄?shù)學(xué)關(guān)系式解決二次函數(shù)的問題,以及把實際問題轉(zhuǎn)化成二次函數(shù)問題并利用二次函數(shù)的性質(zhì)來解決。

基于以上對教材的認識,根據(jù)數(shù)學(xué)課程標準,考慮到學(xué)生已有的認知結(jié)構(gòu)與心理特征,制定如下的教學(xué)目標。

【知識與技能】:

了解二次函數(shù)解析式的二種表示方法,會用配方法轉(zhuǎn)化二次函數(shù)的表示形式;

會用描點法畫出二次函數(shù)的圖象,能從圖象上認識二次函數(shù)的性質(zhì);

會根據(jù)公式確定拋物線的頂點坐標、開口方向、對稱軸以及拋物線與坐標軸的交點坐標。

【過程與方法】:

3、數(shù)學(xué)的思想方法去觀察、研究和解決實際問題,體驗數(shù)學(xué)建模的思想。培養(yǎng)學(xué)生運用二次函數(shù)圖像及其性質(zhì)的相關(guān)知識解決數(shù)學(xué)綜合題和實際問題的能力。

【情感與態(tài)度目標】:

在數(shù)學(xué)教學(xué)中滲透美的教育,讓學(xué)生感受二次函數(shù)圖像的對稱之美,激發(fā)學(xué)生的學(xué)習(xí)興趣。運用二次函數(shù)解決實際問題,使學(xué)生進一步認識到數(shù)學(xué)源于生活,用于生活的辯證觀點。

為突出重點、突破難點、抓住關(guān)鍵,使學(xué)生能達到本節(jié)設(shè)定的教學(xué)目標,我再從教法和學(xué)法上談?wù)勗O(shè)計思路。

教法選擇與教學(xué)手段:基于本節(jié)課的特點是復(fù)習(xí)總結(jié)所學(xué)過的知識及其綜合運用,應(yīng)著重采用復(fù)習(xí)與總結(jié)的教學(xué)方法與手段,即利用任務(wù)驅(qū)動進行復(fù)習(xí)總結(jié),構(gòu)建二次函數(shù)圖像及其性質(zhì)的綜合化、網(wǎng)絡(luò)化、結(jié)構(gòu)化。通過提問思考、歸納總結(jié)、綜合運用等形式對二次函數(shù)圖像及其性質(zhì)的相關(guān)知識和基本解題方法進行有針對性的、系統(tǒng)性的、綜合性的教學(xué)。復(fù)習(xí)課例題教學(xué)的模式為學(xué)生思考,教師分析,解題小結(jié)三個環(huán)節(jié)。

學(xué)法指導(dǎo):讓學(xué)生從問題中質(zhì)疑、嘗試、歸納、總結(jié)、運用,培養(yǎng)學(xué)生發(fā)現(xiàn)問題、研究問題和解決問題的能力。

最后,我來具體談一談本節(jié)課的教學(xué)過程。

(一)由任務(wù)導(dǎo)引相關(guān)回憶。

為對二次函數(shù)圖像及其性質(zhì)的相關(guān)知識進行重構(gòu)做準備。通過兩題練習(xí)回憶復(fù)習(xí)二次函數(shù)圖像及其性質(zhì)的相關(guān)知識。第一題用配方法把二次函數(shù)的一般式化為頂點式的形式,并指出開口方向,對稱軸和頂點坐標,引導(dǎo)學(xué)生復(fù)習(xí)回憶,了解二次函數(shù)解析式的二種表示方法,掌握用配方法轉(zhuǎn)化二次函數(shù)的表示形式,會根據(jù)公式確定拋物線的頂點坐標、開口方向、對稱軸。第二題用描點法畫出二次函數(shù)的圖象,并說出為何值時隨增大而增大,為何值時,隨增大而減小,引導(dǎo)學(xué)生掌握用描點法畫出二次函數(shù)的圖象,能從圖象上認識二次函數(shù)的性質(zhì)。

