考研數(shù)學學習心得(優(yōu)質(zhì)19篇)

格式:DOC 上傳日期:2023-11-23 16:23:14
考研數(shù)學學習心得(優(yōu)質(zhì)19篇)
時間:2023-11-23 16:23:14     小編:ZS文王

總結(jié)是對自己努力和付出的肯定,也是對未來規(guī)劃和改進的促進。較為完美的總結(jié)應(yīng)該能夠全面地概括所總結(jié)的內(nèi)容,不落下任何重要的細節(jié)。雖然這些范文并不完美,但它們可以為我們提供一些啟發(fā)和思路。

考研數(shù)學學習心得篇一

考生一方面多做些題目,尤其是文字敘述的題目,逐漸提高自己分析問題的能力。另一方面花點時間準確理解概率論與數(shù)理統(tǒng)計中的基本概念??忌趶土曔^程中可以結(jié)合一些實際問題理解概念和公式,也可以通過做一些文字敘述題鞏固概念和公式。只要針對每一個基本概念準確的理解,公式理解的準確到位,并且多做些相關(guān)題目,再遇到考卷中碰到類似題目時就一定能夠輕易讀懂和正確解答。

會用公式解題。

概率論與數(shù)理統(tǒng)計中的公式不僅要記住,而且要會用,要會用這些公式分析實際中的問題。我在這里推薦一個記憶公式的方法,就是結(jié)合實際的例子和模型記憶。比如二向概率公式,你可以用這樣一個模型記憶,把一枚硬幣重復拋n次,正面朝上的概率是多少呢?這樣才是在理解基礎(chǔ)上的記憶,記憶的東西既不容易忘,又能夠正確運用到題目的解決中。

對概率論與數(shù)理統(tǒng)計的考點整體把握。

考研中,概率論的重點考查對象在于隨機變量及其分布和隨機變量的數(shù)字特征。所以對于第一條中所講的古典概型與幾何概型這部分,只要掌握一些簡單的概率計算就可,把大量精力放在隨機變量的分布上。數(shù)理統(tǒng)計的考查重點在于與抽樣分布相關(guān)的統(tǒng)計量的分布及其數(shù)字特征。

心理上要重視。

考研數(shù)學試題中有關(guān)概率論與數(shù)理統(tǒng)計的題目對大多數(shù)考生來說有一定難度,這就使得很多考完試的同學感慨萬千,概率題太難了!同時也為學弟學妹們傳達了概率題目難的信息。所以同學們在復習之前就已經(jīng)有了先入為主的看法:概率比較難!但同學們沒有注意到,在自己復習之初做得準備都是關(guān)于高等數(shù)學(微積分)的,在概率上的時間本身就不足。而且如果你的潛意識中覺得一件事情難的話,那么那件事情對你來說就真的很難。我一直認為,人的潛力是非常巨大的。這也與“有多少想法,就有多大成就”的說法相合。如果你相信自己,那么概率復習起來是簡單的,考試中有關(guān)概率的題目也是容易的,數(shù)學滿分不是沒有可能的。那么,從現(xiàn)在開始,在心理上告訴自己:概率并不難!

在認真熟悉教材上的原理與概念,深刻了解基本概念、基本性質(zhì)。在同學們以后的復習過程中注意以下幾個問題,通過做題來檢驗自己的復習程度。

概念不清,只會背不會運用;。

不能正確地選擇概率公式去證明和計算;。

不能熟練地應(yīng)用有關(guān)的定義、公式和性質(zhì)進行綜合分析、運算和證明。

分析有誤,概率模型搞錯。

 

考研數(shù)學學習心得篇二

每一個例題,每一道習題,這是你以后成功的保證。對于概念,定理,要有自己的理解,可以用自己的語言來描述,可以知道他們彼此之間的關(guān)系,能做到合起書,將一個個定理在草稿紙上推導出來,知道書中各個章節(jié)的順序,并且知道他們之間的聯(lián)系。說得夸張一點,你可以默寫出書中各個章節(jié)的標題,包括小標題。如果你能做到以上的,你的概念和理論就沒有一點問題了。

再說例題,課本上的例題很簡單,但是很典型,最簡單的例子最容易說明最重要的問題,你就不會被繁瑣的解題步驟弄的不知道例題到底想說明什么。舉個例子,在一階導數(shù)的例題里,仔細看看,你就會發(fā)現(xiàn),例題中包括所有的求導方法。也許,你自己卻從未意識到,還在看考研參考書里的分類,永遠記住,課本是最好的參考書。

最后說習題,書上的習題,相信沒有多少考研的人每一道題都認真做過。但是,習題,就如同例題,簡單,但是最能要你明白你所需要學習的知識點。所以,對于課后習題,你用過仔細認真的去做每一道題。會做并能做對每一道題是最基本的要求,你還要明白你所做的每一道題是考察你什么知識點,用的'是什么方法,可以嘗試在習題旁邊寫上出題人的意圖。能做到以上3點,可以說你就擁有一個很好的基礎(chǔ)了。高數(shù),線代,概率,這三門課是一樣的。線代,其實最簡單,如果你能不看書推到出每一個定理(如果能,你就知道他們之間的聯(lián)系,那思路一定會很清晰),那么我想如果你不會做的題,那90%的人肯定不會做。

概率,看起來公式太多,很難記住,同樣,推導每一個公式,平時練習的時候做到不看書查公式,查定理,忘記了或者記不住了,就推導。慢慢你就會發(fā)現(xiàn),你都可以記住了,即使考試一緊張忘記了,也能用很短的時間推導出公式了。曾經(jīng)在考研論壇上看到過,剛開始復習的時候覺得高數(shù)簡單,線代和概率太難。隨著復習的深入,就會發(fā)現(xiàn)線代和概率是那么的簡單,高數(shù)有點難,這就對了。我覺得課本至少看兩遍,一直看到,閉著眼,能回想起書中的每一個知識點。當然,根據(jù)自己的基礎(chǔ),如果你還覺得哪些知識點薄弱,那就多做習題,不要把盲點留到最好。在復習課本的時候就可以做真題了,我選的是黃先開的那本歷屆數(shù)學真題解析,將近20年的數(shù)學真題分章節(jié)講解,練習題也是真題,不過不是數(shù)一的。認真的做每一道題,然后思考出題者的意圖,這一點很重要。

大概10月份的時候,我就復習完了??梢阅M考試了,那本書后面有數(shù)學的20年真題,那幾張白紙,在白紙上寫答案,3個小時做完。然后對答案,自己給自己打分??梢园l(fā)現(xiàn),前20年到前10年的題很簡單,基本可以做到140,后10年難點,但不會低于120分。將自己做錯的題分析一下,看看為什么做錯了,是自己不細心還是方法不對還是壓根就不會,認真總結(jié)錯誤的原因。第一遍模擬考試做完以后,將自己做錯的題目再做一遍,然后就可以只做最近10年的題目,同樣的方法,再做一遍,相信這個時候你就不會覺得自己擔心數(shù)學了。

平時我模擬做真題都是130分以上,最后考了120分,還算不錯。數(shù)學,是很細心的,所以你要從一開始就培養(yǎng)自己細心做題,踏踏實實一步一步的寫,考試的時候才不會犯錯誤。選擇,填空,最多只能錯一個,不然你一定不會高分。我始終堅持一點,會做的題目一定不能失分,我可以有不會做的題目。這樣,考試也就沒壓力,還能拿高分。在這里告誡各位,做題一定要大腦清晰,不要拿到題就夢著頭做,要不了最后你還是覺得自己很多東西都不會。做題不在多少,一定要注重質(zhì)量。到11月份以后,我基本上兩天做一份真題,也就花3個小時來復習數(shù)學,這樣才有時間復習專業(yè)課。隨偶時間不多,但是最后卻感覺有點簡單,自己都有點擔心,不過后來看來是多慮的,一定要相信自己。

將本文的word文檔下載到電腦,方便收藏和打印。

考研數(shù)學學習心得篇三

一、科目考試區(qū)別:

1.線性代數(shù)。

數(shù)學一、二、三均考察線性代數(shù)這門學科,而且所占比例均為22%,從歷年的考試大綱來看,數(shù)一、二、三對線性代數(shù)部分的考察區(qū)別不是很大,唯一不同的是數(shù)一的大綱中多了向量空間部分的知識,不過通過研究近五年的考試真題,我們發(fā)現(xiàn)對數(shù)一獨有知識點的考察只在09、10年的試卷中出現(xiàn)過,其余年份考查的均是大綱中共同要求的知識點,而且從近兩年的真題來看,數(shù)一、數(shù)二、數(shù)三中線性代數(shù)部分的試題是一樣的,沒再出現(xiàn)變化的題目,那么也就是說從以往的經(jīng)驗來看,2015年的考研數(shù)學中數(shù)一、數(shù)二、數(shù)三線性代數(shù)部分的題目也不會有太大的差別!

2.概率論與數(shù)理統(tǒng)計。

數(shù)學二不考察,數(shù)學一與數(shù)學三均占22%,從歷年的考試大綱來看,數(shù)一比數(shù)三多了區(qū)間估計與假設(shè)檢驗部分的知識,但是對于數(shù)一與數(shù)三的大綱中均出現(xiàn)的知識在考試要求上也還是有區(qū)別的,比如數(shù)一要求了解泊松定理的結(jié)論和應(yīng)用條件,但是數(shù)三就要求掌握泊松定理的結(jié)論和應(yīng)用條件,廣大的考研學子們都知道大綱中的"了解"與"掌握"是兩個不同的概念,因此,建議廣大考生在復習概率這門學科的時候一定要對照歷年的考試大綱,不要做無用功!

