教案具有可操作性和可檢驗性,能夠?qū)虒W(xué)進(jìn)行有效的指導(dǎo)。教案要注重教學(xué)方法的選擇,根據(jù)學(xué)生的學(xué)習(xí)特點和教學(xué)內(nèi)容確定合適的教學(xué)方法。以下的教案范文也可以幫助教師理清教學(xué)思路,提高專業(yè)教學(xué)水平。
數(shù)學(xué)最簡二次根式教案篇一
2.會運用積和商的算術(shù)平方根的性質(zhì),把一個二次根式化為最簡二次根式,數(shù)學(xué)教案-最簡二次根式 教學(xué)設(shè)計示例2。
最簡二次根式的定義。
一個二次根式化成最簡二次根式的方法。
1.把下列各根式化簡,并說出化簡的根據(jù):
2.引導(dǎo)學(xué)生觀察考慮:
化簡前后的根式,被開方數(shù)有什么不同?
化簡前的被開方數(shù)有分?jǐn)?shù),分式;化簡后的被開方數(shù)都是整數(shù)或整式,且被開方數(shù)中開得盡方的因數(shù)或因式,被移到根號外。
3.啟發(fā)學(xué)生回答:
二次根式,請同學(xué)們考慮一下被開方數(shù)符合什么條件的二次根式叫做最簡二次根式?
滿足下列兩個條件的二次根式叫做最簡二次根式:
(1)被開方數(shù)的因數(shù)是整數(shù),因式是整式;
(2)被開方數(shù)中不含能開得盡的'因數(shù)或因式,初中數(shù)學(xué)教案《數(shù)學(xué)教案-最簡二次根式 教學(xué)設(shè)計示例2》。
最簡二次根式定義中第(1)條說明被開方數(shù)不含有分母;分母是1的例外。第(2)條說明被開方數(shù)中每個因式的指數(shù)小于2;特別注意被開方數(shù)應(yīng)化為因式連乘積的形式。
下列各根式是否為最簡二次根式,不是最簡二次根式的說明原因:
例1 把下列各式化成最簡二次根式:
例2 把下列各式化成最簡二次根式:
把二次根式化成最簡二次根式的根據(jù)是什么?應(yīng)用了什么方法?
當(dāng)被開方數(shù)為整數(shù)或整式時,把被開方數(shù)進(jìn)行因數(shù)或因式分解,根據(jù)積的算術(shù)平方根的性質(zhì),把開得盡方的因數(shù)或因式用它的算術(shù)平方根代替移到根號外面去。
當(dāng)被開方數(shù)是分?jǐn)?shù)或分式時,根據(jù)分式的基本性質(zhì)和商的算術(shù)平方根的性質(zhì)化去分母。
此方法是先根據(jù)分式的基本性質(zhì)把被開方數(shù)的分母化成能開得盡方的因式,然后分子、分母再分別化簡。
1.把下列各式化成最簡二次根式:
2.判斷下列各根式,哪些是最簡二次根式?哪些不是最簡二次根式?如果不是,把它化成最簡二次根式。
數(shù)學(xué)最簡二次根式教案篇二
1、知識與技能:了解二次根式的概念,能求根號內(nèi)字母范圍,理解二次根式的雙重非負(fù)性,并能應(yīng)用它解決相關(guān)問題。
2、過程與方法:進(jìn)一步體會分類討論的數(shù)學(xué)思想。
3、情感、態(tài)度與價值觀:通過小組合作學(xué)習(xí),體驗在合作探索中學(xué)習(xí)數(shù)學(xué)的樂趣。
1、重點:準(zhǔn)確理解二次根式的概念,并能進(jìn)行簡單的計算。
2、難點:準(zhǔn)確理解二次根式的雙重非負(fù)性。
課本第2—3頁。
一、課前準(zhǔn)備(預(yù)習(xí)學(xué)案見附件1)。
