二次函數(shù)教學設計(模板13篇)

格式:DOC 上傳日期:2023-11-23 13:15:12
二次函數(shù)教學設計(模板13篇)
時間:2023-11-23 13:15:12     小編:琴心月

總結是一個提升自己的途徑,只有不斷總結才能不斷進步。在寫總結時要注意避免太過于個人化的情緒和言辭,保持中立和客觀。以下是一些總結的經典范文,希望對大家有所啟示。

二次函數(shù)教學設計篇一

這節(jié)課的教學主要使學生在原有基礎上,通過類比一次函數(shù)掌握二次函數(shù)圖象和性質,突出的是探索交流合作的方式。

在知識學習過程中給學生留有充分的思考與交流的時間和空間,讓學生經歷了畫圖、觀察、猜測、交流、反思等活動,借助圖形教學,形象直觀,體現(xiàn)了數(shù)形結合思想,激發(fā)了學生的學習興趣,培養(yǎng)學生的觀察、分析、歸納、概括能力,提高數(shù)學課堂教學的效率和效果,促使學生主動參與到“做”數(shù)學的活動中,從而更加深刻地認識最簡二次函數(shù)的性質。

對于本節(jié)課,我個人認為在教學思路上還是比較清晰的,重難點把握得還是比較準確的,復習時利用原來學過的函數(shù)圖像,讓學生說出增減性,很自然的就引發(fā)出了探究二次函數(shù)性質的問題以及利用具體的圖像,學生比較容易理解和掌握。

2011年10月21日來源:本站。

進入二次函數(shù)這一章節(jié)后,難點也就隨之而來了,因為這一章節(jié)中大部分的內容都是數(shù)形結合的知識,學生在這部分也一直是難點。在學習一次函數(shù)的時候,涉及到函數(shù)增減性的問題,當時的解決方法是讓學生動手去做,方法如下:首先做出一次函數(shù)的草圖,然后用左手從圖像的左到右移動,并且要求學生說出隨著x的增大(手由左向右的移動過程中x是一直在增大的),圖像是升高了還是降低了。最后把話說完整,隨著x的增大y是增大了還是減小了,這種方法在當時大部分學生還是能夠接受的。所以在二次函數(shù)的性質這節(jié)課之前我就決定了,還是用動手比劃的方法讓學生去理解增減性。

首先,讓學生理解想求出二次函數(shù)的增減性首先要從二次函數(shù)的一般式轉化為頂點式,目的在于通過頂點式就可以直接看出對稱軸,再給學生充分的時間讓學生發(fā)現(xiàn),二次函數(shù)與一次函數(shù)的增減性是不同的,一次函數(shù)不用分段去說,而二次函數(shù)要求以對稱軸為分界點分段去說。在這些都準備好之后,告訴學生判斷增減性的要點:

(1)通過函數(shù)的頂點和開口方向,畫出二次函數(shù)的草圖。

(2)在草圖上標出對稱軸,然后用對稱軸把二次函數(shù)的定義域分成兩部分。

二次函數(shù)教學設計篇二

在“一次函數(shù)”一章時已經了解了一次函數(shù)與一元一次方程,一元一次不等式(組),二元一次方程組的聯(lián)系。本章專門設一節(jié),通過探討二次函數(shù)與一元二次方程的關系,再次展示函數(shù)與方程的聯(lián)系。一方面可以深化我們對一元二次方程的.認識,另一方面又可以運用一元二次方程解決二次函數(shù)的有關問題。

本節(jié)通過畫圖,看圖,分析圖,列表對比,抽象概括進行教學,讓每個學生動手,動口,動腦,積極參與,提高教學效率和教學質量(此文來自優(yōu)秀),使學生進一步理解數(shù)形結合和從特殊到一般的思想方法。不足之處是:有少部分學生對函數(shù)與方程之間的關系有點費解。通過了解發(fā)現(xiàn):這部分同學對一次函數(shù)和方程的關系也不熟悉,也就是數(shù)學基礎不扎實,還有就是數(shù)形結合能力差,也就是不能建立數(shù)與形之間的聯(lián)系。他們?yōu)槭裁床荒芎芎玫淖龅竭@些呢?我想,這正是本節(jié)課的要點所在。在今后的教學中,一定關注這一點,解決之。

二次函數(shù)教學設計篇三

一、說課內容:

九年級數(shù)學下冊第27章第一節(jié)的二次函數(shù)的概念及相關習題(華東師范大學出版社)。

二、教材分析:

1、教材的地位和作用。

這節(jié)課是在學生已經學習了一次函數(shù)、正比例函數(shù)、反比例函數(shù)的基礎上,來學習二次函數(shù)的概念。二次函數(shù)是初中階段研究的最后一個具體的函數(shù),也是最重要的,在歷年來的中考題中占有較大比例。同時,二次函數(shù)和以前學過的一元二次方程、一元二次不等式有著密切的聯(lián)系。進一步學習二次函數(shù)將為它們的解法提供新的方法和途徑,并使學生更為深刻的理解數(shù)形結合的重要思想。而本節(jié)課的二次函數(shù)的概念是學習二次函數(shù)的基礎,是為后來學習二次函數(shù)的圖象做鋪墊。所以這節(jié)課在整個教材中具有承上啟下的重要作用。

2、教學目標和要求:

(1)知識與技能:使學生理解二次函數(shù)的概念,掌握根據(jù)實際問題列出二次函數(shù)關系式的方法,并了解如何根據(jù)實際問題確定自變量的取值范圍。

(2)過程與方法:復習舊知,通過實際問題的引入,經歷二次函數(shù)概念的探索過程,提高學生解決問題的能力.

