3的倍數的特征教學反思100字(10篇)

格式:DOC 上傳日期:2023-02-25 12:28:41
3的倍數的特征教學反思100字(10篇)
時間:2023-02-25 12:28:41     小編:zdfb

范文為教學中作為模范的文章,也常常用來指寫作的模板。常常用于文秘寫作的參考,也可以作為演講材料編寫前的參考。那么我們該如何寫一篇較為完美的范文呢?以下是小編為大家收集的優(yōu)秀范文,歡迎大家分享閱讀。

3的倍數的特征教學反思100字篇一

:讓學生回顧舊知,2的倍數和5的倍數有什么特征,學生們發(fā)現都只要看一個數個位上的數就行了,于是很順地設下了陷阱:同學們,那猜猜看3的倍數有什么特征呢?由于受2的倍數和5的倍數的特征的影響,有學生很自然猜測到:“個位上是0,3,6,9的數一定是3的倍數”。

:先讓學生在百數圖中找找看,顯然像13、16、19等等的數不是3的倍數,學生初步發(fā)現了3的倍數的特征與2和5的倍數不同,不表現在數的個位上,那3的倍數究竟與什么有關系呢。

在此基礎上,讓學生在百數圖中找出3的倍數的數,如果把這些3的倍數的個位數字和十位數字進行調換,它還是3的倍數嗎?(讓學生動手驗證)

12→2115→5118→8124→4227→72

我們發(fā)現調換位置后還是3的倍數,那3的倍數有什么奧妙呢?

如果把3的倍數的各位上的數相加,它們的和是3的倍數。

:下面各數,哪些數是3的倍數呢?

2105421612992319876

小結:從上面可知,一個數各位上的數字之和如果是3的倍數,那么這個數就是3的倍數。這樣結論的得出水到渠成。

3的倍數的特征教學反思100字篇二

3的倍數的特征的教學與2、5倍數的特征難度上有不同,因為2、5的倍數的特征從數的表面的特點就可以很容易看出(根據個位數的特點就可以判斷出來),但是3的倍數的特征卻不能從表面去判斷,因而我特設以下環(huán)節(jié)突破重難點預習題。

1、給出一些數讓學生先判斷哪些數是3的倍數。并讓學生說一說你是怎么判斷的?

2、從以上的3的倍數進行思考:

(1)、3的倍數與它個位上的數有關系嗎?

(2)、 3的倍數的各位上的數的.和都是3的倍數嗎?

新課時讓學生從上面的練習中去發(fā)現了什么,從而歸納3的倍數的特征:一個數的各個數位上的數字和是3的倍數,這個數就是3的倍數

然后再讓每個同學任意寫一個3的倍數,再看看這個數的各個數位上的數的和是不是3的倍數。要求學生說出方法和思路。

經過以上這些活動后學生都能對一個數是不是3的倍數進行簡單的判斷。特別是學生對3的倍數特征的判斷大多數的學生能先求出各個數位的數字之和是不是3的倍數,然后再進行判斷,效果很好。

3的倍數的特征教學反思100字篇三

課始,讓學生任意報數,師生比賽誰先判斷出這個數是不是3的倍數,正當我沉浸在游戲的情境之中,幾個“不識時務者”打亂了課前的預想。“老師,我知道其中的秘密,只要把各個數位上的數加起來,看看是不是3的倍數就行了!”“對!在數學書上就有這句話?!薄钟袔讉€學生偷偷地打開了數學書?!霸趺崔k?”謎底都被學生揭開了。面對這一生成,我沒有死守教案,而是果斷地調整了預設,變“探索”為“驗證”,將結論板書在黑板上,讓學生理解這句話的意思,然后組織學生將百數表中3的倍數圈出來,驗證是不是具有這樣的特征,最后進行一系列鞏固練習……