學(xué)生在家中認(rèn)真閱讀理解課本中相關(guān)內(nèi)容的知識,并根據(jù)自己的理解完成預(yù)習(xí)學(xué)案。
二、課堂教學(xué)。
(一)合作學(xué)習(xí)階段。
教師出示課堂教學(xué)目標(biāo)及引導(dǎo)材料,各學(xué)習(xí)小組結(jié)合本節(jié)課學(xué)習(xí)目標(biāo),根據(jù)課堂引導(dǎo)材料中得內(nèi)容,以小組合作的形式,組內(nèi)交流、總結(jié),并記錄合作學(xué)習(xí)中碰到的問題。組內(nèi)各成員根據(jù)課堂引導(dǎo)材料的要求在小組合作的前提下認(rèn)真完成課堂引導(dǎo)材料。教師在巡視中觀察各白話文…小組合作學(xué)習(xí)的情況,并進(jìn)行及時的引導(dǎo)、點撥,對普遍存在的問題做好記錄。
(二)集體講授階段。(15分鐘左右)。
1.各小組推選代表依次對課堂引導(dǎo)材料中的問題進(jìn)行解答,不足的本組成員可以補充。
2.教師對合作學(xué)習(xí)中存在的普遍的不能解決的問題進(jìn)行集體講解。
3.各小組提出本組學(xué)習(xí)中存在的困惑,并請其他小組幫助解答,解答不了的由教師進(jìn)行解答。
(三)當(dāng)堂檢測階段。
為了及時了解本節(jié)課學(xué)生的學(xué)習(xí)效果,及對本節(jié)課進(jìn)行及時的鞏固,對學(xué)生進(jìn)行當(dāng)堂檢測,測試完試卷上交。
(注:合作學(xué)習(xí)階段與集體講授階段可以根據(jù)授課內(nèi)容進(jìn)行適當(dāng)調(diào)整次序或交叉進(jìn)行)。
三、課后作業(yè)(課后作業(yè)見附件2)。
教師發(fā)放根據(jù)本節(jié)課所學(xué)內(nèi)容制定的針對性作業(yè),以幫助學(xué)生進(jìn)一步鞏固提高課堂所學(xué)。
四、板書設(shè)計。
數(shù)學(xué)最簡二次根式教案篇三
重點:化二次根式為最簡二次根式的方法.
計算:
我們再看下面的問題:
簡,得到。
從上面例子可以看出,如果把二次根式先進(jìn)行化簡,會對解決問題帶來方便.
答:
1.被開方數(shù)的因數(shù)是整數(shù)或整式;
2.被開方數(shù)中不含能開得盡方的因數(shù)或因式.
滿足上面兩個條件的二次根式叫做最簡二次根式.
(l)不是最簡二次根式.因為a3=a2·a,而a2可以開方,即被開方數(shù)中有開得盡方的因式.
整數(shù).
(3)是最簡二次根式.因為被開方數(shù)的因式x2+y2開不盡方,而且是整式.
(4)是最簡二次根式.因為被開方數(shù)的因式a-b開不盡方,而且是整式.
(5)是最簡二次根式.因為被開方數(shù)的因式5x開不盡方,而且是整式.
(6)不是最簡二次根式.因為被開方數(shù)中的因數(shù)8=22·2,含有開得盡的因數(shù)22.
指出:從(1),(2),(6)題可以看到如下兩個結(jié)論.
1.在二次根式的被開方數(shù)中,只要含有分?jǐn)?shù)或小數(shù),就不是最簡二次根式;
2.在二次根式的被開方數(shù)中的每一個因式(或因數(shù)),如果冪的指數(shù)等于或大于2,也不是最簡二次根式.
分析:把被開方數(shù)分解因式或因數(shù),再利用積的算術(shù)平方根的性質(zhì)。
分析:題(l)的被開方數(shù)是帶分?jǐn)?shù),應(yīng)把它變成假分?jǐn)?shù),然后將分母有理化,把原式化成最簡二次根式.