(3)情感、態(tài)度與價值觀:通過觀察、操作、交流歸納等數(shù)學活動加深對二次函數(shù)概念的理解,發(fā)展學生的數(shù)學思維,增強學好數(shù)學的愿望與信心.

3、教學重點:對二次函數(shù)概念的理解。

4、教學難點:抽象出實際問題中的二次函數(shù)關系。

1、從創(chuàng)設情境入手,通過知識再現(xiàn),孕伏教學過程。

2、從學生活動出發(fā),通過以舊引新,順勢教學過程。

3、利用探索、研究手段,通過思維深入,領悟教學過程。

四、教學過程:

(一)復習提問。

1.什么叫函數(shù)?我們之前學過了那些函數(shù)?

(一次函數(shù),正比例函數(shù),反比例函數(shù))。

2.它們的形式是怎樣的?

(y=kx+b,ky=kx,ky=,k0)。

【設計意圖】復習這些問題是為了幫助學生弄清自變量、函數(shù)、常量等概念,加深對函數(shù)定義的理解.強調k0的條件,以備與二次函數(shù)中的a進行比較.

(二)引入新課。

函數(shù)是研究兩個變量在某變化過程中的相互關系,我們已學過正比例函數(shù),反比例函數(shù)和一次函數(shù)。看下面三個例子中兩個變量之間存在怎樣的關系。

例1、(1)圓的半徑是r(cm)時,面積與半徑之間的關系是什么?

解:s=0)。

解:y=x(20/2-x)=x(10-x)=-x2+10x(0。

解:y=100(1+x)2。

=100(x2+2x+1)。

=100x2+200x+100(0。

教師提問:以上三個例子所列出的函數(shù)與一次函數(shù)有何相同點與不同點?

(三)講解新課。

以上函數(shù)不同于我們所學過的一次函數(shù),正比例函數(shù),反比例函數(shù),我們就把這種函數(shù)稱為二次函數(shù)。

二次函數(shù)的定義:形如y=ax2+bx+c(a0,a,b,c為常數(shù))的函數(shù)叫做二次函數(shù)。

1、強調形如,即由形來定義函數(shù)名稱。二次函數(shù)即y是關于x的二次多項式(關于的x代數(shù)式一定要是整式)。

2、在y=ax2+bx+c中自變量是x,它的取值范圍是一切實數(shù)。但在實際問題中,自變量的取值范圍是使實際問題有意義的值。(如例1中要求r0)。

3、為什么二次函數(shù)定義中要求a?

(若a=0,ax2+bx+c就不是關于x的二次多項式了)。

4、在例3中,二次函數(shù)y=100x2+200x+100中,a=100,b=200,c=100.

5、b和c是否可以為零?

由例1可知,b和c均可為零.

若b=0,則y=ax2+c;。

若c=0,則y=ax2+bx;。

若b=c=0,則y=ax2.

注明:以上三種形式都是二次函數(shù)的特殊形式,而y=ax2+bx+c是二次函數(shù)的一般形式.

判斷:下列函數(shù)中哪些是二次函數(shù)?哪些不是二次函數(shù)?若是二次函數(shù),指出a、b、c.

(1)y=3(x-1)2+1(2)s=3-2t2。

(3)y=(x+3)2-x2(4)s=10r2。

(5)y=22+2x(6)y=x4+2x2+1(可指出y是關于x2的二次函數(shù))。

(四)鞏固練習。

1.已知一個直角三角形的兩條直角邊長的和是10cm。

(1)當它的一條直角邊的長為4.5cm時,求這個直角三角形的面積;。

(2)設這個直角三角形的面積為scm2,其中一條直角邊為xcm,求s關。

于x的函數(shù)關系式。

【設計意圖】此題由具體數(shù)據(jù)逐步過渡到用字母表示關系式,讓學生經歷由具體到抽象的過程,從而降低學生學習的難度。

2.已知正方體的棱長為xcm,它的表面積為scm2,體積為vcm3。

(1)分別寫出s與x,v與x之間的函數(shù)關系式子;。

(2)這兩個函數(shù)中,那個是x的二次函數(shù)?

【設計意圖】簡單的實際問題,學生會很容易列出函數(shù)關系式,也很容易分辨出哪個是二次函數(shù)。通過簡單題目的練習,讓學生體驗到成功的歡愉,激發(fā)他們學習數(shù)學的興趣,建立學好數(shù)學的信心。

五、評價分析。

本節(jié)的一個知識點就是二次函數(shù)的概念,教學中教師不能直接給出,而要讓學生自己在分析、揭示實際問題的數(shù)量關系并把實際問題轉化為數(shù)學模型的過程中,使學生感受函數(shù)是刻畫現(xiàn)實世界數(shù)量關系的有效模型,增加對二次函數(shù)的感性認識,側重點通過兩個實際問題的探究引導學生自己歸納出這種新的函數(shù)二次函數(shù),進一步感受數(shù)學在生活中的廣泛應用。對于最大面積問題,可給學生留為課下探究問題,發(fā)展學生的發(fā)散思維,方法不拘一格,只要合理均應鼓勵。

二次函數(shù)教學設計篇四

教學目標:

1.經歷探索二次函數(shù)y=ax2的圖象的作法和性質的過程,獲得利用圖象研究函數(shù)性質的經驗。

2.能夠利用描點法作出函數(shù)y=ax2的圖象,并能根據(jù)圖象認識和理解二次函數(shù)y=ax2的性質,初步建立二次函數(shù)表達式與圖象之間的聯(lián)系。

3.能根據(jù)二次函數(shù)y=ax2的圖象,探索二次函數(shù)的性質(開口方向、對稱軸、頂點坐標)。

教學方法:自主探索,數(shù)形結合。

教學建議:

利用具體的二次函數(shù)圖象討論二次函數(shù)y=ax2的性質時,應盡可能多地運用小組活動的形式,通過學生之間的合作與交流,進行圖象和圖象之間的比較,表達式和表達式之間的比較,建立圖象和表達式之間的聯(lián)系,以達到學生對二次函數(shù)性質的真正理解。

教學過程:

一、認知準備:

1.正比例函數(shù)、一次函數(shù)、反比例函數(shù)的圖象分別是什么?

2.畫函數(shù)圖象的方法和步驟是什么?(學生口答)。

你會作二次函數(shù)y=ax2的圖象嗎?你想直觀地了解它的性質嗎?本節(jié)課我們一起探索。

二、新授:

(一)動手實踐:作二次函數(shù)y=x2和y=-x2的圖象。

(同桌二人,南邊作二次函數(shù)y=x2的圖象,北邊作二次函數(shù)y=-x2的圖象,兩名學生黑板完成)。

(二)對照黑板圖象議一議:(先由學生獨立思考,再小組交流)。

1.你能描述該圖象的形狀嗎?

2.該圖象與x軸有公共點嗎?如果有公共點坐標是什么?

3.當x0時,隨著x的增大,y如何變化?當x0時呢?

4.當x取什么值時,y值最小?最小值是什么?你是如何知道的?

5.該圖象是軸對稱圖形嗎?如果是,它的對稱軸是什么?請你找出幾對對稱點。

(三)學生交流:

1.交流上面的五個問題(由問題1引出拋物線的.概念,由問題2引出拋物線的頂點)。

2.二次函數(shù)y=x2和y=-x2的圖象有哪些相同點和不同點?

3.教師出示同一直角坐標系中的兩個函數(shù)y=x2和y=-x2圖象,根據(jù)圖象回答:

(1)二次函數(shù)y=x2和y=-x2的圖象關于哪條直線對稱?

(2)兩個圖象關于哪個點對稱?

(3)由y=x2的圖象如何得到y(tǒng)=-x2的圖象?

(四)動手做一做:

1.作出函數(shù)y=2x2和y=-2x2的圖象。

(同桌二人,南邊作二次函數(shù)y=-2x2的圖象,北邊作二次函數(shù)y=2x2的圖象,兩名學生黑板完成)。

2.對照黑板圖象,數(shù)形結合,研討性質:

(1)你能說出二次函數(shù)y=2x2具有哪些性質嗎?

(2)你能說出二次函數(shù)y=-2x2具有哪些性質嗎?

(3)你能發(fā)現(xiàn)二次函數(shù)y=ax2的圖象有什么性質嗎?

(學生分小組活動,交流各自的發(fā)現(xiàn))。

3.師生歸納總結二次函數(shù)y=ax2的圖象及性質:

(2)性質。

a:開口方向:a0,拋物線開口向上,a〈0,拋物線開口向下[。

b:頂點坐標是(0,0)。

c:對稱軸是y軸。

e:增減性:a0時,在對稱軸的左側(x0),y隨x的增大而減小,在對稱軸的右側(x0),y隨x的增大而增大,a〈0時,在對稱軸的左側(x0),y隨x的增大而增大,在對稱軸的右側(x0),y隨x的增大而減小。

4.應用:(1)說出二次函數(shù)y=1/3x2和y=-5x2有哪些性質。

(2)說出二次函數(shù)y=4x2和y=-1/4x2有哪些相同點和不同點?

三、小結:

通過本節(jié)課學習,你有哪些收獲?(學生小結)。

1.會畫二次函數(shù)y=ax2的圖象,知道它的圖象是一條拋物線。

a:開口方向:a0,拋物線開口向上,a〈0,拋物線開口向下。

b:頂點坐標是(0,0)。

c:對稱軸是y軸。

e:增減性:a0時,在對稱軸的左側(x0=,y隨x的增大而減小,在對稱軸的右側(x0),y隨x的增大而增大,a〈0時,在對稱軸的左側(x0),y隨x的增大而增大,在對稱軸的右側(x0),y隨x的增大而減小。

二次函數(shù)教學設計篇五

教學目標。

知識技能。

2、掌握一元二次方程的一般形式,正確認識二次項系數(shù)、一次項系數(shù)及常數(shù)項。

教學思考。

1、通過一元二次方程的引入,培養(yǎng)學生建模思想,歸納、分析問題及解決問題的能力。

2、通過一元二次方程概念的學習,培養(yǎng)學生對概念理解的完整性和深刻性。

3、由知識來源于實際,樹立轉化的思想,由設未知數(shù)、列方程向學生滲透方程的思想,從而進一步提高學生分析問題、解決問題的能力。

解決問題。

在分析、揭示實際問題的數(shù)量關系并把實際問題轉化為數(shù)學模型(一元二次方程)的過程中使學生感受方程是刻畫現(xiàn)實世界數(shù)量關系的工具,增加對一元二次方程的感性認識。