課堂上經常會出現類似上述案例中的“超前行為”,即有些學生提前把要探究的新知識和盤托出。我們的習慣做法就是變“探索”為“驗證”,當然有些知識的教學采用這種方式是有效的,然而本課中“驗證”的過程真能取代“探究發(fā)現”的過程嗎?僅僅舉幾個例子試一試,驗證方法單一,思維含量低,學生充其量只能算是執(zhí)行操作命令的“計算器”,又能獲得哪些有益的發(fā)展?如果經常進行這樣的教學,還容易使學生形成浮躁淺薄,不求甚解,甚至只要結論的不良學習風氣。怎么辦,置之不理嗎?如果這樣,不僅沒有尊重學生已有的知識經驗,而且在已經揭開“謎底”的情況下,再試圖引導學生進行猜想、實驗、發(fā)現,體驗遭受挫折后取得成功的那種激動,也只能是一種奢望。那么又該如何激發(fā)學生探究的熱情,促使學生進行深入探究呢?

(與第一次教學情況基本相同,有些學生能夠正確地判斷一個數是不是3的倍數,這時一些學生卻依然感到困惑,我設法將這一困惑激發(fā)出來。)

師:同學們真能干,這么快就知道了3的倍數的特征,上節(jié)課我們學習了2、5的倍數的特征只和什么有關?

生:只和一個數的個位有關。

師:與今天學習的知識比較一下,你有什么疑問嗎?

生1:為什么判斷一個數是不是3的倍數只看個位不行?

生2:為什么判斷一個數是不是2、5的倍數只看個位,而判斷是不是3的倍數要看各位上數的和?

……

師:同學們思考問題確實比較深入,提出了非常有研究價值的問題。那我們先來研究一下2、5的倍數為什么只和它的個位有關。

(學生嘗試探索,教師適時引導學生從簡單數開始研究,借助小棒或其他方法進行解釋。)

生1:我在擺小棒時發(fā)現,十位上擺幾就是幾十,它肯定是2、5的倍數,因此只要看個位擺幾就可以了。

生2:其實不用擺小棒也可以,我們組發(fā)現每個數都可以拆成一個整十數加個位數,整十數當然都是2、5的倍數,所以這個數的個位是幾就決定了它是否是2、5的倍數。

師:同學們想到用“拆數”的方法來研究,是個好辦法。

生3:是否是3的倍數只看個位就不行了。比如13,雖然個位上是3的倍數,但10卻不是3的倍數;12雖然個位不是3的倍數,但12 = 10 + 2 = 9 + 1 + 2 = 9 + 3,因此只要看十位上余下的數和個位上的數合起來是不是3的倍數就行了。

生4:我也是這樣想的,我還發(fā)現十位上余下的數正好和十位上的數字一樣。

生5:(面帶困惑)起初,我也是這樣想的,可是在試三十幾、四十幾時就不行了。余下的數和十位上的數不一樣了,比如40除以3只余1,余下的數就和十位數字不同。

生(部分):對。

生4:其實40不要拆成39和1,你拆成36和4,余下的數不就和十位數字相同了嗎?

生6:也就是說整十數都可以拆成十位上的數字和一個3的倍數的數。這樣只要看十位上的數和個位上的和是不是3的倍數就可以了。

師:同學們確實很厲害!那三位數、四位數是不是也有這樣的規(guī)律呢?

學生用“拆數”的方法繼續(xù)研究三、四位數,發(fā)現和兩位數一樣,只不過千位、百位上余下的數要依次加到下一位上進行研究。3的倍數的特征在學生頭腦中越來越清晰。

師:同學們通過自己的探索,你們不僅發(fā)現了3的倍數的特征,還弄清了為什么有這樣的特征?,F在你還有哪些新的探索想法呢?

生1:我想知道4的倍數有什么特征?

生2:我知道,應該只要看末兩位就行了,因為整百、整千數一定都是4的倍數。

師:你能把學到的方法及時應用,非常棒!

生3:7或9的倍數有什么特征呢?