3.高等數(shù)學。

數(shù)學一、二、三均考察,而且所占比重最大,數(shù)一、三的試卷中所占比例為56%,數(shù)二所占比例78%。由于考察的內(nèi)容比較多,故我們只從大的方向上對數(shù)一、二、三做簡單的區(qū)別。以同濟六版教材為例,數(shù)一考察的范圍是最廣的,基本涵蓋整個教材(除課本上標有_的內(nèi)容);數(shù)二不考察向量代數(shù)與空間解析幾何、三重積分、曲線積分、曲面積分以及無窮級數(shù);數(shù)三不考察向量空間與解析幾何、三重積分、曲線積分、曲面積分以及所有與物理相關(guān)的應(yīng)用。

二、試卷考試內(nèi)容區(qū)別。

1.數(shù)學一。

2.數(shù)學二。

高等數(shù)學:同濟六版高等數(shù)學中除了第七章微分方程考帶_的伯努利方程外,其余帶_的都不考;所有"近似"的問題都不考;第四章不定積分不考積分表的使用;不考第八章空間解析幾何與向量代數(shù);第九章第五節(jié)不考方程組的情形;到第十章二重積分、重積分的應(yīng)用為止,后面不考了。

線性代數(shù):數(shù)學二用的教材是同濟五版線性代數(shù),1-5章:行列式、矩陣及其運算、矩陣的初等變換及其方程組、向量組的線性相關(guān)性、相似矩陣及二次型。

概率與數(shù)理統(tǒng)計:不考。

3.數(shù)學三。

概率與數(shù)理統(tǒng)計的內(nèi)容包括:1、概率論的基本概念2、隨機變量及其分布3、多維隨機變量及其分布4、隨機變量的數(shù)字特征5、大數(shù)定律及中心極限定理6、樣本及抽樣分布7、參數(shù)估計,其中數(shù)三的同學不考參數(shù)估計中的區(qū)間估計。

考研數(shù)學學習心得篇四

首先是確定做題順序,可以采用填空、計算、選擇、證明的順序。因為盡管選擇題的分數(shù)相對要少一些,但它們一般對基礎(chǔ)知識要求較高,選項迷惑性大,有時需要花很多時間去分析也難以取舍。

而且有些選擇題的計算量也是很大的,如果在做題的開始就感覺不順而花太多時間的話,會影響考試的心理狀態(tài)。證明題考查的是嚴密的邏輯推理,難度也比較大。因此,建議這兩類題型可以放在后面做,而先做相對簡單的。

一般來說,平時復習的時候要盡量從自己薄弱的方面“榨取”分數(shù),而正式考試時,先通觀整個試卷,迅速客觀地評估自己的實力,明確哪些分數(shù)是必得的,哪些是可能得到的,哪些是根本得不到的,再采取不同的應(yīng)對方式,才能鎮(zhèn)定自若,進退有據(jù),最終從整體上獲勝。

同學們可以先解答填空題,一般講填空題是基本概念,基本運算題,得分比較容易,當然試題中計算題或者證明題以平時看書或者參加輔導班老師所講的例題類似的也可以先做;其次做計算題;最后解單項選擇題,因為有些單項選擇題概念性非常強,計算技巧也比較高,求解單項選擇題一般有以下幾種方法:

(1)推演法:它適用于題干中給出的條件是解析式子。

(2)圖示法:它適用于題干中給出的函數(shù)具有某種特性,例如奇偶性、周期性或者給出的事件是兩個事件的情形,用圖示法做就顯得格外簡單。

(3)舉反例排除法:排除了三個,第四個就是正確的答案,這種方法適用于題干中給出的函數(shù)是抽象函數(shù)的情況。

(4)逆推法:所謂逆推法就是假定被選的四個答案中某一個正確,然后做逆推,如果得到的結(jié)果與題設(shè)條件或盡人皆知的正確結(jié)果矛盾,則否定這個備選答案。

(5)賦值法:將備選的一個答案用具體的數(shù)字代入,如果與假設(shè)條件或眾所周知的事實發(fā)生矛盾則予以否定。

做選擇題的時候,考生可以巧妙地運用圖示法和賦值法。這兩種方法很有效。同學們平時用得很多,但很多人進考場一緊張就忘了,而用一些常規(guī)方法去硬算,結(jié)果既浪費了時間又容易出錯。

計算題的題目結(jié)果一般不會特別復雜,一旦出現(xiàn)了很復雜的結(jié)果,就需要重點檢查一下。如果遇到自己不會做和沒有把握的題目,千萬不要留空白,可以多寫一些相關(guān)內(nèi)容來得一些“步驟分”。

拿到試卷檢查無誤后先看一下有沒有自己熟悉的題,先解決掉自己有把握的再說,省得最后沒有時間了把自己會的忽略了。

而第三道、第四道大題,一般來說難度不大,可以先做。歷年試題這兩道主要是高等數(shù)學的基本問題,如極限、偏導數(shù)或定積分應(yīng)用題。接下來的高等數(shù)學的題目可能有些難度,如果考生對線性代數(shù)和概率統(tǒng)計比較擅長,可以先各做一個大題,這樣整個卷面分數(shù)就可以達到70分左右,分數(shù)線可以通過。

考研數(shù)學學習心得篇五

拿到考卷以后,先把名字及其他試卷要求信息寫上,雖然這是最基本的常識,但每年都有不少考生會犯這個低級錯誤。

(2)瀏覽整套試卷。

將試卷瀏覽一遍,看看哪些題目自己比較熟悉,哪些題沒有思路,這套卷子大概哪部分做起來會比較困難,做到心中有數(shù),以便合理分配時間。

(3)切忌心中發(fā)慌。

如果這套題看起來有很多陌生的題,也不要心慌。畢竟有些試題萬變不離其宗,相信只要做到心中不亂、仔細思考就會產(chǎn)生思路。

(4)合理掌握時間。

如果一道考題思考了大約有二十分鐘仍然沒有思路,可以先暫時放棄這道題目,不要在一道試題上花費太多的時間,導致會做的題反而沒有時間去做,那就太可惜了。

(5)學會適當放棄。

當確實沒有思路的時候要暫時放棄,如果放棄的是一道選擇題,建議大家標記一下此題,防止因此題使答題卡順序涂錯,如果時間充足還可再做。

但是,標記要慎重,以免被視為作弊,可以用鉛筆標記,交試卷之前用橡皮察去。

(6)確定做題順序。

在做題順序上可以采用選擇、填空、計算、證明的順序。完成選擇填空后,做大題時,先通觀整個試題,明確哪些分數(shù)是必得的,哪些是可能得到的,哪些是根本得不到的,再采取不同的對應(yīng)方式,才能鎮(zhèn)定自如,進退有據(jù),最終從總體上獲勝。

比如說,如果你對概率部分的題比較熟悉,那么這部分的題做題就是有套路,那你就可以先把概率部分做了。通常來說,概率部分是三門課中最簡單最好拿分的。其次就是線代了,當然線代兩個大題可能有一個難度稍微大一點,另外一個難度相對比較小,那么你可以選擇把其中簡單一點的,自己有思路的那題先做了。最后再來做高數(shù)部分的題,高數(shù)一共有5個大題,如果是數(shù)一的同學,出現(xiàn)難題通常是在無窮級數(shù),中值定理,曲線、曲面積分,應(yīng)用題。也就是說高數(shù)部分有一道大題是相對簡單的,可以先把這道題做了,通常這道題也就是在大題的第一題。就是說,這4道大題,一定要先把分給拿住了。最后再來解決稍微難一點的。當然剩下的幾個題,也要有選擇性的來做,如果有一點思路的,可以先考慮,完全沒有思路的最后處理。

(7)適當運用做題技巧。

做選擇題的時候,可以巧妙的運用圖示法和特殊值法。這兩種方法很有效,平時用得人很多,當然不是對所有的選擇題都適用。

做大題的時候,對于前面說的完全沒有思路的題不要一點不寫,寫一些相關(guān)的內(nèi)容得一點“步驟分”。

(8)做題要細心。

做題時一定要仔細,該拿分的一定要拿住。尤其是選擇題和填空題,因為體現(xiàn)的只是最后結(jié)果,一個小小的錯誤都會令一切努力功虧一簣。很多同學認為選擇和填空的分值不大而對其認識不夠,把主要的精力都放在了大題上面,但是需要引起大家注意的是:兩道選擇或填空題的分值就相當于一道大題,如果這類題目失分過多,僅靠大題是很難把分數(shù)提很高的。做完一道選擇、填空題時只需要大家再仔細的驗算一遍即可,并不需要一定要等到做完考卷以后再檢查,而且這樣也不會花費大家很長時間。

(9)注意步驟的完整性。

解答題的分數(shù)很高,相應(yīng)的對于考生知識點的考察也更全面一些,有些考題甚至包含了三、四個考察點,因此要求考生答題時相應(yīng)的知識點應(yīng)該在卷面上有所體現(xiàn),步驟過簡勢必會影響分數(shù)。

(10)注意問題之間的聯(lián)系。

好多試題的問題并非一個,尤其是概率題,對于此類考題的第一問一定要引起注意。因為它的第二問,甚至第三問可能會與第一問產(chǎn)生直接或間接的聯(lián)系,第一問如果答錯將會導致第二、三問的錯誤,那么這道考題的分數(shù)就會失分很多。

(11)試卷檢查。

如果答完考卷,最好是將試卷再仔細的看一遍,看看還有沒有落題。然后再將答題卡與選項核對一下,防止順序涂錯。如果不能保證答完以后還有時間,可以在把填空題答完后就核對一下。

(12)書寫要整潔。

要保持卷面的整潔和美觀,以獲得“印象分”。字如果寫得不好沒關(guān)系,至少要寫得工整,這樣批改試卷的老師也會給一定的分數(shù)。相反如果自己思路對了,但是寫得亂七八糟的很有可能被扣掉小部分分數(shù)。

(13)保持良好的心態(tài)。

考研數(shù)學學習心得篇六

我們應(yīng)當掌握:

1、非齊次線性方程組解的結(jié)構(gòu)及通解;。

5、向量、向量的線性組合與線性表示的概念;。

6、用初等行變換求解線性方程組的方法;。

7、基變換和坐標變換公式,過渡矩陣。(數(shù)一)。

8、向量空間、子空間、基底、維數(shù)、坐標等概念;(數(shù)一)。

10、向量組的極大線性無關(guān)組和向量組的秩的概念和求解;。

11、向量組等價的概念,矩陣的秩與其行(列)向量組的秩之間的關(guān)系;。

矩陣的特征值特征向量與二次型相當于是求解線性方程組的應(yīng)用,出題比較靈活,有些題目技巧性較強,復習起來也是比較有意思的一章。在考試中也是比較容易出大題的內(nèi)容。

其中我們應(yīng)當掌握:

1、規(guī)范正交基、正交矩陣的概念以及它們的性質(zhì);。

2、內(nèi)積的概念,線性無關(guān)向量組正交規(guī)范化的施密特(schmidt)方法;。

3、矩陣的特征值和特征向量的概念及性質(zhì),求矩陣的特征值和特征向量;。

4、實對稱矩陣的特征值和特征向量的性質(zhì);。

7、正定二次型、正定矩陣的概念和判別法。

8、正交變換化二次型為標準形,配方法化二次型為標準形。

 

考研數(shù)學學習心得篇七

縱觀近三年的數(shù)一、數(shù)二和數(shù)三的試卷,我們不難發(fā)現(xiàn)極限、微分和積分依然是重中之重,也是考試經(jīng)常會考的知識點和難點,尤其是極限和微分的結(jié)合,極限和積分的結(jié)合,更加需要考生深刻地掌握基本的概念、基本的理論和基本的方法。另外,還需要考生多做一些與考點、難點緊密相連的題目,在做題的過程中掌握基礎(chǔ)理論、基本方法,以便在考試之中,面對不同的題目靈活運用。下面,我就近三年的高等數(shù)學中的考點、難點向大家進行深刻的剖析。

函數(shù)、極限、連續(xù)部分。極限的運算法則、極限存在的準則(單調(diào)有界準則和夾逼準則)、未定式的極限、主要的等價無窮小、函數(shù)間斷點的判斷以及分類,還有閉區(qū)間上連續(xù)函數(shù)的性質(zhì)(尤其是介值定理),這些知識點在歷年真題中出現(xiàn)的概率比較高,屬于重點內(nèi)容,但是很基礎(chǔ),不是難點,因此這部分內(nèi)容一定不要丟分。極限的最基本考法就是求極限,大家需要掌握求極限的方法,極限也多與微分、積分聯(lián)合在一起進行考試;極限的存在性證明,高等數(shù)學中我們進行極限的證明就只有兩種方法,一種是夾逼原理,一種是單調(diào)有界性定理,考生需要完全掌握這兩種方法,在考試中,對不同的題目進行靈活的使用。

微分學部分,主要是一元函數(shù)微分學和多元函數(shù)微分學,其中一元函數(shù)微分學是基礎(chǔ)亦是重點。一元函數(shù)微分學,主要掌握連續(xù)性、可導性、可微性三者的關(guān)系,另外要掌握各種函數(shù)求導的方法,尤其是復合函數(shù)、隱函數(shù)求導。微分中值定理也是重點掌握的內(nèi)容,這一部分可以出各種各樣構(gòu)造輔助函數(shù)的證明,包括等式和不等式的證明,這種類型題目的技巧性比較強,應(yīng)多加練習。微分學的應(yīng)用也是考試的重點,如判斷函數(shù)的單調(diào)性,求解函數(shù)的單調(diào)區(qū)間,函數(shù)的凹凸性、拐點及漸近線,也是一個重點內(nèi)容,考生需要掌握基本方法以外,還需要深刻的了解單調(diào)性,極值點,凹凸性,拐點相互之間的關(guān)系。曲率部分,僅數(shù)一考生需要掌握,但是并不是重點,在考試中很少出現(xiàn),記住相關(guān)公式即可。多元函數(shù)微分學,掌握連續(xù)性、偏導性、可微性三者之間的關(guān)系,重點掌握各種函數(shù)求偏導的方法。多元函數(shù)的應(yīng)用也是重點,主要是條件極值和最值問題。方向?qū)?shù)、梯度,空間曲線、曲面的切平面和法線,僅數(shù)一考生需要掌握,但是不是重點,記憶相關(guān)公式即可。利用函數(shù)的微分性質(zhì),求解函數(shù)在固定區(qū)域中的最值問題也是難點,這一點除了需要考生掌握基本理論和基本方法以外,因為這一類的題目計算起來比較復雜,尤其是二元函數(shù)的極值問題,因此還需要考生多做一些相關(guān)的題目,增加自己的熟練度。

一元函數(shù)積分學的一個重點是不定積分與定積分的計算。這個對于有些同學來說可能不難,但是要想用簡便的方法解答還是需要多花點時間學習的。在計算過程中,會用到不定積分/定積分的基本性質(zhì)、換元積分法、分部積分法。其中,換元積分法是重點,會涉及到三角函數(shù)換元、倒代換,這種方法相信多數(shù)同學都會,但是如何準確地進行換元從而得到最終答案,卻是需要下一番工夫的。定積分的應(yīng)用同樣是重點,??嫉氖敲娣e、體積的求解,同學們應(yīng)牢記相關(guān)公式,通過多練掌握解題技巧。對于定積分在物理上的應(yīng)用(數(shù)一數(shù)二有要求),如功、引力、壓力、質(zhì)心、形心等,近幾年考試基本都沒有涉及,考生只要記住求解公式即可。

多元函數(shù)積分學的一個重點是二重積分的計算,其中要用到二重積分的性質(zhì),以及直角坐標與極坐標的相互轉(zhuǎn)化。這部分內(nèi)容,每年都會考到,考生要引起重視,需要明白的是,二重積分并不是難點。三重積分、曲線和曲面積分屬于數(shù)一單獨考查的內(nèi)容,主要是掌握三重積分的計算、green公式和gauss公式以及曲線積分與路徑無關(guān)的條件。對于數(shù)一考生來說,這部分是重點,也是難點所在。散度、旋度同樣是數(shù)一考生單獨考查內(nèi)容,但是不是重點,會進行簡單計算即可。

空間解析幾何,考試要求較低,并且空間解析幾何多為多重積分服務(wù),考試的時候多以選擇題和填空題的形式出現(xiàn)。級數(shù)要求考生會判斷斂散性和求出收斂區(qū)間、收斂域即可。對于常微分方程,主要是有兩大類考點和難點,一為一階常微分方程和可降階的二階常微分方程的解法,一為高階常系數(shù)齊次(或非齊次)常微分方程的解法,考試考大題的幾率較低,差分方程僅對數(shù)三有所要求,考試的幾率幾乎為零。

 

考研數(shù)學學習心得篇八

高數(shù)定理證明之微分中值定理:。

這一部分內(nèi)容比較豐富,包括費馬引理、羅爾定理、拉格朗日定理、柯西定理和泰勒中值定理。除泰勒中值定理外,其它定理要求會證。

費馬引理的條件有兩個:1.f'(_0)存在2.f(_0)為f(_)的極值,結(jié)論為f'(_0)=0。考慮函數(shù)在一點的導數(shù),用什么方法?自然想到導數(shù)定義。我們可以按照導數(shù)定義寫出f'(_0)的極限形式。往下如何推理?關(guān)鍵要看第二個條件怎么用?!癴(_0)為f(_)的極值”翻譯成數(shù)學語言即f(_)-f(_0)0(或0),對_0的某去心鄰域成立。結(jié)合導數(shù)定義式中函數(shù)部分表達式,不難想到考慮函數(shù)部分的正負號。若能得出函數(shù)部分的符號,如何得到極限值的符號呢?極限的保號性是個橋梁。

費馬引理中的“引理”包含著引出其它定理之意。那么它引出的定理就是我們下面要討論的羅爾定理。若在微分中值定理這部分推舉一個考頻最高的,那羅爾定理當之無愧。該定理的條件和結(jié)論想必各位都比較熟悉。條件有三:“閉區(qū)間連續(xù)”、“開區(qū)間可導”和“端值相等”,結(jié)論是在開區(qū)間存在一點(即所謂的中值),使得函數(shù)在該點的導數(shù)為0。

該定理的證明不好理解,需認真體會:條件怎么用?如何和結(jié)論建立聯(lián)系?當然,我們現(xiàn)在討論該定理的證明是“馬后炮”式的:已經(jīng)有了證明過程,我們看看怎么去理解掌握。如果在羅爾生活的時代,證出該定理,那可是十足的創(chuàng)新,是要流芳百世的。

前面提過費馬引理的條件有兩個——“可導”和“取極值”,“可導”不難判斷是成立的,那么“取極值”呢?似乎不能由條件直接得到。那么我們看看哪個條件可能和極值產(chǎn)生聯(lián)系。注意到羅爾定理的第一個條件是函數(shù)在閉區(qū)間上連續(xù)。我們知道閉區(qū)間上的連續(xù)函數(shù)有很好的性質(zhì),哪條性質(zhì)和極值有聯(lián)系呢?不難想到最值定理。

那么最值和極值是什么關(guān)系?這個點需要想清楚,因為直接影響下面推理的走向。結(jié)論是:若最值取在區(qū)間內(nèi)部,則最值為極值;若最值均取在區(qū)間端點,則最值不為極值。那么接下來,分兩種情況討論即可:若最值取在區(qū)間內(nèi)部,此種情況下費馬引理條件完全成立,不難得出結(jié)論;若最值均取在區(qū)間端點,注意到已知條件第三條告訴我們端點函數(shù)值相等,由此推出函數(shù)在整個閉區(qū)間上的最大值和最小值相等,這意味著函數(shù)在整個區(qū)間的表達式恒為常數(shù),那在開區(qū)間上任取一點都能使結(jié)論成立。

拉格朗日定理和柯西定理是用羅爾定理證出來的。掌握這兩個定理的證明有一箭雙雕的效果:真題中直接考過拉格朗日定理的證明,若再考這些原定理,那自然駕輕就熟;此外,這兩個的定理的證明過程中體現(xiàn)出來的基本思路,適用于證其它結(jié)論。