情感態(tài)度。

1、培養(yǎng)學生主動探究知識、自主學習和合作交流的意識。

2、激發(fā)學生學數(shù)學的興趣,體會學數(shù)學的快樂,培養(yǎng)用數(shù)學的意識。

重點。

難點。

1、由實際問題向數(shù)學問題的.轉化過程。

2、正確識別一般式中的“項”及“系數(shù)”。

教學流程安排。

活動流程圖。

活動內容和目的。

活動1。

創(chuàng)設情境引入新課。

活動2。

啟發(fā)探究獲得新知。

活動3。

運用新知體驗成功。

活動4。

歸納小結拓展提高。

活動5。

布置作業(yè)分層落實。

復習一元一次方程有關概念;通過實際問題引入新知。

通過類比一元一次方程的概念和一般形式,讓學生獲得一元二次方程的有關概念。

回顧梳理本節(jié)內容,拓展提高學生對知識的理解。

分層次布置作業(yè),提高學生學習數(shù)學的興趣。

二次函數(shù)教學設計篇六

《用函數(shù)的觀點看一元二次方程》內容比較多,而課時安排只一節(jié),為了在一節(jié)課的時間里更有效地突出重點,突破難點,按照學生的認知規(guī)律遵循教師為主導、學生為主體的指導思想,本節(jié)課給學生布置的預習作業(yè),從學生已有的經驗出發(fā)引發(fā)學生觀察、分析、類比、聯(lián)想、歸納、總結獲得新的知識,讓學生充分感受知識的產生和發(fā)展過程,使學生始終處于積極的思維狀態(tài)中,對新的知識的獲得覺得不意外,讓學生“跳一跳就可以摘到桃子”。

探究拋物線交x軸的點的個數(shù)與一元二次方程的根的個數(shù)之間的關系及其應用的過程中,引導學生觀察圖形,從圖象與x軸交點的個數(shù)與方程的根之間進行分析、猜想、歸納、總結,這是重要的數(shù)學中數(shù)形結合的思想方法,在整個教學過程中始終貫穿的是類比思想方法。這些方法的使用對學生良好思維品質的形成有重要的作用,對學生的終身發(fā)展也有一定的作用。

2.關注學生學習的過程。

在教學過程中,教師作為引導者,為學生創(chuàng)設問題情境、提供問題串、給學生提供廣闊的思考空間、活動空間、為學生搭建自主學習的平臺;學生則在老師的指導下經歷操作、實踐、思考、交流、合作的過程,其知識的.形成和能力的培養(yǎng)相伴而行,創(chuàng)造“海闊憑魚躍,天高任鳥飛”的課堂境界。

3.強化行為反思。

“反思是數(shù)學的重要活動,是數(shù)學活動的核心和動力”,本節(jié)課在教學過程中始終融入反思的環(huán)節(jié),用問題的設計,課堂小結,課后的數(shù)學日記等方式引發(fā)學生反思,使學生在掌握知識的同時,領悟解決問題的策略,積累學習方法。說到數(shù)學日記,“數(shù)學日記”就是學生以日記的形式,記述學生在數(shù)學學習和應用過程中的感受與體會。通過日記的方式,學生可以對他所學的數(shù)學內容進行總結,寫出自己的收獲與困惑?!皵?shù)學日記”該如何寫,寫什么呢?開始摸索寫數(shù)學日記的時候,我根據(jù)課程標準的內容給學生提出寫數(shù)學日記的簡單模式:日記參考格式:課題;所涉及的重要數(shù)學概念或規(guī)律;理解得最好的地方;不明白的或還需要進一步理解的地方;所涉及的數(shù)學思想方法;所學內容能否應用在日常生活中,舉例說明。通過這兩年的摸索,我把數(shù)學日記大致分為:課堂日記、復習日記、錯題日記。

4.優(yōu)化作業(yè)設計。

作業(yè)的設計分必做題和選做題,必做題鞏固本課基礎知識,基本要求;選做題屬于拓廣探索題目,培養(yǎng)學生的創(chuàng)新能力和實踐能力。

二次函數(shù)教學設計篇七

1.能畫二次函數(shù)的圖象,并能夠比較它們與二次函數(shù)的圖象的異同,理解對二次函數(shù)圖象的影響.

2.能說出二次函數(shù)圖象的開口方向、對稱軸、頂點坐標、增減性、最值.

3.經歷探索二次函數(shù)的圖象的作法和性質的過程,進一步獲得將表格、表達式、圖象三者聯(lián)系起來的經驗,體會數(shù)形結合思想在數(shù)學中的應用.

4.通過學生自己的探索活動,達到對拋物線自身特點的認識和對二次函數(shù)性質的理解.

二次函數(shù)教學設計篇八

對數(shù)函數(shù)(第二課時)是2006人教版高一數(shù)學(上冊)第二章第八節(jié)第二課時的內容,本小節(jié)涉及對數(shù)函數(shù)相關知識,分三個課時,這里是第二課時復習鞏固對數(shù)函數(shù)圖像及性質,并用此解決三類對數(shù)比大小問題,是對已學內容(指數(shù)函數(shù)、指數(shù)比大小、對數(shù)函數(shù))的延續(xù)和發(fā)展,同時也體現(xiàn)了數(shù)學的實用性,為后續(xù)學習起到奠定知識基礎、滲透方法的作用,因此本節(jié)內容起到了一種承上啟下的作用.