……

師:同學們又提出了一些新的、非常有價值的問題,課后可以繼續(xù)進行探索。

1. 找準知識間的沖突,激發(fā)探究的愿望。學生剛剛學習了2、5的倍數的特征,知道只要看一個數的個位,因此在學習3的倍數的特征時,自然會把“看個位”這一方法遷移過來。而實際上,3的倍數的特征,卻要把各個位上的數加起來研究。于是新舊知識之間的矛盾沖突使學生產生了困惑,“為什么2或5的倍數只看個位?”“為什么3的倍數要把各個位上的數加起來研究?”……學生急于想了解這些為什么,便會自覺地進入到自主探究的狀態(tài)之中。知識不是孤立的,新舊知識有時會存在矛盾沖突,教師如能找準知識間的沖突并巧妙激發(fā)出來,就能激起學生探究的愿望。這樣不僅有利于學生對新知的掌握,有效地將新知納入到原有的認知結構中去,還有利于培養(yǎng)學生深入探究的意識和能力。

2. 激活學習中的困惑,讓探究走向深入。創(chuàng)造和發(fā)現往往是由驚訝和困惑開始。對比兩次教學,第一次教學由于忽視了學習中的困惑,學生對于3的倍數的特征理解并不透徹,探索的體驗也并不深刻。第二次教學留給學生質疑的時空,巧設沖突,讓學生進行新舊知識的對比,將困惑激發(fā)出來,通過學生間相互啟發(fā)、相互質疑,對問題的`思考漸漸完整而清晰。學生不但經歷由困惑到明了的過程,而且思維不斷走向深入,獲得了更有價值的發(fā)現,探究能力也得到切實提高。學生在學習中難免會產生困惑,這種困惑有時是學生希望理解更全面、更深刻的表現。面對這些有價值的思考,我們要有敏銳的洞察力,采取恰當的方法將其激活,促使探究活動走向深入,讓學生獲得更大的發(fā)展。當然,學生在學習中可能產生怎樣的困惑,面對這一困惑又該如何恰當引導,尚需要教師課前精心預設。

3. 溝通知識間的聯(lián)系,讓學生不斷探究。顯然,2、5的倍數的特征與3的倍數的特征是相互聯(lián)系的,其研究方法是相通的(都可以通過“拆數”進行觀察),特征的本質也是相同的。這種研究方法和特征本質的及時溝通,激發(fā)了學生繼續(xù)研究4、7、9……的倍數的特征的好奇心,促使學生不斷探究,將學習由課內延伸到課外,并在探究過程中建構起對數的倍數特征的整體認識,感悟數學其實就是以一馭萬,以簡馭繁。課堂不是句號,學生的發(fā)展始終是教學的落腳點。我們的教學絕不能僅僅局限于學生對于一堂課知識的掌握,而應著眼于學生對于解決問題方法的感悟,獲得可持續(xù)發(fā)展的動力。

3的倍數的特征教學反思100字篇四

《3的倍數的特征》是學生在學習過2和5倍數特征之后的又一內容,因為2和5的倍數的特征僅僅體現在個位上的數,比較明顯,容易理解。而3的倍數的特征,不能只從個位上的數來判斷,必須把其他各位上的數相加,看所得的和是否為3的倍數來判斷,學生理解起來有一定的困難。我決定在這節(jié)課中突出學生的自主探索,使學生猜想——觀察——再觀察——動手試驗的過程中,概括歸納出3的倍數特征。

但上課的過程中,學生并沒有按照我想的思路去進行,一個學生在我沒有預想的前提下說出了3的'倍數的特征,所以我準備讓四人小組去合作交流發(fā)現3的倍數的特征也沒有進行。只是讓學生兩人去再說一說剛才那個學生的發(fā)現,加以理解,鞏固。

這節(jié)課結束后,我感覺以下方面做得不好。

1、備課不充分。自己在備課時沒有好好的去備學生,沒有做好多方面的預設;