以拉格朗日定理的證明為例,既然用羅爾定理證,那我們對比一下兩個定理的結(jié)論。羅爾定理的結(jié)論等號右側(cè)為零。我們可以考慮在草稿紙上對拉格朗日定理的結(jié)論作變形,變成羅爾定理結(jié)論的形式,移項即可。接下來,要從變形后的式子讀出是對哪個函數(shù)用羅爾定理的結(jié)果。這就是構(gòu)造輔助函數(shù)的過程——看等號左側(cè)的式子是哪個函數(shù)求導后,把_換成中值的結(jié)果。這個過程有點像犯罪現(xiàn)場調(diào)查:根據(jù)這個犯罪現(xiàn)場,反推嫌疑人是誰。當然,構(gòu)造輔助函數(shù)遠比破案要簡單,簡單的題目直接觀察;復雜一些的,可以把中值換成_,再對得到的函數(shù)求不定積分。

高數(shù)定理證明之求導公式:。

2015年真題考了一個證明題:證明兩個函數(shù)乘積的導數(shù)公式。幾乎每位同學都對這個公式怎么用比較熟悉,而對它怎么來的較為陌生。實際上,從授課的角度,這種在2015年前從未考過的基本公式的證明,一般只會在基礎(chǔ)階段講到。如果這個階段的考生帶著急功近利的心態(tài)只關(guān)注結(jié)論怎么用,而不關(guān)心結(jié)論怎么來的,那很可能從未認真思考過該公式的證明過程,進而在考場上變得很被動。這里給2017考研學子提個醒:要重視基礎(chǔ)階段的復習,那些真題中未考過的重要結(jié)論的證明,有可能考到,不要放過。

當然,該公式的證明并不難。先考慮f(_)_(_)在點_0處的導數(shù)。函數(shù)在一點的導數(shù)自然用導數(shù)定義考察,可以按照導數(shù)定義寫出一個極限式子。該極限為“0分之0”型,但不能用洛必達法則,因為分子的導數(shù)不好算(乘積的導數(shù)公式恰好是要證的,不能用!)。利用數(shù)學上常用的拼湊之法,加一項,減一項。這個“無中生有”的項要和前后都有聯(lián)系,便于提公因子。之后分子的四項兩兩配對,除以分母后考慮極限,不難得出結(jié)果。再由_0的任意性,便得到了f(_)_(_)在任意點的導數(shù)公式。

高數(shù)定理證明之積分中值定理:。

該定理條件是定積分的被積函數(shù)在積分區(qū)間(閉區(qū)間)上連續(xù),結(jié)論可以形式地記成該定積分等于把被積函數(shù)拎到積分號外面,并把積分變量_換成中值。如何證明?可能有同學想到用微分中值定理,理由是微分相關(guān)定理的結(jié)論中含有中值??梢园凑沾怂悸吠路治?,不過更易理解的思路是考慮連續(xù)相關(guān)定理(介值定理和零點存在定理),理由更充分些:上述兩個連續(xù)相關(guān)定理的結(jié)論中不但含有中值而且不含導數(shù),而待證的積分中值定理的結(jié)論也是含有中值但不含導數(shù)。

若我們選擇了用連續(xù)相關(guān)定理去證,那么到底選擇哪個定理呢?這里有個小的技巧——看中值是位于閉區(qū)間還是開區(qū)間。介值定理和零點存在定理的結(jié)論中的中值分別位于閉區(qū)間和開區(qū)間,而待證的積分中值定理的結(jié)論中的中值位于閉區(qū)間。那么何去何從,已經(jīng)不言自明了。

若順利選中了介值定理,那么往下如何推理呢?我們可以對比一下介值定理和積分中值定理的結(jié)論:介值定理的結(jié)論的等式一邊為某點處的函數(shù)值,而等號另一邊為常數(shù)a。我們自然想到把積分中值定理的結(jié)論朝以上的形式變形。等式兩邊同時除以區(qū)間長度,就能達到我們的要求。當然,變形后等號一側(cè)含有積分的式子的長相還是挺有迷惑性的,要透過現(xiàn)象看本質(zhì),看清楚定積分的值是一個數(shù),進而定積分除以區(qū)間長度后仍為一個數(shù)。這個數(shù)就相當于介值定理結(jié)論中的a。

接下來如何推理,這就考察各位對介值定理的熟悉程度了。該定理條件有二:1.函數(shù)在閉區(qū)間連續(xù),2.實數(shù)a位于函數(shù)在閉區(qū)間上的最大值和最小值之間,結(jié)論是該實數(shù)能被取到(即a為閉區(qū)間上某點的函數(shù)值)。再看若積分中值定理的條件成立否能推出介值定理的條件成立。函數(shù)的連續(xù)性不難判斷,僅需說明定積分除以區(qū)間長度這個實數(shù)位于函數(shù)的最大值和最小值之間即可。而要考察一個定積分的值的范圍,不難想到比較定理(或估值定理)。

高數(shù)定理證明之微積分基本定理:。

該部分包括兩個定理:變限積分求導定理和牛頓-萊布尼茨公式。

變限積分求導定理的條件是變上限積分函數(shù)的被積函數(shù)在閉區(qū)間連續(xù),結(jié)論可以形式地理解為變上限積分函數(shù)的導數(shù)為把積分號扔掉,并用積分上限替換被積函數(shù)的自變量。注意該求導公式對閉區(qū)間成立,而閉區(qū)間上的導數(shù)要區(qū)別對待:對應(yīng)開區(qū)間上每一點的導數(shù)是一類,而區(qū)間端點處的導數(shù)屬單側(cè)導數(shù)?;ㄩ_兩朵,各表一枝。我們先考慮變上限積分函數(shù)在開區(qū)間上任意點_處的導數(shù)。一點的導數(shù)仍用導數(shù)定義考慮。至于導數(shù)定義這個極限式如何化簡,筆者就不能剝奪讀者思考的權(quán)利了。單側(cè)導數(shù)類似考慮。

“牛頓-萊布尼茨公式是聯(lián)系微分學與積分學的橋梁,它是微積分中最基本的公式之一。它證明了微分與積分是可逆運算,同時在理論上標志著微積分完整體系的形成,從此微積分成為一門真正的學科。”這段話精彩地指出了牛頓-萊布尼茨公式在高數(shù)中舉足輕重的作用。而多數(shù)考生能熟練運用該公式計算定積分。不過,提起該公式的證明,熟悉的考生并不多。

該公式和變限積分求導定理的公共條件是函數(shù)f(_)在閉區(qū)間連續(xù),該公式的另一個條件是f(_)為f(_)在閉區(qū)間上的一個原函數(shù),結(jié)論是f(_)在該區(qū)間上的定積分等于其原函數(shù)在區(qū)間端點處的函數(shù)值的差。該公式的證明要用到變限積分求導定理。若該公式的條件成立,則不難判斷變限積分求導定理的條件成立,故變限積分求導定理的結(jié)論成立。

注意到該公式的另一個條件提到了原函數(shù),那么我們把變限積分求導定理的結(jié)論用原函數(shù)的語言描述一下,即f(_)對應(yīng)的變上限積分函數(shù)為f(_)在閉區(qū)間上的另一個原函數(shù)。根據(jù)原函數(shù)的概念,我們知道同一個函數(shù)的兩個原函數(shù)之間只差個常數(shù),所以f(_)等于f(_)的變上限積分函數(shù)加某個常數(shù)c。萬事俱備,只差寫一下。將該公式右側(cè)的表達式結(jié)合推出的等式變形,不難得出結(jié)論。

考研數(shù)學學習心得篇九

第一,對概率論與數(shù)理統(tǒng)計的考點要整體把握??佳兄?,概率論的重點考查對象在于隨機變量及其分布和隨機變量的數(shù)字特征。所以對于第一條中所講的古典概型與幾何概型這部分,只要掌握一些簡單的概率計算就可,把大量精力放在隨機變量的分布上。數(shù)理統(tǒng)計的考查重點在于與抽樣分布相關(guān)的統(tǒng)計量的分布及其數(shù)字特征。

第二,在學習概率論與數(shù)理統(tǒng)計的時候不要一頭扎入古典概型的概率計算中不可自拔。概率論的第一部分就是關(guān)于古典概型與幾何概型的計算問題,有很多問題是很復雜的,一旦陷入這一類問題的題海中,要么你的腦瓜會越來越聰明,要么打擊你的信心,對概率論失去興趣。一般同學都會處于后一種狀態(tài)。那么怎么辦呢?請轉(zhuǎn)閱第二條。

第三,在心理上重視??佳袛?shù)學試題中有關(guān)概率論與數(shù)理統(tǒng)計的題目對大多數(shù)考生來說有一定難度,這就使得很多考完試的同學感慨萬千,概率題太難了!同時也為學弟學妹們傳達了概率題目難的信息。所以同學們在復習之前就已經(jīng)有了先入為主的看法:概率比較難!但同學們沒有注意到,在自己復習之初做得準備都是關(guān)于高等數(shù)學(微積分)的,在概率上的時間本身就不足。而且如果你的潛意識中覺得一件事情難的話,那么那件事情對你來說就真的很難。人的潛力是非常巨大的,這也與“有多少想法,就有多大成就”的說法相合。如果你相信自己,那么概率復習起來是簡單的,考試中有關(guān)概率的題目也是容易的,數(shù)學滿分不是沒有可能的。那么,從現(xiàn)在開始,在心理上告訴自己:概率并不難!