題(2)及題(3)的被開方數(shù)是分式,先應(yīng)用商的算術(shù)平方根的性質(zhì)把原式表示為兩個根式的商的形式,再把分母有理化,把原式化成最簡二次根式.
通過例2、例3,請同學(xué)們總結(jié)出把二次根式化成最簡二次根式的方法.
答:如果被開方數(shù)是分式或分?jǐn)?shù)(包括小數(shù))先利用商的算術(shù)平方根的性質(zhì),把它寫成分式的形式,然后利用分母有理化化簡.
如果被開方數(shù)是整式或整數(shù),先把它分解因式或分解因數(shù),然后把開得盡方的因式或因數(shù)開出來,從而將式子化簡.
的二次根式的式子有_____個.[]。
a.2b.3。
c.1d.0。
答案:
1.b。
2.b。
(1)被開方數(shù)的因數(shù)是整數(shù),因式是整式;
(2)被開方數(shù)中不含能開得盡方的因數(shù)或因式.
(2)如果被開方數(shù)含有分母,應(yīng)去掉分母的根號.
答案:
數(shù)學(xué)最簡二次根式教案篇四
1、知識與技能:了解二次根式的概念,能求根號內(nèi)字母范圍,理解二次根式的雙重非負(fù)性,并能應(yīng)用它解決相關(guān)問題。
2、過程與方法:進(jìn)一步體會分類討論的數(shù)學(xué)思想。
3、情感、態(tài)度與價值觀:通過小組合作學(xué)習(xí),體驗在合作探索中學(xué)習(xí)數(shù)學(xué)的樂趣。
1、重點:準(zhǔn)確理解二次根式的概念,并能進(jìn)行簡單的計算。
2、難點:準(zhǔn)確理解二次根式的雙重非負(fù)性。
課本第2—3頁。
學(xué)生在家中認(rèn)真閱讀理解課本中相關(guān)內(nèi)容的知識,并根據(jù)自己的理解完成預(yù)習(xí)學(xué)案。
(一)合作學(xué)習(xí)階段。
教師出示課堂教學(xué)目標(biāo)及引導(dǎo)材料,各學(xué)習(xí)小組結(jié)合本節(jié)課學(xué)習(xí)目標(biāo),根據(jù)課堂引導(dǎo)材料中得內(nèi)容,以小組合作的形式,組內(nèi)交流、總結(jié),并記錄合作學(xué)習(xí)中碰到的問題。組內(nèi)各成員根據(jù)課堂引導(dǎo)材料的要求在小組合作的前提下認(rèn)真完成課堂引導(dǎo)材料。教師在巡視中觀察各小組合作學(xué)習(xí)的情況,并進(jìn)行及時的引導(dǎo)、點撥,對普遍存在的問題做好記錄。
(二)集體講授階段。(15分鐘左右)。
1、各小組推選代表依次對課堂引導(dǎo)材料中的問題進(jìn)行解答,不足的本組成員可以補充。
2、教師對合作學(xué)習(xí)中存在的普遍的不能解決的'問題進(jìn)行集體講解。
3、各小組提出本組學(xué)習(xí)中存在的困惑,并請其他小組幫助解答,解答不了的由教師進(jìn)行解答。
(三)當(dāng)堂檢測階段。
為了及時了解本節(jié)課學(xué)生的學(xué)習(xí)效果,及對本節(jié)課進(jìn)行及時的鞏固,對學(xué)生進(jìn)行當(dāng)堂檢測,測試完試卷上交。
(注:合作學(xué)習(xí)階段與集體講授階段可以根據(jù)授課內(nèi)容進(jìn)行適當(dāng)調(diào)整次序或交叉進(jìn)行)。
教師發(fā)放根據(jù)本節(jié)課所學(xué)內(nèi)容制定的針對性作業(yè),以幫助學(xué)生進(jìn)一步鞏固提高課堂所學(xué)。
數(shù)學(xué)最簡二次根式教案篇五
3.通過二次根式的分母有理化,培養(yǎng)學(xué)生的運算能力.