2、在觀察百數表到后面總結3的倍數特征時,都應放手讓孩子們多說,說透,這樣更有助于鍛煉孩子的概括歸納能力。老師不要著急,學生能說出的盡量讓學生說,多放手,相信學生。

3的倍數的特征教學反思100字篇五

在執(zhí)教《2、5、3的倍數的特征》后,我針對本節(jié)課的教學情況進行反思。

雖然2、5、3的倍數的特征看起來很簡單,探究的過程可能沒有什么困難之處,但要內容讓學生學懂,首先存在知識銜接問題,整除、倍數、因數這些概念學生都從未接觸過,因此,我在課開始安排了整除、倍數、因數新概念的介紹,在我看來,這些概念比較抽象,學生一時難以掌握。

備課時也參考了不少資料,大多數教學設計都是將這一內容分成兩節(jié)課來學習,一節(jié)學《2、5的倍數的特征》,一節(jié)學《3的倍數的特征》,我確定用一節(jié)課教學《2、5、3的倍數的特征》,其目的是為了體現容量大,我的設計內容多,相應的學生自學、展示、鞏固練習的.時間和機會就壓縮的比較少了。而3的倍數的特征與2、5的又完全不同,學生接受起來可能會有一定的難度,最好單獨作為一課時學習。最后的環(huán)節(jié)達標測試拖堂了。

高效課堂要充分發(fā)揮學生的主體作用,要體現學生會學,學會,在本節(jié)課上,學生合作學習的熱情高,通過展示,發(fā)現學生學懂了,總結出了2、5、3的倍數的特征,在展示環(huán)節(jié),學生講的、板書的相互干擾,于是,我臨時安排按先后順序進行,沒體現出高效課堂的“立體式”這一特點。

3的倍數的特征教學反思100字篇六

心理學原理表明,新異的刺激可以引起學生的注意和興趣。在教學中,根據不同的教材和要求,采取不同的教學方法,能夠引起學生學習的興趣,有利于創(chuàng)設良好的課堂氣氛。

教學3的倍數特征這一課時,教師組織學生進行下列鞏固練習:

下列數中3的倍數有:()

1435451003328767488

學生利用3的倍數的特征一下子就回答了上面的問題,得到了老師的肯定。這時我接著說:“我們來一場老師、學生打擂臺怎么樣?看誰說的3的倍數的數最多,我們看誰能考倒老師?!边@時同學們興趣盎然,紛紛出題來考老師。

生:42

師:111

生:78

師:57

生:81

師:20xx

生:6891

…………

這時師故意出錯:369041

學生馬上發(fā)現了這個數不是3的倍數,師問:“你能不能改一改其中的某個數字使它成為3的倍數。”

生:“可以將1改為2?!?/p>

生:“可以將4改為5?!?/p>

生:“可以將1改為5。”

生:“可以將1改為8。”

生:“可以將4改為2”

生:“可以將4改為8”

學生回答完后,我及時提問:“你們?yōu)槭裁床桓钠渲械?、6、9和0呢?”學生通過思考回答:“因為0、6、3、9每一個數都是3的倍數,所以只要改4和1這兩個數就行了?!边@時我及時指出:“判斷一個數是不是3的倍數可以用篩選法來判斷,在各數位的`數字中先篩去3的倍數或和為3的倍數的數字,若余下的數字之和是3的倍數,原數就是3的倍數,否則就不是?!边@時我逐漸地出示下列這組數要求學生馬上判斷是否3的倍數。

56

561

5617

56178

561784

5617849

…………

這個鞏固練習,有效地調動了學生的積極性,不斷激起學生認知的內驅力,使學生在探索的過程中,主動學習、主動探索,帶來了內心的滿足感。

3的倍數的特征教學反思100字篇七

《3的倍數的特征》是五年級下冊數學第二單元“因數與倍數”中的一個知識點,是在學生已經認識倍數和因數、2和5倍數的特征的基礎上進行教學的。由于2、5的倍數的特征從數的表面的特點就可以很容易看出——根據個位數的特點就可以判斷出來。但是3的倍數的特征卻不能只從個位上的數來判斷,必須把其他各位上的數相加,看所得的和是否為3的倍數來判斷,學生理解起來有一定的困難。