考研高數(shù)重難點:中值定理證明的方法。

中值定理包括費馬引理、羅爾定理、拉格朗日定理、格西中值定理、泰勒中值定理,這四個定理之間的聯(lián)和區(qū)別要弄清楚,羅爾定理是拉格朗日中值定理的特殊情況。除泰勒定理外的三個定理都要求已知函數(shù)在某個閉區(qū)間上連續(xù),對應(yīng)開區(qū)間內(nèi)可導。柯西中值定理涉及到兩個函數(shù),在分母上的那個函數(shù)的一階導在定義域上要求不為零,柯西中值定理還有一個重要應(yīng)用——洛必達法則,在求極限時會經(jīng)常用到。而且同學們需要掌握的不單單是這五個中值定理,而且關(guān)于他們本身的證明也是需要重點掌握的,尤其是費馬引理、羅爾定理、拉格朗日定理、格西定理的證明過程,這個過程在教科書上都有證明的過程,同學們需要自己把這個都完全能夠掌握,不僅僅是因為在的真題考查過這個的證明,而是這幾個的證明思想是之后類似題目證明反復使用的。而閉區(qū)間上的連續(xù)定理主要是指的最值定理、介值定理、零點存在定理。

一般來講閉區(qū)間上連續(xù)的定理是直接用的,也就是用來直接證明一些類似與存在一點在某個區(qū)間內(nèi)使得某個函數(shù)是等于零的。而中值定理的應(yīng)用一般是需要通過構(gòu)造函數(shù)的,一般來講都是三步走,第一步去構(gòu)造函數(shù),合理的去構(gòu)造函數(shù)是能夠做出這個證明題目最最關(guān)鍵的一步,而構(gòu)造函數(shù)的方法一般是通過對要求的那個等式積分得到,同時也要注意兩遍同時乘以一個函數(shù),比如同時乘以ex,因為這個函數(shù)積分是不變的,所以會有這個。構(gòu)造完成后就是第二步去檢驗條件,看是用那個定理,一般來講,如果是求一階的導數(shù)等于0優(yōu)先想到的就是羅爾定理,如果是讓你求高階的一個式子等于零或者等于某個式子,那么優(yōu)先想到的就是泰勒公式了,因為上面的五個中值定理中,只有泰勒公式是會涉及到高階的,其他的幾個都是一階,如果知道的是一階,最多也是求解二階的。第三步就是求導驗證自己求出來的是否是要求證明的結(jié)果。

考研數(shù)學微積分要點:連續(xù)性概念及應(yīng)用。

首先,所謂連續(xù)即“極限值=函數(shù)值”,這一個等式包含了三個方面:

1、函數(shù)必須在該點處有定義;。

2、函數(shù)必須在這個點附近存在極限;。

3、是前面1、2兩點的內(nèi)容必須相等,同時滿足這三個條件,才叫做函數(shù)在某點處連續(xù)。

看到,判斷函數(shù)連續(xù),要先求極限,所以,如何求函數(shù)在該點處的極限值或是用極限存在的充要條件(左右極限存在且相等),是一個隱含的知識點。

其次,我們自然會問,會不會有不連續(xù)的點呢?答案當然是肯定的,不連續(xù)的點就是我們所說的---間斷點。那么所謂“不連續(xù)”就是不能同時滿足連續(xù)的三個條件的點,即:

1、函數(shù)在該點處沒有定義;。

2、若函數(shù)在該點有定義,但函數(shù)在該點附近的極限不存在;3、雖然函數(shù)在該點處有定義,極限也存在,但是二者不相等。

對于間斷點,根據(jù)左右極限存在與否,我們把它分為兩類。若左右極限都存在的間斷點,稱為第一類間斷點;若左右極限相等,這個間斷點稱為第一類間斷點中的可去間斷點;若左右極限不相等,這個間斷點稱為第一類間斷點中的跳躍間斷點。若左右極限中至少有一個不存在(包含極限等于無窮的情形)的間斷點,稱為第二類間斷點;若其中一個極限是趨于無窮的,這個間斷點就稱為無窮間斷點;若極限是在兩個常數(shù)之間來回振蕩的,就稱為振蕩間斷點。

最后,對于連續(xù)性最重要的應(yīng)用或者是說考研中的一個小難點,就是閉區(qū)間上連續(xù)函數(shù)的三個性質(zhì):最大最小值定理、零點定理、介值定理。

對于上面的知識點,我們看看在考研中是怎么考察的。對于連續(xù)的概念,難度上屬于簡單知識點。

首先,在十五年前,對于連續(xù)性的考查,更多的是給一個分段函數(shù),然后判斷分段點處函數(shù)的連續(xù)性,這是一個基本題型,只需判斷連續(xù)的三個條件即可,其實主要是考查求函數(shù)某點處左右極限的值。

然后,進入20世紀,考查又傾向于在選擇題當中,給一個函數(shù),讓大家來判斷這個函數(shù)有多少間斷點,間斷點的類型是什么,這個又比之前考查的更高一層。

最后,就是在邏輯推理題中,考查零點定理,介值定理,通常,考查介值定理的時候也會用到最值定理。

我們歸納題型知道,判斷方程根的情況的時候,一般用零點定理;題干中包含好幾個函數(shù)值相加的時候,一般用介值定理。具體在證明題中怎么用,我們會在專門的證明題專題中講解。

上面是對連續(xù)概念本身做出的分析。還有連續(xù)與極限存在,可導,可微的關(guān)系也是選擇題中考查的熱點,這個我們在后續(xù)一元函數(shù)導函數(shù)中詳細說明。最后希望本文對同學們的學習能起到幫助。

考研數(shù)學學習心得篇十

對于考研數(shù)學來說,要拿高分其實很簡單,考研數(shù)學初期復習原則:

一、早準備、早計劃、早復習

二、按照大綱復習

三、重視基礎(chǔ)

四、靈活運用,另同學們在復習考研數(shù)學時重點抓住:

1、兩個重要極限,未定式的極限、等價無窮小代換

2、處理連續(xù)性,可導性和可微性的關(guān)系

3、微分方程:一是一元線性微分方程,第二是二階常系數(shù)齊次/非齊次線性微分方程

4、級數(shù)問題,主要針對數(shù)一和數(shù)三

5、一維隨機變量函數(shù)的分布

6、隨機變量的數(shù)字特征

7、參數(shù)估計

對待考研數(shù)學,在掌握了相關(guān)概念和理論之后,首先應(yīng)該自己試著去解題,即使做不出來,對基本概念和理論的理解也會深入一步。因為數(shù)學畢竟是個理解加運用的科目,不練習就永遠無法熟練掌握。解不出來,再看書上的解題思路和指導,再想想,如果還是想不出來,最后再看書上的詳細解答。在這里溫馨提示大家,在做題時不要太輕易的選擇放棄,想一會兒沒有思路就去看答案,一定要仔細開動腦筋想過之后,實在不行再求助于外力,讓別人給你解答你錯在哪里,你的哪個邏輯點是應(yīng)該修正的,然后再去找正確的方法。

加強綜合解題能力的訓練,熟悉常見考題的類型和解題思路,力求在解題思路上有所突破??佳性囶}和教科書的習題的不同點在于,前者是在對基本概念,基本定理和基本方法充分理解的基礎(chǔ)上的綜合應(yīng)用,有較大的靈活性,往往一個命題覆蓋多個內(nèi)容,涉及到概念,直觀背景、推理和計算等多種角度。

經(jīng)統(tǒng)計考研數(shù)學復習中最重要的就是做題。然而是做相同的題目,不同的人收獲的卻大相徑庭。其中一個很重要的原因就是:做題后的總結(jié)和分析。事實上,無論是做教材上的習題還是歷年真題,都應(yīng)該從宏觀和微觀兩個層次上去總結(jié)分析題目的考點,歸納題目的解題方法,對于獨特的處理方法和運算技巧還需要特別的留意。

考研數(shù)學學習心得篇十一

一、高等數(shù)學:

二、線性代數(shù)。

三、概率與數(shù)理統(tǒng)計。

基礎(chǔ)薄弱的同學,春季,也就是現(xiàn)在就可以投入復習了。建議大家報數(shù)學春季基礎(chǔ)班,可以初步建立自己的復習思路,為自己的復習起一個好頭。一般來說復習分為四個階段:第一個是基礎(chǔ)復習階段,這一階段的任務(wù)是主攻教材和課本,達到基礎(chǔ)知識的了解和掌握;第二個階段是強化訓練階段,顧名思義這一階段的主要任務(wù)是全書階段,全面地掌握各類知識點,并且詳細地做筆記,對常考的題型做大量的練習;第三個階段是鞏固提高階段,這一階段是通過真題和模擬題的訓練和分析來完成將數(shù)學的整體框架結(jié)構(gòu)搭建起來;最后一個階段是沖刺階段,這一階段的時間一般較短,主要是做一些題目來達到穩(wěn)固水平的目的,并且再次地強化之前所記憶的知識點。

如何選擇復習資料呢?數(shù)學資料有兩類,一類是復習教科書,一類是考研輔導專家針對考研而編寫的資料。教科書應(yīng)是深廣度適當,敘述詳略得當,通俗易懂,便于自學,如同濟六版的《高等數(shù)學》,浙大版的《概率論與數(shù)理統(tǒng)計》,同濟版的《線性代數(shù)》;輔導書的選擇應(yīng)該嚴格按照考試大綱進行,選擇的資料要緊扣考綱,不要購買含大量超綱內(nèi)容的考研輔導資料。考生應(yīng)根據(jù)需要選擇適合自己的資料。老師提醒考生,資料不在多,關(guān)鍵在看透、掌握。找準復習重心,有了明確的學習重心,有了完整的復習主干,有了良好的復習方法,接下來就是要考察考生自己的學習能力了。這里值得一提的是,不要在復習開始的階段就拿大量的`試題來做,做題雖然是數(shù)學學習的重點,但是如果連基本的數(shù)學知識,包括基本的概念公式定理等都沒有掌握好的話,做題肯定是達不到效果的,而且只能是倍受打擊。老師提醒考生,在數(shù)學復習的這個階段,也就是強化期,大家萬萬不可只用眼看,一定要親手進行推導。當時認識自己看的很明白了,但是過不了多長時間,你就會忘得一干二凈。參考書就是你這個階段復習的重要武器,按著順序慢慢來,一點一點來,一章一章的復習,先掌握知識,再在試題中檢驗自己。