4.通過學(xué)習(xí)分母有理化與除法的關(guān)系,向?qū)W生滲透轉(zhuǎn)化的數(shù)學(xué)思想
小結(jié)、歸納、提高
1.教學(xué)重點:分母有理化.
2.教學(xué)難點:分母有理化的技巧.
1課時
投影儀、膠片、多媒體
復(fù)習(xí)小結(jié),歸納整理,應(yīng)用提高,以學(xué)生活動為主
【復(fù)習(xí)提問】
二次根式混合運算的步驟、運算順序、互為有理化因式.
例1 說出下列算式的運算步驟和順序:
(1) (先乘除,后加減).
(2) (有括號,先去括號;不宜先進(jìn)行括號內(nèi)的運算).
(3)辨別有理化因式:
有理化因式: 與 , 與 , 與 …
不是有理化因式: 與 , 與 …
例如:等式子的化簡,如果分母是兩個二次根式的和,應(yīng)該怎樣化簡?
引入新課題.
【引入新課】
例2 把下列各式的分母有理化:
(1) ; (2) ; (3)
解:略.
數(shù)學(xué)最簡二次根式教案篇六
難點:把被開方數(shù)是多項式和分式的二次根式化為最簡二次根式。
請說出第(3),(4)題的解題過程。
答:第(3)題的被開方數(shù)是一個多項式,先把它分解因式,再運用積的算術(shù)平方根的性質(zhì),把根號中的平方式及平方數(shù)開出來,運算結(jié)果應(yīng)化為最簡二次根式。
理化。
請說出各題的特點和解題思路。
答:(1)題的被開方數(shù)及(2)題的被開方數(shù)的分子是多項式,應(yīng)化成因式積的形式,可以先分解因式,再化簡。
(3)題的被開方數(shù)的分母是兩個數(shù)的平方差,先利用平方差公式把它化為乘積形式,再根據(jù)商的算術(shù)平方根和積的算術(shù)平方根的性質(zhì)及分母有理化的方法,使運算結(jié)果為最簡二次根式。
計算:
依據(jù)二次根式的乘除法的法則進(jìn)行計算,最后要把計算結(jié)果化成最簡二次根式。
1.選擇題:
(7)下列化簡中,正確的是[]。
(8)下列化簡中,錯誤的是[]。
3.計算:
答案:
1.把一個式子化為最簡二次根式時,如果被開方數(shù)是多項式,應(yīng)把它化成積的形式,一般可考慮先分解因式,然后再化簡。
2.如果一個式子的被開方數(shù)的分母是一個多項式,而這個多項式又不能分解因式(如課堂練習(xí)2(2)),在分母有理化時,把分子分母同乘以這個多項式。
3.二次根式的乘除法運算,運算結(jié)果一定要化為最簡二次根式。
2.計算:
答案:
最簡二次根式教學(xué)分二課時進(jìn)行。教學(xué)設(shè)計中首先安排討論二次根式的被開方數(shù)是單項式以及被開方數(shù)的分母是單項式的情況,然后再討論被開方數(shù)是多項式和分母是多項式的情況。通過5個例題及課堂練習(xí),最后達(dá)到使學(xué)生比較深刻地理解最簡二次根式的概念,達(dá)到熟練地掌握把二次根式化為最簡二次根式的教學(xué)目標(biāo).