因而在《3的倍數的特征》的開始,我先復習了2、5的倍數的特征,然后學生猜一猜什么樣的數是3的倍數,學生自然而然地會將“2.5的倍數的特征”遷移到“3的倍數特征的問題中,得出:個位上是3、6、9的數是3的倍數,后被學生補充到“個位上是0—9的任何一個數字都有可能是3的倍數,”其特征不明顯,也就是說3的.倍數和一個數的個位數沒有關系,因此要從另外的角度來觀察和思考。在問題情境中讓學生產生認知沖突產生疑問,激發(fā)強烈的探究欲望。接著提供給每位學生一張百數表,讓他們圈出所有3的倍數,拋出問題:把3的倍數的各位上的數相加,看看你有什么發(fā)現,引導學生換角度思考3的倍數特征。接下來,經過進一步提示,引導學生觀察各位上數的和,發(fā)現各位上的和是3的倍數。于是,形成新的猜想:一個數如果是3的倍數,那么它各位上數的和也是3的倍數。

為了驗證這一猜想,我補充了一些其他的數,如49×3=147,166×3=498等,使學生進一步確認這一結論的正確性。還可以任意寫一個數,利用這一結論來驗證,如3697,3+6+9+7=25,25不是3的倍數,而3697÷3也不能得到整數商,因此,它不是3的倍數。通過這樣的方式也使學生認識到:找出某個規(guī)律后,還要找出一些正面的、反面的例子進行檢驗,看是不是普遍適用。

為了使學生更好地掌握3的倍數的特征,進行課堂練習時,我還把一些數各個數位上的數經過不同的排列,再讓學生判斷,以加深對“各位上數的和是3的倍數”的理解。如完成“做一做”第1題時,學生判斷完45是3的倍數后,教師可以再讓學生判斷一下54是不是3的倍數。

利用2、5、3的倍數的特征來判斷一個數是不是2、5或3的倍數,其方法是比較容易掌握的,但要形成較好的數感,達到熟練判斷的程度,也不是一、兩節(jié)課所能解決的,還需要進行較多的練習進行鞏固。

這節(jié)課結束后,我感到自主學習和合作探究是這節(jié)課中最重要的兩種學習方式,學生通過自主選擇研究內容,舉例驗證等獨立思考和小組討論,相互質疑等合作探究活動,獲得了數學知識。學生的學習能動性和潛在能力得到了激發(fā)。在自主探索的過程中,學生體驗到了學習成功的愉悅,同時也促進了自身的發(fā)展。但最大的缺憾之處,最后總結3的倍數特征時,應放手讓孩子們多說,說透,這樣更有助于鍛煉孩子的概括歸納能力。而練習題方面,也應形式面多樣化。

3的倍數的特征教學反思100字篇八

從以上的教學過程中,可以看到掌握2、5的倍數的特征不是本節(jié)課的唯一目標,在制定目標的時候,還從數學研究方法這個方面著手,在學生掌握知識的同時,更注重讓學生了解科學的數學研究的過程。

我們知道,一堂課的知識目標是很容易達成的,但是如果要滲透數學思想方法或科學的研究方法,往往會給我們一線教師帶來很多困難。在這節(jié)課中,教師引導學生通過猜想驗證結論三個流程進行研究,最后得到正確的數學結果,并進行應用。

當我們說要研究2、5的倍數的特征時,學生想當然地會認為只要一個數一個數地研究就可以了。如果讓他們實際操作,他們很可能會寫了幾個數后,就下結論,當然這時候他們下的結論也很可能是正確的。大部分老師在這樣的情況下,就會肯定學生的結論,然后進行練習鞏固。