基礎(chǔ)是提高的前提,打好基礎(chǔ)的目的就是為了提高??忌靼谆A(chǔ)與提高的辯證關(guān)系,根據(jù)自身情況合理安排復習進度,處理好打基礎(chǔ)和提高能力兩者的關(guān)系。一般來說,基礎(chǔ)與提高是交插和分段進行的,現(xiàn)階段應(yīng)該以基礎(chǔ)為主,基礎(chǔ)扎實了,再行提高??忌谶@個過程中容易遇到這樣的問題,就是感覺自已經(jīng)過基礎(chǔ)復習或一段時間的提高后幾乎不再有所進步,甚至感到越學越退步,碰到這種情況,考生千萬不要氣餒,要堅信自己的能力,只要復習方法沒有問題,就應(yīng)該堅持下去。雖然表面上感到?jīng)]有進步,但實際水平其實已經(jīng)在不知不覺中提高了,因為有這樣的想法說明考生已經(jīng)認識到了自已的不足,正處于調(diào)整和進步中。這個時候需要的就是考生的意志力,只要堅持下去,就有成功的希望。

考研數(shù)學學習心得篇十二

數(shù)學中有很多概念。概念反映的是事物的本質(zhì),弄清楚了它是如何定義的、有什么性質(zhì),才能真正地理解一個概念。所有的問題都在理解的基礎(chǔ)上才能做好。

定理是一個正確的命題,分為條件和結(jié)論兩部分。對于定理除了要掌握它的條件和結(jié)論以外,還要搞清它的適用范圍,做到有的放矢。

要特別提醒學習者的是,課本上的例題都是很典型的,有助于理解概念和掌握定理,要注意不同例題的特點和解法在理解例題的基礎(chǔ)上作適量的習題。作題時要善于總結(jié)---- 不僅總結(jié)方法,也要總結(jié)錯誤。這樣,作完之后才會有所收獲,才能舉一反三。

要對所學的知識有個整體的把握,及時總結(jié)知識體系,這樣不僅可以加深對知識的理解,還會對進一步的`學習有所幫助。

高等數(shù)學中包括微積分和立體解析幾何,級數(shù)和常微分方程。其中尤以微積分的內(nèi)容最為系統(tǒng)且在其他課程中有廣泛的應(yīng)用。微積分的理論,是由牛頓和萊布尼茨完成的。(當然在他們之前就已有微積分的應(yīng)用,但不夠系統(tǒng))

數(shù)學備考一定要有一個復習時間表,也就是要有一個周密可行的計劃。按照計劃,循序漸進,切忌搞突擊,臨時抱佛腳。

其實數(shù)學是基礎(chǔ)性學科,解題能力的提高,是一個長期積累的過程,因而復習時間就應(yīng)適當提前,循序漸進。大致在三、四月分開始著手進行復習,如果數(shù)學基礎(chǔ)差可以將復習的時間適當提前。復習一定要有一個可行的計劃,通過計劃保證復習的進度和效果。一般可以將復習分成四個階段,每個階段的起止時間和所要完成的任務(wù)考生應(yīng)給予明確規(guī)定,以保證計劃的可行性。

第一個階段是按照考試大綱劃分復習范圍,在熟悉大綱的基礎(chǔ)上對考試必備的基礎(chǔ)知識進行系統(tǒng)的復習,了解考研數(shù)學的基本內(nèi)容、重點、難點和特點。這個時間段一般劃定為六月前。

第二個階段是在第一階段的基礎(chǔ)上,做一定數(shù)量的題,重點解決解題思路的問題。一般從七月到十月。這個階段要注意歸納總結(jié),即拿到題后要知道從什么角度,可以分幾步去求解,每道題并不要求都要寫出完整步驟,只要思路有了,運算過程會做了,可以視情況而靈活掌握,這樣省出時間來看更多的題。所選試題可以是歷年真題,也可以是書上的練習題,但真題一定要做,而且要嚴格按照實考的要求去做,把握真題的特點和解題思路及運算步驟。

第三個階段是實戰(zhàn)訓練階段,從十一月到十二月的中旬,這也是臨考前非常重要的階段??忌獙Υ缶V所要求的知識點做最后的梳理,熟記公式,系統(tǒng)地做幾套模擬試卷,進行實戰(zhàn)訓練,自測復習成果。在做模擬題前先要系統(tǒng)記憶掌握基本公式,做題要講究質(zhì)量,既要有速度,又要有嚴格的步驟、格式和計算的準確性。最后階段是考前沖刺,從十二月下旬到考試。針對在做模擬試題過程中出現(xiàn)的問題作最后的補習,查缺補漏,以便以最佳的狀態(tài)參加考試。

學好數(shù)學是一個長期的過程,來不得半點的投機取巧,所以考前突擊,臨時抱佛腳的做法是不足取的,只有按照自己的計劃,踏踏實實的進行準備,才能以不變應(yīng)萬變,只要自己的綜合能力提高了,不管考試如何變化,都能取得好的成績。

數(shù)學的學習一定要每天都有個進度,每天都要有題量,我們不應(yīng)該搞題海戰(zhàn)術(shù),但是通過做題提高實戰(zhàn)經(jīng)驗也是必須的,首先有個大的學習框架,然后計劃到每天,怎么去學習,每天做那方面的題,定期的查漏補缺,這樣的學習才真正的有效果。

最后,預祝所有準備考研的學子都能榜上有名,考上理想的學校!

考研數(shù)學學習心得篇十三

大家可以把知識點系統(tǒng)歸類到整體的知識框架中可以避免雜亂無章、毫無頭緒的現(xiàn)象。大家在復習每一章時應(yīng)將這一部分的知識點做系統(tǒng)的梳理。近年考試中高等數(shù)學的命題呈現(xiàn)出明顯的規(guī)律性,如求極限、中值定理、函數(shù)極值、重積分的計算等,都是每年試題中都會設(shè)計命題的重要知識點。這就要求大家在認真梳理考點的基礎(chǔ)上著重對這些問題多下工夫徹底解決。此外,善于從做題中總結(jié)。高數(shù)題海無邊,好多同學做很多題之后還是摸不到方向,新東方在線認為,主要癥結(jié)還是在于沒有在做題中認真總結(jié)方法、規(guī)律和技巧。這就要求大家在解題的時候遇到問題要及時總結(jié)歸納,熟練掌握各類重要題型解題的要領(lǐng)和關(guān)鍵。

二、線性代數(shù)抓好兩條主線。

線性代數(shù)復習總體而言需要抓好兩條主線:一條主線是行列式、矩陣、向量組作為研究線性方程組的三大工具與線性方程組的解的關(guān)系以及它們之間的聯(lián)系;另外一條抓顯示特征值與特征向量、矩陣的對角化作為工具如何應(yīng)用于二次型的標準化。同學們在復習時必須在掌握各部分的基本概念、原理、性質(zhì)的基礎(chǔ)上明確知識點之間的內(nèi)在聯(lián)系,有條有理地全面掌握這一學科的重要內(nèi)容。

三、概率論與數(shù)理統(tǒng)計知識點吃透。

概率論與數(shù)理統(tǒng)計對基本概念、原理的深入理解以及分析解決問題的能力要求較高,所以大家首先要做好的就是根據(jù)最新考試大綱規(guī)定的內(nèi)容,將概率論與數(shù)理統(tǒng)計的內(nèi)容再細細梳理一遍,將基本概念、基本理論和基本方法結(jié)合一定的基本題練習徹底吃透,這樣才能在題目形式千變?nèi)f化的情況下把握“萬變不離其宗”的本質(zhì),做到靈活應(yīng)變。專家提醒考生,大家要注意及時重要的公式、結(jié)論和一些對知識掌握和解題有幫助的規(guī)律,必定能使解題能力得到顯著提高。

考研數(shù)學學習心得篇十四

很多數(shù)學零基礎(chǔ)的同學想跨專業(yè)考研,最終因為數(shù)學這一攔路虎而放棄。大家都存在此類疑問,沒有基礎(chǔ)能學好數(shù)學嗎?事實上只要考生端正心態(tài),將基礎(chǔ)知識打牢固,考研是沒有問題的。下面說一下這類考生該如何著手準備復習。

高等數(shù)學:高等數(shù)學的分值重,是三門課程中最為重要的一科,在學習高數(shù)的過程中,要注意每種題型的訓練,重點是總結(jié),把在基礎(chǔ)階段不懂的知識點,強化記憶,然后系統(tǒng)地梳理知識點。認真研讀大綱要求,在復習的過程中明確考試重點,充分把握重點。

高數(shù)第一章不定式的極限,考生要充分掌握求不定式極限的各種方法,比如利用極限的四則運算、兩個重要極限、洛必達法則等等,還要總結(jié)求極限過程中常用到的轉(zhuǎn)化、化簡的方法。對函數(shù)的連續(xù)性的探討也是考試的重點,這要求考生要充分理解函數(shù)連續(xù)的定義和掌握判斷連續(xù)性的方法。對于導數(shù)和微分,其實重點不是給一個函數(shù)求導數(shù),而是導數(shù)的定義,也就是抽象函數(shù)的可導性,理清連續(xù)、可導、可微之間的關(guān)系,分清一元與多元的異同。對于積分部分,定積分、分段函數(shù)的積分、帶絕對值的函數(shù)的積分等各種積分的求法都是重要的題型,在求積分的過程中,一定要注意積分的對稱性,利用分段積分去掉絕對值把積分求出來。中值定理一般每年都要考一個題的,多看看以往考試題型,研究一下考試規(guī)律。對于微分部分,隱函數(shù)的求導,復合函數(shù)的偏導數(shù)等是考試的重點。二重積分的計算,當然數(shù)學一里面還包括了三重積分,掌握積分區(qū)域具有可加性、二重積分對稱性的應(yīng)用、二重積分直角坐標和極坐標的變換、二重積分轉(zhuǎn)換成累次積分計算這些知識點。另外還有曲線和曲面積分,這是數(shù)一必考的重點內(nèi)容。一階微分方程,掌握幾個教材中的幾種類型的求解就可以了。還有無窮級數(shù),要掌握判別斂散性、冪級數(shù)的展開和求和常用的方法和技巧。