根據(jù)教學大綱的要求以及本節(jié)課的地位與作用,結合高一學生的認知特點確定教學目標如下:

學習目標:

2、運用對數(shù)函數(shù)的性質比較兩個數(shù)的大小。

能力目標:

1、培養(yǎng)學生運用圖形解決問題的意識即數(shù)形結合能力。

2、學生運用已學知識,已有經驗解決新問題的能力。

3、探索出方法,有條理闡述自己觀點的能力。

德育目標:

培養(yǎng)學生勤于思考、獨立思考、合作交流等良好的個性品質。

教學中將在以下2個環(huán)節(jié)中突出教學重點:

1、利用學生預習后的心得交流,資源共享,互補不足。

2、通過適當?shù)木毩暎訌妼忸}方法的掌握及原理的理解。

教學中會在以下3個方面突破教學難點:

1、教師調整角色,讓學生成為學習的主人,教師在其中起引導作用即可。

2、小組合作探索新問題時,注重生生合作、師生互動,適時用語言鼓勵學生,增強學生參與討論的自信。

3、本節(jié)課采用多媒體輔助教學,節(jié)省時間,加快課程進度,增強了直觀形象性。

長處:高一學生經過幾年的數(shù)學學習,已具備一定的數(shù)學素養(yǎng),對于已學知識或用過的數(shù)學思想、方法有一定的應用能力及應用意識,對于本節(jié)課而言,從知識上說,對數(shù)函數(shù)的圖像和性質剛剛學過,本節(jié)課是知識的應用,從數(shù)學能力上說,指數(shù)比大小問題的解題思想和方法在這可借鑒,另外數(shù)形結合能力、小結概括能力、特殊到一般歸納能力已具備一點。

學生可能遇到的困難:本節(jié)課從教學內容上來看,第三類對數(shù)比大小是課本以外補充的內容,沒有預習心得,讓學生在課堂中快速通過合作探究來完成解題思路的構建,有一定的挑戰(zhàn)性,從學生能力上來看,探索出方法,有條理闡述自己觀點的能力還需加強鍛煉,知識之間的聯(lián)系認識上還顯不足。

新課程強調教師要調整自己的角色,改變傳統(tǒng)的教育方式,在教育方式上,以學生為中心,讓學生成為學習的主人,教師在其中起引導作用即可?;诖耍竟?jié)課遵循此原則重點采用問題探究和啟發(fā)引導式的教學方法。從預習交流心得出發(fā),到探索新問題,再到題后的回顧總結,一切以學生為中心,處處體現(xiàn)學生的主體地位,讓學生多說、多分析、多思考、多總結,引導學生運用自己的語言闡述觀點,加強理解,在生生合作,師生互動中解決問題,為提高學生分析問題、解決問題能力打下基礎。本節(jié)課采用多媒體輔助教學,節(jié)省時間,加快課程進度,增強了直觀形象性。

1、課件展示本節(jié)課學習目標。

設計意圖:明確任務,激發(fā)興趣。

2、溫故知新(已填表形式復習對數(shù)函數(shù)的圖像和性質)。

設計意圖:復習已學知識和方法,為學生形成知識間的聯(lián)系和框架建立平臺,并為下一步的應用打下基礎。

3、預習后心得交流。

1)同底對數(shù)比大小。

2)既不同底數(shù),也不同真數(shù)的對數(shù)比大小。

設計意圖:通過學生的預習,自己總結方法及此方法適用的題型,有條理的闡述自己的學習心得,老師只需起引導作用,引導學生從題目表面上升到題目的實質,從而找到解決問題的有效方法。

4、合作探究——同真異底型的對數(shù)比大小。

以例3為例,學生分組合作探究解題方法,預計兩種:一是利用換底公式將此類型轉化為同底異真型,利用之前總結的方法解決此問題。二是利用具體對數(shù)的大小關系探究出不同底對數(shù)函數(shù)在同一直角坐標系中的圖像,以此來解決此類型比大小問題。

設計意圖:這一部分是本節(jié)課的難點,探究中充分發(fā)揮學生的主動性,培養(yǎng)主動學習的意識,同時也鍛煉學生各方面能力的很好機會,為以后的探究學習積累經驗和方法,充分體現(xiàn)“授之以魚,不如授之以漁”的教學理念。另外數(shù)學問題的解決僅僅只是一半,更重要的是解題之后的回顧,即反思,如果沒有了反思,他們就錯過了解題的一次重要而有效益的方面。因此,本題解決后,讓學生反思明白,要想利用性質解決問題,關鍵要做到“腦中有圖”,以“形”促“數(shù)”。

5、小結。

6、思考題。

以2009高考題為例,讓學生學以致用,增強數(shù)學學習興趣。

7、作業(yè)。

包括兩個方面:

1、書寫作業(yè)。

2、下節(jié)課前的預習作業(yè)。

通過本節(jié)課的教學實例來看,這種通過課本內容預習,而后課堂交流學習成果的方法效果不錯,既能很好的完成教學任務,又能充分發(fā)揮學生學習的主動性。在自主探究時,學生分組討論過程中,我參與小組討論,對有能力的小組,在探究出一種方法后,可鼓勵完成更多的方法探究,對于能力較弱的小組,可給予適當?shù)奶崾?,使學生都能動起來,課堂都有所收獲,增強學生自信。另外,對于學生的總結回答,可能會比較慢,我一定會耐心聽,及時鼓勵,給予學生微笑和語言的鼓勵,效果很好。在小結環(huán)節(jié)中,對于高一學生自己小結的方法,是我一直的教學嘗試,由于只訓練了半學期,學生只能達到小結知識的程度,在以后的訓練中還會加入數(shù)學思想、數(shù)學方法的小結內容,使這些數(shù)學名詞讓學生不再覺得抽象,而是變成具體的,可操作的、具體的解題工具。