但是教師并沒有滿足于此,而是抱著科學嚴謹的態(tài)度。僅僅幾個數就能得出結論了嗎?答案顯然是否定的,一項結論的得出不是這樣草率的。如果教師如此這般教學,一次兩次不要緊,長久以來,學生也會形成草率的態(tài)度,以偏概全,缺乏一種科學的嚴謹,這是很可怕的。

所以我們看到,首先教師引導學生確定了小范圍的意識,在數據比較多的時候,我們可以先確定一個范圍,在有限的時間里研究這個范圍中的數的`特征,得到在1-100這個范圍內5的倍數的特征,個位上的數字是5或0。這時候教師沒有滿足于此,而是引導學生認識到這個結論僅僅適用于1-100這個小范圍,是不是在所有不等于0的自然數中都使用呢?還需要研究。所以接下來在教師的引導下,學生開始認識到還要繼續(xù)拓展范圍,研究大于100的自然數中所有5的倍數是不是也是個位上的數字是5或0。只有進行了研究,才能得到正確的結論,最后在學習和生活中進行應用。

在這一過程中,學生感受到了科學嚴謹的態(tài)度,同時有了一定的范圍意識,知道了在進行一項數目巨大的研究過程中,可以從小范圍入手,得到一定的猜想,然后逐漸擴范圍大,最后得出科學的結論。相信長此以往,學生會逐漸明確范圍意識,建立科學嚴謹的態(tài)度的。

在教學2、5的倍數的特征之前,教師找了幾個學生訪談,想了解學生學習的前在狀態(tài),當然所找的學生是各種層次都有的。對于2、5的倍數的特征,應該說比較簡單,所以中等學生和優(yōu)等生都已經知道了它們的特征2的倍數肯定是雙數,5的倍數末尾是5或0,只有個別學困生一無所知。同時有個奇怪的現象,所有知道這個結論的同學都認為這個結論非常正確,以后就能用這個結論來進行判斷,不需要進行驗證,當然他們的結論獲得也僅僅是知道的過程,沒有經歷探究過程。如果長此以往,學生僅僅是知識的接受者,而不是知識的探究者,以后將只習慣于被動接受,而不會主動發(fā)現。

所以,在教學中,當學生找到1-100內2和5的倍數特征時,教師追問學生,是不是比100大的自然數中,也有這個特征呢?學生異口同聲地都認為是。這里就需要教師幫助學生養(yǎng)成嚴謹科學的學習態(tài)度。我們看到,教師告訴學生是不是有這個特征,我們沒有研究過,所以只是我們的猜想。當教師一點撥后,大部分學生還是比較認可的。確實,沒有經過研究,怎么能知道是呢?

有了這樣的猜想,最后通過舉例的方法驗證后,學生沒有找到反例,這時教師才告訴學生,一開始的猜想現在變成了結論。雖然同樣是一句話,不同的時候有不同的界定,沒有經過驗證前,只是猜想;只有研究后,猜想才可能變成結論。

相信學生不斷經歷這種過程后,他們才會具備科學的態(tài)度,才會學會對自己所說的話負責,才不會貿然下結論,當然我們教師也要鼓勵學生大膽猜想。

從這節(jié)課中,我們看到,當學生擴大范圍,研究比100大的5的倍數的特征時,教師就引導可以用舉例的方法來研究,尋找有沒有不符合這一特征的例子,如果有,說明一開始的猜想是錯誤的;全班舉了無數個例子,如果沒有,那么在小學階段,可以認為是正確的。這樣,當下節(jié)課研究3的倍數的特征時,學生就會大膽猜想,并有方法來驗證自己的猜想了。

隨著時代的發(fā)展,隨著新課改的不斷深入,我們教師在制定教學目標時,不要再僅僅關注學生知識目標,更重要的是要關注學生的能力目標,只有從小培養(yǎng),從小滲透,那么我們學生對數學的認識才會更深刻,也才會在數學上有更大的造詣。