線性代數(shù):線性代數(shù)考試題型不多,計算方法比較初等,但是往往計算量比較大,導致很多考生對線性代數(shù)感到棘手。從理論的角度出發(fā),線性代數(shù)的很多概念和性質(zhì)之間的聯(lián)系很多,特別要根據(jù)每年線性代數(shù)的兩道大題考試內(nèi)容,找出所涉及到的概念與方法之間的聯(lián)系與區(qū)別。例如向量組的秩與矩陣的秩之間的聯(lián)系,向量的線性相關(guān)性與齊次方程組是否有非零解之間的聯(lián)系,向量的線性表示與非齊次線性方程組解的討論之間的聯(lián)系,實對稱陣的對角化與實二次型化標準形之間的聯(lián)系等。掌握他們之間的聯(lián)系與區(qū)別,對做線性代數(shù)的兩個大題在解題思路和方法上會有很大的幫助。

復習過程中,綜合掌握“一條主線,兩種運算,三個工具”。一條主線是解線性方程組,兩種運算是求行列式、矩陣的初等行(列)變換,三個工具是行列式、矩陣、向量。其中,向量組線性相關(guān)性是難點,要理解記憶各條定理,理清其中關(guān)系,多做題鞏固知識點。特征向量與二次型雖不難,但年年必考,計算能力要跟上,多做題才能提高正確率。

解,只有這部分內(nèi)容透徹理解后面的內(nèi)容才能容易掌握。概率部分要重點掌握的是二維隨機變量的概率分布、邊緣分布、條件分布、獨立性等概念,要把定義和對應(yīng)計算公式掌握的很熟練。另外,數(shù)學期望、方差、協(xié)方差、相關(guān)系數(shù)等數(shù)字特征的概念及計算公式也要重點復習,因為這幾個概念是每年必考,并且主要考計算。最后,這部分難點是多維隨機變量的函數(shù)的分布。這個考點最近幾年每年必考,并且主要以大題的形式出現(xiàn)。雖然是難點,但是方法還是比較固定的,掌握每種題型的方法即可。大數(shù)定律和中心極限定理不是考試的重點,考綱要求是了解,所以只要掌握定理的條件和結(jié)論。數(shù)理統(tǒng)計部分主要圍繞三大統(tǒng)計量分布,點估計是這部分內(nèi)容的重難點,經(jīng)常會考解答題。統(tǒng)計量的評選標準中的無偏估計要重點復習,有效性和相合性了解即可。區(qū)間估計和假設(shè)檢驗這么多年考的比較少,所以也是了解一下,找?guī)讉€小題做一下就行了。

考研數(shù)學學習心得篇十五

這冊教材包括下面一些內(nèi)容:位置,20以內(nèi)數(shù)的退位減法,圖形的拼組,100以內(nèi)數(shù)的認識,認識人民幣,100以內(nèi)的加法和減法。

(一)認識時間,找規(guī)律,統(tǒng)計,數(shù)學實踐活動。

重點教學內(nèi)容是:100以內(nèi)數(shù)的認識,20以內(nèi)的退位減法和100以內(nèi)的加減法口算??倧土暤木幣艖?yīng)對注意突出本學期的教學目標,以及知識間的內(nèi)在聯(lián)系,便于在復習時進行整理和比較,以加深學生對所學知識的認識。如把數(shù)概念、計算分別集中復習。在復習“100以內(nèi)的加法和減法”時,把“20以內(nèi)的退位減法”和100以內(nèi)的口算結(jié)合起來進行復習,使學生更好地掌握知識間的前后聯(lián)系,同時,注意計算與解決問題相結(jié)合,達到通過解決簡單的實際問題來鞏固計算熟練程度的作用。

1、通過總復習,使學生獲得的知識更加鞏固,計算能力更加提高,能用所學的數(shù)學知識解決簡單的實際問題,全面達到本學期規(guī)定的教學目標。

2、引導學生主動整理知識,回顧自己的學習過程和收獲,逐步養(yǎng)成回顧和反思的習慣。

3、通過總復習使學生在本學期學習到的知識系統(tǒng)化。鞏固所學的知識,對于缺漏的知識進行加強。

4、通過形式多樣化的復習充分調(diào)動學生的學習積極性,讓學生在生動有趣的復習活動中經(jīng)歷、體驗、感受數(shù)學學習的樂趣。

5、有針對性的輔導,幫助學生樹立數(shù)學學習信心,使每個學生都得到不同程度的進一步發(fā)展。

復習的重點:主要放在數(shù)與數(shù)的運算這一塊內(nèi)容中的20以內(nèi)的退位減法和100以內(nèi)數(shù)的認識和100以內(nèi)的加減法這幾部分內(nèi)容。

復習的難點:20以內(nèi)的退位減法;100以內(nèi)的退位及進位加法;鐘面的認識;人民幣的認識;物體的相對位置。

考研數(shù)學學習心得篇十六

“綱”是《數(shù)學考試大綱》,“本”為課本。雖然20xx年的數(shù)學考試大綱尚未頒布,但萬變不離其宗,考研數(shù)學的基本內(nèi)容一般變化不大,考生可以參照去年的大綱和試題進行復習。詳細了解本專業(yè)應(yīng)考的數(shù)學卷種的基本要求,考試的題型、類別和難易度,以便更好的展開復習。凡是在大綱中表述為“會”、“理解”、“掌握”等的考試內(nèi)容往往都是主要考點,務(wù)必要作為復習的重點。

數(shù)學復習不像英語、政治對輔導書的依賴性很大,主要靠課本來打下堅實的基礎(chǔ)。翻一下數(shù)學大綱,上面列出的知識點全部來源于課本。一定要老老實實參照大綱的要求把原來的課本找出來,按照大綱對數(shù)學基本概念、基本方法、基本定理準確把握。

數(shù)學學習中最重要的莫過于堅實的基礎(chǔ),包括對定理公式的深入理解,對基本運算的熟練和高正確率,對最基本的一些解題方法的掌握和運用。從這幾年的數(shù)學統(tǒng)考試題來看很少有偏題、怪題。很多考生由于對基本概念、定理記不全、記不牢,理解不準確而丟分。所以數(shù)學首輪復習一定要注重基礎(chǔ)。

研究生數(shù)學考試注重考察考生的綜合能力,最終要看你解題的真功夫,而能力的提高要通過大量的練習,所以不能眼高手低,只看書不做題,每天可以做適量的題目。在做題的過程中才會發(fā)現(xiàn)考試重點、難點以及自己的薄弱環(huán)節(jié)。以便及時彌補自己的缺陷、把握重難點。

近年來的數(shù)學考研試題的一大特征是要求考生能將一些范圍并不固定的幾何、物理或者其它問題先建模抽象為數(shù)學問題,再利用相應(yīng)的數(shù)學知識解答。(理工類已考過井底清污、雪堆融化、攀巖選址、壓力計算、海洋勘測、汽錘作功、飛機滑行等問題)考研也考“熟練”度,只有通過針對性地實際訓練才能真正地理解和鞏固數(shù)學的基本概念、公式、結(jié)論。在練習過程中還要總結(jié)解題的技巧、套路,積累經(jīng)驗,把分散的知識在實際運用中聯(lián)系起來,在理解的基礎(chǔ)上觸類旁通,熟能生巧后才能運用所學知識解決實際問題,以不變應(yīng)萬變。

因考數(shù)學的時間一般都安排在上午,故建議將數(shù)學的復習時間安排在每天早上9:00-12:00(可根據(jù)自身情況適當調(diào)整,但此時效果最好)。每天至少應(yīng)安排花2.5-3個小時來復習數(shù)學,其中用1.5-2個小時左右的時間理解掌握概念、定義等,用1個小時左右來做習題鞏固。對于數(shù)學基礎(chǔ)較差的同學,建議每天再加1個小時的復習時間用來做習題并總結(jié)。

考研數(shù)學學習心得篇十七

隨著“考研”在大學校園關(guān)注熱度的一路飆升,廣大學子進入備考階段的時間點也一年早于一年。對數(shù)學公共課這種需要打持久戰(zhàn)的科目而言,考研復習初期的基礎(chǔ)階段能夠合理安排復習計劃,打下牢固、良好的基礎(chǔ),對考試最終的結(jié)果有重要的影響。數(shù)學復習具有基礎(chǔ)性和長期性的特點,數(shù)學知識的學習是一個長期積累的過程,要遵循由淺入深的原則,先將知識基礎(chǔ)打牢,構(gòu)建起知識體系,然后再去追求技巧以及方法,一座高樓大廈必定是建立在堅實的地基之上的,因此我們將基礎(chǔ)知識的復習安排在第一階段,希望大家給予足夠重視。

一、20xx年數(shù)學一試卷結(jié)構(gòu)。

種類。

內(nèi)容比例。

題型比例。

單選題約21%。

線性代數(shù)22%。

填空題約16%。

概率論與數(shù)理統(tǒng)計22%解答題約63%。

命題從布局上看,覆蓋面寬,幾乎所有重點章節(jié)均有涉及,各個知識點分布合理。從難易度上講,試題主要以考查數(shù)學的基本概念、基本理論、基本方法、基本能力為主,尤其是它們的延伸、擴展、轉(zhuǎn)換、綜合和應(yīng)用。從發(fā)展趨勢看,這種命題特點將持續(xù),難度將會向下調(diào)整,計算技巧性過強的題將逐漸減少,而且絕不會出現(xiàn)超綱題、偏題、怪題,但由于選擇題比重增加,題量有所增加,時間越來越緊。因此,在復習時,不要聽信謠傳,不要迷信押題,不要偏科,不要忽視基本功而去啃偏題、明顯超綱題和計算量繁雜的題,相反,應(yīng)該強調(diào)的是要整體把握好大綱各知識點,這些知識點是前后之間有邏輯聯(lián)系的網(wǎng)絡(luò),網(wǎng)絡(luò)的結(jié)點就是考點和重點。