運用聯(lián)想、概括方法對二次函數(shù)圖像及其性質(zhì)的相關(guān)知識進行梳理,由以上練習(xí)引導(dǎo)學(xué)生回憶、理解二次函數(shù)圖像及其性質(zhì)的相關(guān)知識,并形成相關(guān)的知識結(jié)構(gòu)體系。通過知識回顧幫助學(xué)生梳理有關(guān)知識點,二次函數(shù)的定義、解析式的形式、圖像畫法、圖像及其性質(zhì)。

通過對二次函數(shù)圖像及其性質(zhì)的相關(guān)知識的復(fù)習(xí),讓學(xué)生運用相關(guān)概念、性質(zhì)進行解題,采用學(xué)生思考,教師分析,解題小結(jié)三個環(huán)節(jié)構(gòu)成的練習(xí)題講解模式,鞏固求解二次函數(shù)圖像及其性質(zhì)的基本題目的一般解題方法,并進一步研究二次函數(shù)圖像及其性質(zhì)的應(yīng)用。第五題及第六題是運用二次函數(shù)圖像及其性質(zhì)的相關(guān)知識解決實際問題,領(lǐng)悟數(shù)形結(jié)合的思想方法,發(fā)展學(xué)生的化歸遷移的數(shù)學(xué)思維,培養(yǎng)學(xué)生的轉(zhuǎn)化能力。

(四)反思概括,方法總結(jié)。

總結(jié)本節(jié)課的知識點、重點和難點,著重理解二次函數(shù)圖像及其性質(zhì)的相關(guān)知識和基本解題方法,領(lǐng)悟數(shù)形結(jié)合的數(shù)學(xué)思想方法,學(xué)會用化歸思想,解決實際問題。培養(yǎng)學(xué)生由題及法,由法及類的數(shù)學(xué)總結(jié)歸納方法。

(五)作業(yè)。

課后通過練習(xí)來鞏固本節(jié)課所復(fù)習(xí)的知識點、重點和難點,強化教學(xué)目標。

各位老師,以上所說只是我預(yù)設(shè)的一種方案,但課堂上是千變?nèi)f化的,會隨著學(xué)生和教師的靈性發(fā)揮而隨機生成的,預(yù)設(shè)效果如何,最終還有待于課堂教學(xué)實踐的檢驗。

本說課一定存在諸多不足,懇請各位老師提出寶貴意見,謝謝!

高中數(shù)學(xué)二次函數(shù)有哪些教案篇十五

(1)其圖象叫拋物線;(2)拋物線y=x2的對稱軸是y軸,開口向上,頂點是原點。

補充例題。

下列函數(shù)中,哪些是二次函數(shù)?哪些不是二次函數(shù)?若是二次函數(shù),指出a,b,c?

(1)y=2-3x2;(2)y=x(x-4);

(3)y=1/2x2-3x-1;(4)y=1/4x2+3x-8;

(5)y=7x(1-x)+4x2;(6)y=(x-6)(6+x)。

作業(yè):p122中a組1,2,3。

四、教學(xué)注意問題。

1.注意滲透局部和全體、有限和無限、近似和精確等矛盾對立統(tǒng)一的觀點。

2.注意培養(yǎng)學(xué)生觀察分析問題的能力。比如,結(jié)合所畫二次函數(shù)y=x2的圖象,要求學(xué)生思考:

(1)y=x2的圖象的圖象有什么特點。(答:具有對稱性。)。

(2)如何判斷y=x2的圖象有上面所說的特點?(答:由觀察圖象看出來;或由列表求值得出來;或由解析式y(tǒng)=x2看出來。)。

【本文地址:http://www.aiweibaby.com/zuowen/14265670.html】

全文閱讀已結(jié)束,如果需要下載本文請點擊

下載此文檔