二次函數(shù)教學設計篇九

“指數(shù)函數(shù)及性質”的教學共分兩個課時完成,這是第一課時。本節(jié)課主要學習了指數(shù)函數(shù)的定義,研究了指數(shù)函數(shù)的圖像及相關的性質。回顧這節(jié)課,心中有很多感想,也有下面一些思考:

1.這節(jié)課是在學生系統(tǒng)的學習了指數(shù)概念、函數(shù)概念,基本掌握了函數(shù)性質的基礎上進行學習的,具有初步的函數(shù)知識,但是對于研究具體的初等函數(shù)的性質的基本方法和步驟還比較陌生,對于指數(shù)函數(shù)要怎么樣進行較為系統(tǒng)的研究對學生來說是有困難的,因此這節(jié)課的每一個環(huán)節(jié)以我引導,以學生的自主探究為主來完成是符合學情的。

2.設計“指數(shù)函數(shù)的圖象及性質”,“y=ax的圖象和y=(1/a)x的圖象間的關系”.“a的大小對函數(shù)圖象的影響”三個問題,讓學生通過幾何畫板軟件動手畫圖操作、自主探究、主動思考來達到對知識的發(fā)現(xiàn)和接受,改變過去機械接受和死記結論的狀況,符合新課改的理念,同時也完成了這節(jié)課的主要教學任務。

3.在對底數(shù)a的范圍的思考及三個探究性問題后都設置了練習,能及時反饋學生對所探求到的知識的掌握程度,便于及時調整課堂教學行為。從課后看學生對這些知識的掌握應該是比較好的。

4.這節(jié)課的學習及對函數(shù)研究方法和步驟的總結對后續(xù)學習新的函數(shù)起到了重要的示范作用。

在整個的教學過程中,始終體現(xiàn)以學生為本的教育理念。在學生已有的認知基礎上進行設問和引導,關注學生的認知過程,強調學生的品德、思維和心理等方面的發(fā)展。重視討論、交流和合作,重視探究問題的習慣的培養(yǎng)和養(yǎng)成。同時,考慮不同學生的個性差異和發(fā)展層次,使不同的學生都有發(fā)展,體現(xiàn)因材施教的原則。

在教學的過程中,考慮到學生的實際,有意地設計了一些鋪墊和引導,既鞏固舊有知識,又為新知識提供了附著點,充分體現(xiàn)學生的主體地位。

三.存在的問題。

1.沒有充分調動學生的積極性,課堂氣氛顯得沉悶。

2.盡量放手讓學生自己去解決問題,教師自己講得偏多,學生的主體作用體現(xiàn)得不夠。

3.指數(shù)函數(shù)概念部分的教學時間稍多,后面教學過程稍顯倉促,學生自主探究的時間不夠,因此違背了教學設計的初衷。當然我會通過對學生作業(yè)的批改獲得更全面的對學生知識掌握的評價和課堂效果的反思,并在后續(xù)的時間里修訂課堂設計方案,達到預期的教學效果,實現(xiàn)學生的目標掌握和能力發(fā)展。

二次函數(shù)教學設計篇十

時,函數(shù)值變化情況的區(qū)分.(3)指數(shù)函數(shù)是學生完全陌生的一類函數(shù),對于這樣的函數(shù)應怎樣進行較為系統(tǒng)的理論研究是學生面臨的重要問題,所以從指數(shù)函數(shù)的研究過程中得到相應的結論固然重要,但更為重要的是要了解系統(tǒng)研究一類函數(shù)的方法,所以在教學中要特別讓學生去體會研究的方法,以便能將其遷移到其他函數(shù)的研究.二.學情分析:學生在學習了函數(shù)概念和函數(shù)性質基礎上對函數(shù)有了初步認識,但我所教班時平行班,學生學習興趣不濃,積極性高,針對這種情況,教學時要總層層設問降低難度,用幾何畫板直觀演示提高學生學習積極性,時學生主動學習。

三.教學目標:

知識與技能:理解指數(shù)函數(shù)的概念,掌握指數(shù)函數(shù)的圖象和性質,培養(yǎng)學生實際應用函數(shù)的能力。

過程與方法:通過觀察圖象,分析、歸納、總結、自主建構指數(shù)函數(shù)的性質。領會數(shù)形結合的數(shù)學思想方法,培養(yǎng)學生發(fā)現(xiàn)、分析、解決問題的能力。

情感態(tài)度與價值觀:在指數(shù)函數(shù)的學習過程中,體驗數(shù)學的科學價值和應用價值,培養(yǎng)學生善于觀察、勇于探索的良好習慣和嚴謹?shù)目茖W態(tài)度。

投影儀。

六.教學方法。

啟發(fā)討論研究式。

七.教學過程。

(一)創(chuàng)設情景。

學生回答:y與x之間的關系式,可以表示為y=2x。

問題2:一種放射性物質不斷衰變?yōu)槠渌镔|,每經過一年剩留的質量約是原來的84%.求出這種物質的剩留量隨時間(單位:年)變化的函數(shù)關系.設最初的質量為1,時間變量用x表示,剩留量用y表示。