二、下面我們要介紹該如何復習數(shù)學一。

首先,同學們需要把數(shù)學復習全書上總結(jié)好的知識點認真掌握。一般不同版本的復習全書上的知識點講解都很全面、詳細,還有例題講解當中總結(jié)出的解題技巧和方法,推導出的公式、定理,都要重點記憶。對于基本知識、基本定理和基本方法,關(guān)鍵在理解,而且理解還存在程度的問題,不能僅僅停留在看懂了的層次上,對一些易推導的定理,有時間一定要動手推一推,對一些基本問題的描述,特別是微積分中的一些術(shù)語的描述,一定要自己動手寫一寫,這些基本功都很重要,到臨場時就可以發(fā)揮作用了。同學們一定要注意,在掌握基本概念的同時不要忘記了要適當?shù)貙⑺械墓健⒍ɡ?、概念?lián)系起來復習,并且在此過程中要大量地做練習題,因為公式、定理不是你記住就代表你掌握了,關(guān)鍵是要運用到解題上。俗話說熟能生巧,對于數(shù)學的基本概念、公式、結(jié)論等只有在反復練習中才能真正理解與鞏固。數(shù)學試題雖然千變?nèi)f化,其知識結(jié)構(gòu)卻基本相同,題型也相對固定,往往存在一定的解題套路,熟練掌握后既能提高正確率,又能提高解題速度。

其次,看書做題有機結(jié)合。數(shù)學這一學科的特點決定了同學們復習的時候除了看書還需要及時通過做題鞏固復習效果,否則對概念、原理的記憶和理解過一段時間就會變得很陌生。建議同學們參考考綱中的規(guī)定按章節(jié)循序漸進,在復習的時候通過看書形成清晰有條理的知識網(wǎng)絡(luò),熟悉知識點及常用公式結(jié)論之后做一些習題加深對概念、定理的理解和常用方法的應(yīng)用。所謂萬丈高樓平地起,基礎(chǔ)階段的關(guān)鍵在于透徹把握基礎(chǔ)知識和基本的解題能力,因此這個階段的做題最好從基本題型的訓練開始,不宜一上來就鉆研難度很大的題目。由于教材當中的題目并不僅僅針對某一類型的考研數(shù)學復習,大家可選取一些適合復習使用的參考書,如考研數(shù)學必做客觀題1500題,由于輔導書中三大部分的章節(jié)安排、題目涉及的考點以及對應(yīng)的難度要求與考綱完全一致,因此對考生來講就像擁有了一個合理安排復習計劃和進度的貼身教練,對復習的解題一關(guān)起到極大的輔助與促進作用。以客觀題的專項訓練作為基礎(chǔ)階段的解題訓練的一部分,能最大程度上鞏固加深對基本知識點和基本解題方法的認知,訓練自己的解題思路和方法,達到熟能生巧,為后續(xù)的復習打下堅實的基礎(chǔ)。

再次,善于歸納,學會總結(jié),使知識調(diào)理化系統(tǒng)化。善于總結(jié)也是同學們在復習的過程中需要注意的一點。因為很多同學做題的過程就到對過答案或是糾正過錯誤就簡單的結(jié)束了,一套題的價值也就到此為止了。大家在糾正完錯誤之后,再把這套試題從頭看一遍,總結(jié)一下自己都在哪些方面出錯了,原因是什么,這套題中有沒有出現(xiàn)我不知道的新的方法、思路,新推導出的定理、公式等,并把這些有用的知識全都寫到你的筆記本上,以便隨時查看和重點記憶。對于大題的解題方法,要仔細想一想,都涉及到哪些科目和章節(jié)了,這些知識點之間有哪些聯(lián)系等,從而使自己所掌握的知識系統(tǒng)化,以達到融會貫通。只有這樣,才能使你做過的題目實現(xiàn)其最大的價值,也才算是你真正做懂了一套題。如果你能夠這樣做了,那么做過的題在以后的復習中如果沒有時間了,就不用再拿出來重新看了,因為你已經(jīng)把要掌握的精華總結(jié)好了,只需看你的筆記本就行了。解數(shù)學題一定要從思路,原理的角度入手。

最后,充分重視往年考研真題。從歷年試卷可以看出,凡是考試大綱中提及的內(nèi)容,都有可能考到。因此,以押題、猜題的復習方法來對付考研靠不住,很容易在考場上痛失分數(shù)而敗北。另外,到11月份后還需要做一些合適的模擬題,要注意試題的質(zhì)和量。同時,做的時候最好是參加模擬考場,或者自己設(shè)定一個時間,盡量按照考試的時間和狀態(tài)去測試自己,置自身于考試環(huán)境與狀態(tài)之中,也能達到預熱效果。

三、復習進度表。

每天至少應(yīng)該花3個小時左右來復習數(shù)學,這樣才能保證在基礎(chǔ)階段把整個數(shù)學的基礎(chǔ)知識復習完。其中用用一半時間理解掌握概念、定義等,用剩下的一半時間來做習題鞏固。對于數(shù)學基礎(chǔ)較薄弱的同學建議每天再加一個小時的復習時間用來做習題并總結(jié)。

考研數(shù)學一般考察考生的基礎(chǔ)知識的掌握和運用解題的能力。數(shù)學的復習不像政治有的時候?qū)τ谀承┤耸强梢杂猛粨舻男问絹硗瓿傻?。?shù)學與英語復習相似,需要一步一步的積累知識、循序漸進的學習方法。

最后,祝愿復習20xx年考研的同學們能夠復習順利。

考研數(shù)學學習心得篇十八

興趣是可以培養(yǎng)出來的,如果平時能夠多看一些數(shù)學相關(guān)的著作或論文等,不僅能夠?qū)ρ苌d趣有很大幫助,還能學到很多書本上沒有的理論,對整體的把握與融會益處多多。“數(shù)學之神”的阿基米德一生著有涉及幾何、算術(shù)、數(shù)論等多種學科的十幾種數(shù)學論著。所以我們說,只一味地死學,為學數(shù)學而學數(shù)學不一定能達到好的學習效果,而全面的科學素質(zhì)和修養(yǎng)對數(shù)學學習起著很大的作用。

數(shù)學是無窮的科學,數(shù)學的長河蘊含著無窮的奧妙,這些奧妙吸引著眾多先知去邀游、去探密,同時也吸引著現(xiàn)代的人們?nèi)ダ^續(xù)追尋。面對數(shù)學,我們始終要懷著一種探索敬畏的求知欲,知道數(shù)學的博大精深,同時充滿向往。

雖然任何科學發(fā)現(xiàn)都可以說是“站在巨人的肩膀上”取得的,但是創(chuàng)新是科學發(fā)展的生命,單純的、重復性的研究是沒有意義的,也是極大的浪費。創(chuàng)新能夠激發(fā)人的興趣與欲望,能夠很好的將興趣轉(zhuǎn)化為實踐。數(shù)學的發(fā)展離不開創(chuàng)新,數(shù)學學習的方式也需要不斷地創(chuàng)新。傳統(tǒng)的接受式學習方式,靠死記硬背來被動地學習是有很大弊端的,往往會使學生感到枯燥乏味,逐漸喪失了學習數(shù)學的興趣,所以,數(shù)學學習一定要有創(chuàng)新意識。

都說數(shù)學的應(yīng)用很廣泛,但一般人日常生活可能只接觸到簡單的加減乘除。因此,不少學生就問,學這么多、這么深的數(shù)學到底有什么用呢?其實,仔細看來,人們生活的方方面面都離不開數(shù)學原理。比如:生活中越來越不可或缺的計算機在很大程度上和數(shù)學是密切相關(guān)的。希望同學們都能帶著興趣去學習,不僅僅是數(shù)學。這樣的學習不但不枯燥不費力,反而讓你愛上學習,學起來也會事半功倍!

考研數(shù)學學習心得篇十九

閱讀一個知識點,宏觀上思考其在整個數(shù)學科目中作用及與其他科目之間的聯(lián)系,微觀上思考其本身概念的深度,其具有的特點及滿足的性質(zhì)等等。拿到一個題目,研究其條件與結(jié)論的聯(lián)系,思考題目所在的知識點及可能使用的方法,能否用更多的方法來求解,能否找到最為簡單的方法??礆v年真題,總結(jié)考試題目的規(guī)律,思考命題特點及與考試大綱之間的聯(lián)系。

二、高效解決問題的能力。

考試時不僅要正確解答題目,更重要的是要快速的達到目的?,F(xiàn)在很多輔導資料對知識點的總結(jié),題型的歸納都比較全面,如果能利用其對知識的歸納再加上自己的邊看邊思考,對知識點達到融會貫通不成問題。

三、快速判斷所考知識點的能力。

考研數(shù)學大綱所規(guī)定的知識點是有限的,重要的知識點就更少一些,但考研數(shù)學已經(jīng)進行了二十幾年,重點之處年年考,但這些知識點每年都會換上新的外衣,喬裝打扮,使不少考生被蒙蔽,之后悔之不及。

四、持之以恒的能力。

數(shù)學因其高于日常生活而常受到學生的冷落,這樣就會產(chǎn)生馬太效應(yīng),愈不關(guān)心她,它就離你愈遠,故而考研復習需要保持對數(shù)學熱情,堅持到底!

在考研復習中考生要做到的是掌握核心,即萬變不離其宗,抓住其形變而神不變之處才能輕松成功。

 

【本文地址:http://www.aiweibaby.com/zuowen/14438695.html】

全文閱讀已結(jié)束,如果需要下載本文請點擊

下載此文檔