的是引導(dǎo)學(xué)生能把一個式子化簡為最簡二次根式應(yīng)用于有關(guān)計算問題中去,把最簡二次根式和已學(xué)過的二次根式的乘除運算進(jìn)行聯(lián)系,促使學(xué)生把單個概念和方法納入認(rèn)知系統(tǒng)中,啟發(fā)學(xué)生認(rèn)識到二次根式的乘除運算與最簡二次根式是密切關(guān)聯(lián)的。
數(shù)學(xué)最簡二次根式教案篇七
教法:
2、講練結(jié)合法:在例題教學(xué)中,引導(dǎo)學(xué)生閱讀,與平方根進(jìn)行類比,獲得解決問題的方法后配以精講,并進(jìn)行分層練習(xí),培養(yǎng)學(xué)生的閱讀習(xí)慣和規(guī)范的解題格式。
學(xué)法:
1、類比的方法通過觀察、類比,使學(xué)生感悟二次根式的模型,形成有效的學(xué)習(xí)策略。
2、閱讀的方法讓學(xué)生閱讀教材及材料,體驗一定的閱讀方法,提高閱讀能力。
3、分組討論法將自己的意見在小組內(nèi)交換,達(dá)到取長補短,體驗學(xué)習(xí)活動中的交流與合作。
4、練習(xí)法采用不同的練習(xí)法,鞏固所學(xué)的知識;利用教材進(jìn)行自檢,小組內(nèi)進(jìn)行他檢,提高學(xué)生的素質(zhì)。
數(shù)學(xué)最簡二次根式教案篇八
新教材打破了舊教材從定義出發(fā),由理論到理論,按部就班的舊格局,創(chuàng)造出從實踐到理論再回到實踐,由淺入深,符合認(rèn)知結(jié)構(gòu)的新模式。本節(jié)首先通過四個實際問題引出二次根式的概念,給出二次根式的意義。然后讓學(xué)生通過二次根式的意義和算術(shù)平方根的意義找出二次根式的三個性質(zhì)。本節(jié)通過學(xué)生所熟悉的實際問題建立二次根式的概念,使學(xué)生在經(jīng)歷將現(xiàn)實問題符號化的過程中,進(jìn)一步體會二次根式的重要作用,發(fā)展學(xué)生的應(yīng)用意識。
教學(xué)目標(biāo)。
知識與技能。
1.知道什么是二次根式,并會用二次根式的意義解題;。
2.熟記二次根式的性質(zhì),并能靈活應(yīng)用;。
過程與方法。
通過二次根式的概念和性質(zhì)的學(xué)習(xí),培養(yǎng)邏輯思維能力;。
情感態(tài)度價值觀。
1.經(jīng)歷將現(xiàn)實問題符號化的過程,發(fā)展應(yīng)用的意識;。
2.通過二次根式性質(zhì)的介紹滲透對稱性、規(guī)律性的數(shù)學(xué)美。
教學(xué)重點和難點。
重點:(1)二次根式的意義;(2)二次根式中字母的取值范圍;。
難點:確定二次根式中字母的取值范圍。
教學(xué)方法。
啟發(fā)式、講練結(jié)合。
教學(xué)媒體。
多媒體。
課時安排。
1課時。
數(shù)學(xué)最簡二次根式教案篇九
3.通過利用計算器求值體驗現(xiàn)代科技產(chǎn)品迅速、精確的功能,激發(fā)學(xué)習(xí)知識的興趣。
教學(xué)重點:用計算器求一個正數(shù)的平方根的程序。
教學(xué)難點:準(zhǔn)確用計算器求解一個正數(shù)的平方根。
講練結(jié)合。
實物投影儀,計算器。
利用計算器求解既快又精確,操作時要嚴(yán)格按照步驟執(zhí)行。特別注意要用到第二功能鍵,首先要先按“2f”在按需要的鍵。由于各種計算器的鍵的功能各不相同,因此要注意操作順序,查看說明書熟悉各鍵的具體功能。
教材a組1、2、3。
數(shù)學(xué)最簡二次根式教案篇十
上節(jié)課我們認(rèn)識了什么是二次根式,那么二次根式有什么性質(zhì)呢?本節(jié)課我們一起來學(xué)習(xí)。