3的倍數的特征教學反思100字篇九

《3的倍數的特征》的教學是五年級數學上冊第三單元“因數與倍數”中一個重要知識點,是學生在學習了2和5的倍數特征之后的新內容。

3的倍數的特征與2和5的倍數的特征有很大差別,2和5的倍數的特征僅僅體現在個位上的數,比較明顯,容易理解。而3的倍數的特征,不能只從個位上的數來判斷,必須把其他各位上的數相加,看所得的和是否為3的倍數來判斷,學生理解起來有一定的困難。我在本節(jié)課設計理念上,突出以學生為主體,教師為主導,方法為主線的原則,從現象到本質,從質疑到解疑。當然本節(jié)課也存在很多問題,下面我進行做幾點反思。

在導入環(huán)節(jié),我通過復習舊知識進行“熱身”。由于學生已經掌握了2和5倍數的特征,知道只要看一個數的個位就能判斷一個數是不是2或5的倍數,因此在學習3的倍數特征時,自然會把“看個位”這一方法遷移過來,盡管是負遷移。實際上,鮮明的沖突讓學生發(fā)現卻不是這樣,于是新舊知識間的'矛盾沖突使學生產生了困惑,有了新舊知識的矛盾沖突,就能激發(fā)起學生探究的愿望,這樣有利于學生對新知識的掌握,有效的將新知識納入到原有的認知結構中去,還有利于培養(yǎng)學生深入探究的意識和能力。

猜想3的倍數特征是基礎,在學生得出猜想后,我便引導學生找出百數表中3的倍數去驗證,并在驗證中推翻了剛才的猜想。驗證也是有技巧的,30以內即可發(fā)現3的倍數中,個位上可能是10個數字中的任何一個,之前的判斷已經站不住腳。之后繼續(xù)探究,在100以內,基本可以發(fā)現規(guī)律,但為了嚴謹,必須跳出百數表,在100以上的數中去驗證這個規(guī)律。最后,引導學生理解這個結論背后的原理,為什么它的規(guī)律和之前的規(guī)律不一樣?這樣一來,學生不僅學會本節(jié)課知識,更掌握了科學的探究方法。

本節(jié)課的目標定位上,我考慮到學生的已有認知基礎,我決定引導學生探索3的倍數的特征背后的道理。這一嘗試建立在我對學生學情把握的基礎上,因為3的倍數的特征的結論一但得出,運用起來沒有難度,后面的練習往往成了“休閑時間”,而進一步提升探索難度,無疑是開發(fā)思維的良好契機。我運用數形結合的方法逐步深入,最后還是把話語權留給學生,這樣就給予不同學生各自適應的個性化學習方略,真正做到了讓每位同學在數學上都得到發(fā)展。