學生回答:y與x之間的關系式,可以表示為y=0.84x。

(二)導入新課。

引導學生觀察,兩個函數(shù)中,底數(shù)是常數(shù),指數(shù)是自變量。設計意圖:充實實例,突出底數(shù)a的取值范圍,讓學生體會到數(shù)學來源于生產生活實際。函數(shù)y=2x、y=0.84x分別以01的數(shù)為底,加深對定義的感性認識,為順利引出指數(shù)函數(shù)定義作鋪墊。

一般地,函數(shù)是r。

叫做指數(shù)函數(shù),其中x是自變量,函數(shù)的定義域的含義:

”如果不這樣規(guī)定會出現(xiàn)什么情況?問題:指數(shù)函數(shù)定義中,為什么規(guī)定“設計意圖:教師首先提出問題:為什么要規(guī)定底數(shù)大于0且不等于1呢?這是本節(jié)的一個難點,為突破難點,采取學生自由討論的形式,達到互相啟發(fā),補充,活躍氣氛,激發(fā)興趣的目的。

對于底數(shù)的分類,可將問題分解為:

(1)若a。

則在實數(shù)范圍內相應的函數(shù)值不存在)都無意義)。

在這里要注意生生之間、師生之間的對話。

設計意圖:認識清楚底數(shù)a的特殊規(guī)定,才能深刻理解指數(shù)函數(shù)的定義域是r;并為學習對數(shù)函數(shù),認識指數(shù)與對數(shù)函數(shù)關系打基礎。

教師還要提醒學生指數(shù)函數(shù)的定義是形式定義,必須在形式上一模一樣才行,然后把問題引向深入。

1:指出下列函數(shù)那些是指數(shù)函數(shù):

在同一平面直角坐標系內畫出下列指數(shù)函數(shù)的圖象。

畫函數(shù)圖象的步驟:列表、描點、連線思考如何列表取值?教師與學生共同作出。

圖像。

時函數(shù)值變化的不同情況,學生往往容易混淆,這是教學中的一個難點。為此,必須利用圖像,數(shù)形結合。教師親自板演,學生親自在課前準備好的坐標系里畫圖,而不是采用幾何畫板直接得到圖像,目的是使學生更加信服,加深印象,并為以后畫圖解題,采用數(shù)形結合思想方法打下基礎。

利用幾何畫板演示函數(shù)特征。由特殊到一般,得出指數(shù)函數(shù)。

的圖象,觀察分析圖像的共同。

的圖象特征,進一步得出圖象性質:

教師組織學生結合圖像討論指數(shù)函數(shù)的性質。

設計意圖:這是本節(jié)課的重點和難點,要充分調動學生的積極性、主動性,發(fā)揮他們的潛能,盡量由學生自主得出性質,以便能夠更深刻的記憶、更熟練的運用。

特別地,函數(shù)值的分布情況如下:

設計意圖:再次強調指數(shù)函數(shù)的單調性與底數(shù)a的關系,并具體分析了函數(shù)值的分布情況,深刻理解指數(shù)函數(shù)值域情況。3.簡單應用(板書)。

1.利用指數(shù)函數(shù)單調性比大小.(板書)。

一類函數(shù)研究完它的概念,圖象和性質后,最重要的是利用它解決一些簡單的問題.首先我們來看下面的問題.

例1.比較下列各組數(shù)的大小。

(1)與;(2)與;。

(3)與1.(板書)。

首先讓學生觀察兩個數(shù)的特點,有什么相同?由學生指出它們底數(shù)相同,指數(shù)不同.再追問根據(jù)這個特點,用什么方法來比較它們的大小呢?讓學生聯(lián)想指數(shù)函數(shù),提出構造函數(shù)的方法,即把這兩個數(shù)看作某個函數(shù)的函數(shù)值,利用它的單調性比較大小.然后以第(1)題為例,給出解答過程.

二次函數(shù)教學設計篇十一

1、教材的地位和作用: 函數(shù)是高中數(shù)學學習的重點和難點,函數(shù)的貫穿于整個高中數(shù)學之中。本節(jié)課是學生在已掌握了函數(shù)的一般性質和簡單的指數(shù)運算的基礎上,進一步研究指數(shù)函數(shù),以及指數(shù)函數(shù)的圖像與性質,同時也為今后研究對數(shù)函數(shù)以及等比數(shù)列的性質打下堅實的基礎。因此,本節(jié)課的內容十分重要,它對知識起到了承上啟下的作用。

2、教學的重點和難點:根據(jù)這一節(jié)課的內容特點以及學生的實際情況,我將本節(jié)課教學重點定為指數(shù)函數(shù)的圖像、性質及其運用,本節(jié)課的難點是指數(shù)函數(shù)圖像和性質的發(fā)現(xiàn)過程,及指數(shù)函數(shù)圖像與底的關系。

基于對教材的理解和分析,我制定了以下的教學目標

1、知識目標(直接性目標):理解指數(shù)函數(shù)的定義,掌握指數(shù)函數(shù)的圖像、性質及其簡單應用。

2、能力目標(發(fā)展性目標):通過教學培養(yǎng)學生觀察、分析、歸納等思維能力,體會數(shù)形結合和分類討論,增強學生識圖用圖的能力。

3、情感目標(可持續(xù)性目標): 通過學習,使學生學會認識事物的特殊性與一般性之間的關系,培養(yǎng)學生勇于提問,善于探索的思維品質。

1、教學策略:首先從實際問題出發(fā),激發(fā)學生的學習興趣。第二步,學生歸納指數(shù)的圖像和性質。第三步,典型例題分析,加深學生對指數(shù)函數(shù)的理解。