二、展示目標(biāo),自主學(xué)習(xí):
自學(xué)指導(dǎo):認(rèn)真閱讀課本第3頁——4頁內(nèi)容,完成下列任務(wù):
1、請比較與0的大小,你得到的結(jié)論是:________________________。
2、完成3頁“探究”中的填空,你得到的結(jié)論是____________________。
3、看例2是怎樣利用性質(zhì)進(jìn)行計算的。
4、完成4頁“探究”中的填空,你得到的結(jié)論是:____________________。
5、看懂例3,有困難可與同伴交流或問老師。
數(shù)學(xué)最簡二次根式教案篇十一
4.通過學(xué)習(xí)分母有理化與除法的關(guān)系,向?qū)W生滲透轉(zhuǎn)化的數(shù)學(xué)思想。
二、教學(xué)設(shè)計。
小結(jié)、歸納、提高。
三、重點、難點解決辦法。
1.教學(xué)重點:分母有理化.。
2.教學(xué)難點:分母有理化的技巧.。
四、課時安排。
1課時。
五、教具學(xué)具準(zhǔn)備。
投影儀、膠片、多媒體。
六、師生互動活動設(shè)計。
復(fù)習(xí)小結(jié),歸納整理,應(yīng)用提高,以學(xué)生活動為主。
七、教學(xué)過程。
【復(fù)習(xí)提問】。
例1說出下列算式的運算步驟和順序:
(1)(先乘除,后加減).。
(2)(有括號,先去括號;不宜先進(jìn)行括號內(nèi)的運算).。
(3)辨別有理化因式:
有理化因式:與,與,與…。
不是有理化因式:與,與…。
例如,、、等式子的化簡,如果分母是兩個二次根式的和,應(yīng)該怎樣化簡?
引入新課題.。
【引入新課】。
例2把下列各式的分母有理化:
(1);(2);(3)。
解:略.。
(二)隨堂練習(xí)。
1.把下列各式的分母有理化:
(1);(2);
(3);(4).。
解:(1).。
(2).。
另解:.。
(3)。
.
另解:.。
通過以上例題和練習(xí)題,可以看出,有關(guān)二次根式的.除法,可先寫成分式的形式,然后通過分母有理化進(jìn)行運算,例如:
現(xiàn)將分母有理化就可以了.。
學(xué)生易發(fā)生如下錯誤將式子變形為而正確的做法是.。
2.計算:
(1);
(2);
(3).。
解:(1)。
.
(2)。
.
(3)。
.
(三)小結(jié)。
數(shù)學(xué)最簡二次根式教案篇十二
4.通過學(xué)習(xí)分母有理化與除法的關(guān)系,向?qū)W生滲透轉(zhuǎn)化的數(shù)學(xué)思想。
二、教學(xué)設(shè)計。
小結(jié)、歸納、提高。
三、重點、難點解決辦法。
1.教學(xué)重點:分母有理化.。
2.教學(xué)難點:分母有理化的技巧.。
四、課時安排。
1課時。
五、教具學(xué)具準(zhǔn)備。
投影儀、膠片、多媒體。
六、師生互動活動設(shè)計。
復(fù)習(xí)小結(jié),歸納整理,應(yīng)用提高,以學(xué)生活動為主。
七、教學(xué)過程。
【復(fù)習(xí)提問】。
例1說出下列算式的運算步驟和順序:
(1)(先乘除,后加減).。
(2)(有括號,先去括號;不宜先進(jìn)行括號內(nèi)的運算).。
(3)辨別有理化因式:
有理化因式:與,與,與…。
不是有理化因式:與,與…。
例如,、、等式子的化簡,如果分母是兩個二次根式的和,應(yīng)該怎樣化簡?
引入新課題.。
【引入新課】。
例2把下列各式的分母有理化:
(1);(2);(3)。
解:略.。
(二)隨堂練習(xí)。
1.把下列各式的分母有理化:
(1);(2);
(3);(4).。
解:(1).。
(2).。
另解:.。
(3)。
.