3的倍數的特征教學反思100字篇十

《3的倍數特征》進行了兩次教學授課,第一次是新授,第二次是錄課重復授課。下面就本節(jié)課前后兩次上課進行如下反思:第一次上課,采用游戲的方式引入,提前給學生編號,根據編號做游戲。由于每個學生的編號不一樣,所以在做游戲的時候,每個學生集中注意力,傾聽游戲要求,激發(fā)了學生的學習興趣。設置游戲的目的是復習2或5倍數的特征,同時,對3的倍數特征的學習產生求知欲。接下來是采用提出猜想,舉出個例否定猜想來過渡。讓學生充分地認識到依據2或5的倍數特征的思想已經行不通了,從而開始新的探索。在探索過程中借助“百數表”,讓學生獨立地圈出3的倍數,圈完后互相交流3的倍數的個位有什么特點,再次否定了之前的思維定式。由于個位上沒有特點,所以引導學生從其他的角度觀察,學生能想到橫著觀察、豎著觀察,但對于斜著觀察不能很好的發(fā)現,所以本節(jié)課中我關注到學生的思考困境,引導學生從斜著觀察的角度思考探索。當學生斜著觀察時能發(fā)現個位上的數字依次減1,十位上的數字依次加1,適時提出“什么是沒有變的?”問題一提出,學生恍然大悟,發(fā)現:個位和十位上的數的和沒有變!順其自然的知道了3的倍數具有這樣規(guī)律。經過研究每一斜行發(fā)現:個位和十位上的數的和不變,都是3的倍數。知道了這個規(guī)律后,下面開始延伸這個規(guī)律。一方面:驗證百數表內其他不是3的倍數是否具有這個規(guī)律?另一方面:比100大的數,三位數、四位數、五位數等是否具有這個規(guī)律?通過兩方面的驗證,再次強調了這個規(guī)律是普遍存在的,而這時3的倍數特征已經歸結為:一個數各位上的數的和是3的倍數,這個數就是3的倍數。知道了3的倍數特征之后通過練習鞏固加強,練習的設計是三道題,這三道題設計為不同的層次,第一題是基礎題,第二題是拔高題,第三題是解決問題。通過做題發(fā)現學生本節(jié)課掌握得不錯。最后,對本節(jié)課的知識進行了延伸,通過出示課本第13頁“你知道嗎?”,讓學生明白為什么2或5的倍數特征只看個位就可以了,而3的倍數特征需要看所有數位。從而達到學知識不但要知其然還要知其所以然。整個教學過程中,學生能在猜想、操作、驗證、交流、歸納的數學活動中獲得豐富的數學經驗,同時這也有利于學生創(chuàng)造力的培養(yǎng)。通過本節(jié)課的教學以及學生的掌握情況,最終檢測本節(jié)課的目標較好的達成。但反思這節(jié)課的不足,我覺得在每個環(huán)節(jié)上的過渡應該更加的自然。另外,在小組討論的時候應多關注學生的交流,對學生進行適時地指導?;诘谝还?jié)課的優(yōu)點和不足,進行了第二次的授課即錄課。由于學生們已經學習了過本節(jié)課,所以對于學生們來說已經是舊知識。要把舊知識重新來講,如果照搬之前的授課方式已經遠遠不夠了。如何更改,這給我提出來一個新的問題。為此,這節(jié)課我做了適當的調整。本節(jié)課我更多關注的是數學方法和思維方式的培養(yǎng)。其中體現在:

1、學生在舉例驗證猜想的時候,讓學生體會反例的作用,如果有一個反例的存在,就說明猜想的結論是錯誤的。

2、在探索3的倍數特征時,對于100以內3的倍數,應如何著手驗證,怎么選取數來驗證,這一環(huán)節(jié)讓學生體會:在研究規(guī)律的時候,優(yōu)先選擇數比較多的這一組,讓學生明白如果有規(guī)律更容易探索和發(fā)現。

3、在拓展規(guī)律的.時候,采用舉了大量的數據,證明了規(guī)律的普遍存在,讓學生體會規(guī)律的適用范圍。

4、在做練習的時候,第2小題,關注學生思考問題是否全面,關注學生的思考過程。

5、練習的第3小題,一道解決問題的題目,通過讓學生讀題、審題、分析題之后,再思考。這一道題學生展示了多種的做題方法,體現了方法的多樣性,同時也說明學生的思維是活躍的。本節(jié)課中的不足,練習中第3題學生的做法沒有完全的在黑板上板書,另外,本節(jié)課中學生會超前說出所有問題的答案,使得教師略顯失措,我覺得這是因為我備學生還不夠。在今后的教學中,我會改進自己的不足。我將更深入地研究教材、鉆研教法,不斷提高自己的教學水平,設計出學生更能接受和喜歡的課。

【本文地址:http://www.aiweibaby.com/zuowen/1437804.html】

全文閱讀已結束,如果需要下載本文請點擊

下載此文檔