2、教學: 貫徹引導發(fā)現(xiàn)式教學原則,在教學中既注重知識的直觀素材和背景材料,又要激活相關知識和引導學生思考、探究、創(chuàng)設有趣的問題。

3、教法分析:根據(jù)教學內容和學生的狀況, 本節(jié)課我采用引導發(fā)現(xiàn)式的教學方法并充分利用多媒體輔助教學。

二次函數(shù)教學設計篇十二

指數(shù)函數(shù)的教學共分兩個課時完成。第一課時為指數(shù)函數(shù)的定義,圖像及性質;第二課時為指數(shù)函數(shù)的應用。指數(shù)函數(shù)第一課時是在學習指數(shù)概念的基礎上學習指數(shù)函數(shù)的概念和性質,通過學習指數(shù)函數(shù)的定義,圖像及性質,可以進一步深化學生對函數(shù)概念的理解與認識,使學生得到較系統(tǒng)的函數(shù)知識和研究函數(shù)的方法,并且為學習對數(shù)函數(shù)作好準備。

1.知識目標:掌握指數(shù)函數(shù)的概念,圖像和性質

2.能力目標:通過數(shù)形結合,利用圖像來認識,掌握函數(shù)的性質,增強學生分析問題,解決問題的能力。

3.德育目標:對學生進行辯證唯物主義思想的教育,使學生學會認識事物的特殊性與一般性之間的關系,培養(yǎng)學生善于探索的思維品質。

(三

1、重點:指數(shù)函數(shù)的定義、性質和圖象

2、難點:指數(shù)函數(shù)的定義理解,指數(shù)函數(shù)的圖象特征及指數(shù)函數(shù)的性質。

3、關鍵:能正確描繪指數(shù)函數(shù)的圖象

(三)

在講解指數(shù)函數(shù)的定義前,復習有關指數(shù)知識及簡單運算,然后由實例引入指數(shù)函數(shù)的概念,因為手工繪圖復雜且不夠精確,并且是本節(jié)課的教學關鍵,教學中,我借助電腦手段,通過描點作圖,觀察圖像,引導學生說出圖像特征及變化規(guī)律,并從而得出指數(shù)函數(shù)的性質,提高學生的形數(shù)結合的能力。

一.

1,學情分析:大部分學生數(shù)學基礎較差,理解能力,運算能力,思維能力等方面參差不齊;同時學生學好數(shù)學的自信心不強,學習積極性不高。

2, 學法指導:針對這種情況,在教學中,我注意面向全體,發(fā)揮學生的主體性,引導學生積極地觀察問題,分析問題,激發(fā)學生的求知欲和學習積極性,指導學生積極思維、主動獲取知識,養(yǎng)成良好的學習方法。并逐步學會獨立提出問題、解決問題??傊{動學生的非智力因素來促進智力因素的發(fā)展,引導學生積極開動腦筋,思考問題和解決問題,從而發(fā)揚鉆研精神、勇于探索創(chuàng)新。

二次函數(shù)教學設計篇十三

“指數(shù)函數(shù)”的教學共分兩個課時完成。第一課時為指數(shù)函數(shù)的定義,圖像及性質;第二課時為指數(shù)函數(shù)的應用?!爸笖?shù)函數(shù)”第一課時是在學習指數(shù)概念的基礎上學習指數(shù)函數(shù)的概念和性質,通過學習指數(shù)函數(shù)的定義,圖像及性質,可以進一步深化學生對函數(shù)概念的理解與認識,使學生得到較系統(tǒng)的函數(shù)知識和研究函數(shù)的方法,并且為學習對數(shù)函數(shù)作好準備。

在講解指數(shù)函數(shù)的定義前,復習有關指數(shù)知識及簡單運算,然后由實例引入指數(shù)函數(shù)的概念,因為手工繪圖復雜且不夠精確,并且是本節(jié)課的教學關鍵,教學中,我借助電腦手段,通過描點作圖,觀察圖像,引導學生說出圖像特征及變化規(guī)律,并從而得出指數(shù)函數(shù)的性質,提高學生的形數(shù)結合的能力。

大部分學生數(shù)學基礎較差,理解能力,運算能力,思維能力等方面參差不齊;同時學生學好數(shù)學的自信心不強,學習積極性不高。針對這種情況,在教學中,我注意面向全體,發(fā)揮學生的主體性,引導學生積極地觀察問題,分析問題,激發(fā)學生的求知欲和學習積極性,指導學生積極思維、主動獲取知識,養(yǎng)成良好的學習方法。并逐步學會獨立提出問題、解決問題??傊?,調動學生的非智力因素來促進智力因素的發(fā)展,引導學生積極開動腦筋,思考問題和解決問題,從而發(fā)揚鉆研精神、勇于探索創(chuàng)新。

為了調動學生學習的積極性,使學生變被動學習為主動愉快的學習。教學中我引導學生從實例出發(fā)啟發(fā)出指數(shù)函數(shù)的定義,在概念理解上,用步步設問、課堂討論來加深理解。在指數(shù)函數(shù)圖像的畫法上,我借助電腦,演示作圖過程及圖像變化的動畫過程,從而使學生直接地接受并提高學生的學習興趣和積極性,很好地突破難點和提高教學效率,從而增大教學的容量和直觀性、準確性??傊?,本堂課充分體現(xiàn)了“教師為主導,學生為主體”的教學原則。

【本文地址:http://www.aiweibaby.com/zuowen/14392440.html】

全文閱讀已結束,如果需要下載本文請點擊

下載此文檔