另解:.。
通過以上例題和練習(xí)題,可以看出,有關(guān)二次根式的除法,可先寫成分式的形式,然后通過分母有理化進(jìn)行運算,例如:
現(xiàn)將分母有理化就可以了.。
學(xué)生易發(fā)生如下錯誤將式子變形為而正確的做法是.。
2.計算:
(1);
(2);
(3).。
解:(1)。
.
(2)。
.
(3)。
.
(三)小結(jié)。
2.注意對有理化因式的概括并尋找出它的規(guī)律.。
(2)練習(xí):教材p202中1、2.。
(四)布置作業(yè)。
教材p205中4、5.。
(五)板書設(shè)計。
標(biāo)題。
1.復(fù)習(xí)內(nèi)容3.練習(xí)題一。
2.例44.練習(xí)題二。
數(shù)學(xué)最簡二次根式教案篇十三
本課先通過對實際問題的解決來引入二次根式的加減運算,此問題貼近學(xué)生生活,易激發(fā)學(xué)生的學(xué)習(xí)興趣。采用分組討論,由四人一組探索、發(fā)現(xiàn)、解決問題,培養(yǎng)學(xué)生用數(shù)學(xué)方法解決實際問題的能力。.對法則的教學(xué)與整式的加減比較學(xué)習(xí)。再由學(xué)生自主討論并總結(jié)二次根式的加減運算法則,在理解、掌握和運用二次根式的加減法運算法則的學(xué)習(xí)過程中,滲透了分析、概括、類比等數(shù)學(xué)思想方法,提高學(xué)生的思維品質(zhì)和興趣。
學(xué)生在自主探究的過程中發(fā)現(xiàn)問題,解決問題,總結(jié)規(guī)律,加深對所學(xué)知識的理解。并向?qū)W生傳遞這樣一個信息:二次根式的加減運算并不是孤立的全新的知識,可以將二次根式的加減進(jìn)行比較學(xué)習(xí)。
使學(xué)生掌握被開方數(shù)相同的二次根式合并的方法,注意二次根式加減運算的聯(lián)系與區(qū)別,避免一些常見錯誤,提高解題的準(zhǔn)確程度。4、在二次根式的加減運算時,首先需搞清楚什么是同類二次根式,同類二次根式的判斷,關(guān)鍵是能熟練準(zhǔn)確地化二次根式為最簡二次根式。再由學(xué)生自主討論并總結(jié)二次根式的加減運算法則。
數(shù)學(xué)最簡二次根式教案篇十四
要判斷幾個根式是不是同類二次根式,須先化簡根號里面的數(shù),把非最簡二次根式化成最簡二次根式,然后判斷。判斷兩個最簡二次根式是否為同類二次根式,其依據(jù)是“被開方數(shù)是否相同”,與根號外的因式無關(guān)。
1、被開方數(shù)中不含能開得盡方的.因數(shù)或因式;
2、被開方數(shù)的因數(shù)是整數(shù),因式是整式。
數(shù)學(xué)最簡二次根式教案篇十五
一、教學(xué)目標(biāo)。
1.理解分母有理化與除法的關(guān)系.。
4.通過學(xué)習(xí)分母有理化與除法的關(guān)系,向?qū)W生滲透轉(zhuǎn)化的數(shù)學(xué)思想。
二、教學(xué)設(shè)計。
小結(jié)、歸納、提高。
三、重點、難點解決辦法。
1.教學(xué)重點:分母有理化.。
2.教學(xué)難點:分母有理化的技巧.。
四、課時安排。
1課時。
五、教具學(xué)具準(zhǔn)備。
投影儀、膠片、多媒體。
六、師生互動活動設(shè)計。
復(fù)習(xí)小結(jié),歸納整理,應(yīng)用提高,以學(xué)生活動為主。
七、教學(xué)過程()。
【復(fù)習(xí)提問】。
例1說出下列算式的運算步驟和順序:
(1)(先乘除,后加減).。
(2)(有括號,先去括號;不宜先進(jìn)行括號內(nèi)的運算).。
(3)辨別有理化因式:
有理化因式:與,與,與…。
不是有理化因式:與,與…。
例如,、、等式子的化簡,如果分母是兩個二次根式的和,應(yīng)該怎樣化簡?
引入新課題.。
【引入新課】。
例2把下列各式的分母有理化:
(1);(2);(3)。
解:略.。
(二)隨堂練習(xí)。
1.把下列各式的分母有理化:
(1);(2);
(3);(4).。
解:(1).。
(2).。
另解:.。
(3)。
.
另解:.。
通過以上例題和練習(xí)題,可以看出,有關(guān)二次根式的除法,可先寫成分式的形式,然后通過分母有理化進(jìn)行運算,例如:
現(xiàn)將分母有理化就可以了.。
學(xué)生易發(fā)生如下錯誤將式子變形為而正確的做法是.。
2.計算:
(1);
(2);
(3).。
解:(1)。
.
(2)。
.
(3)。
.
(三)小結(jié)。
2.注意對有理化因式的概括并尋找出它的規(guī)律.。
(2)練習(xí):教材p202中1、2.。
(四)布置作業(yè)。
教材p205中4、5.。
(五)板書設(shè)計。
標(biāo)題。
1.復(fù)習(xí)內(nèi)容3.練習(xí)題一。
2.例44.練習(xí)題二。
數(shù)學(xué)最簡二次根式教案篇十六
教學(xué)過程。
一、復(fù)習(xí)引入。
1.把下列各根式化簡,并說出化簡的根據(jù):
2.引導(dǎo)學(xué)生觀察考慮:
化簡前后的根式,被開方數(shù)有什么不同?
化簡前的被開方數(shù)有分?jǐn)?shù),分式;化簡后的被開方數(shù)都是整數(shù)或整式,且被開方數(shù)中開得盡方的因數(shù)或因式,被移到根號外。
3.啟發(fā)學(xué)生回答:
二次根式,請同學(xué)們考慮一下被開方數(shù)符合什么條件的二次根式叫做最簡二次根式?
二、講解新課。
1.總結(jié)學(xué)生回答的內(nèi)容后,給出最簡二次根式定義:
滿足下列兩個條件的二次根式叫做最簡二次根式:
(1)被開方數(shù)的因數(shù)是整數(shù),因式是整式;
(2)被開方數(shù)中不含能開得盡的因數(shù)或因式。
最簡二次根式定義中第(1)條說明被開方數(shù)不含有分母;分母是1的例外。第(2)條說明被開方數(shù)中每個因式的指數(shù)小于2;特別注意被開方數(shù)應(yīng)化為因式連乘積的形式。
2.練習(xí):
下列各根式是否為最簡二次根式,不是最簡二次根式的說明原因:
3.例題:
4.總結(jié)。
把二次根式化成最簡二次根式的根據(jù)是什么?應(yīng)用了什么方法?
當(dāng)被開方數(shù)為整數(shù)或整式時,把被開方數(shù)進(jìn)行因數(shù)或因式分解,根據(jù)積的算術(shù)平方根的性質(zhì),把開得盡方的.因數(shù)或因式用它的算術(shù)平方根代替移到根號外面去。
當(dāng)被開方數(shù)是分?jǐn)?shù)或分式時,根據(jù)分式的基本性質(zhì)和商的算術(shù)平方根的性質(zhì)化去分母。
此方法是先根據(jù)分式的基本性質(zhì)把被開方數(shù)的分母化成能開得盡方的因式,然后分子、分母再分別化簡。
三、鞏固練習(xí)。
2.判斷下列各根式,哪些是最簡二次根式?哪些不是最簡二次根式?如果不是,把它化成最簡二次根式。
【本文地址:http://www.aiweibaby.com/zuowen/14627995.html】