平方差公式教學(xué)教案大全(14篇)

格式:DOC 上傳日期:2023-11-25 16:54:18
平方差公式教學(xué)教案大全(14篇)
時(shí)間:2023-11-25 16:54:18     小編:文鋒

編寫(xiě)教案有助于提高教師對(duì)教學(xué)內(nèi)容的理解和把握。教案的評(píng)估方法應(yīng)該多樣化,能夠全面了解學(xué)生的學(xué)習(xí)情況和教學(xué)成果。這是一份編寫(xiě)精心的教案,希望能對(duì)大家的教學(xué)有所啟發(fā)

平方差公式教學(xué)教案篇一

一、教學(xué)目標(biāo):

1、使學(xué)生理解和掌握平方差公式,并會(huì)用公式進(jìn)行計(jì)算;

2、注意培養(yǎng)學(xué)生分析、綜合和抽象、概括以及運(yùn)算能力,培養(yǎng)應(yīng)用數(shù)學(xué)的意識(shí);

3、在緊張而輕松地教學(xué)氛圍內(nèi),進(jìn)一步激發(fā)學(xué)生的學(xué)習(xí)興趣熱情。

二、重點(diǎn)、難點(diǎn):

重點(diǎn)是掌握公式的結(jié)構(gòu)特征及正確運(yùn)用公式。難點(diǎn)是公式推導(dǎo)的理解及字母的廣泛含義。

三、教學(xué)方法。

以教師的精講、引導(dǎo)為主,輔以引導(dǎo)發(fā)現(xiàn)、合作交流。

四、教學(xué)過(guò)程。

(一)創(chuàng)設(shè)問(wèn)題情境,引入新課。

1、你會(huì)做嗎?

(1)(x+1)(x—1)=_____=()。

(3)(3x+2)(3x—2)=_____=()()。

2、能否用簡(jiǎn)便方法運(yùn)算:×(這里需要用到平方差公式,設(shè)疑激發(fā)學(xué)生興趣。)。

交流上面第1題的答案,引導(dǎo)學(xué)生進(jìn)一步思考:

(合作交流,探究新知:兩數(shù)之和與這兩數(shù)之差相乘時(shí),積是二項(xiàng)式。這是因?yàn)榫邆溥@樣特點(diǎn)的兩個(gè)二項(xiàng)式相乘,積的四項(xiàng)中,會(huì)出現(xiàn)互為相反數(shù)的兩項(xiàng),合并這兩項(xiàng)的結(jié)果為零,于是就剩下兩項(xiàng)了。而它們的積等于這兩個(gè)數(shù)的平方差。)。

我們把(a+b)(a—b)=a—b叫做乘法的平方差公式。再遇到類(lèi)似形式的多項(xiàng)式相乘時(shí),就可以直接運(yùn)用公式進(jìn)行計(jì)算。(在此基礎(chǔ)上,讓學(xué)生用語(yǔ)言敘述公式,并讓學(xué)生熟記。)。

(三)嘗試探究。

(四)鞏固練習(xí)。

(l)(x+a)(x—a)。

(2)(m+n)(m—n)(3)(a+3b)(a—3b)。

(4)(1—5y)(l+5y)(5)998×1002。

(6)395×405。

2、直接寫(xiě)出答案:

(l)(—a+b)(a+b)。

(2)(a—b)(b+a)。

(3)(—a—b)(—a+b)。

(4)(a—b)(—a—b)(5)999×1001。

(6)×(讓學(xué)生獨(dú)立完成,互評(píng)互改。)。

(五)小結(jié)。

2.運(yùn)用公式要注意什么?

(1)要符合公式特征才能運(yùn)用平方差公式;

(2)有些式子表面不能應(yīng)用公式,但實(shí)質(zhì)能應(yīng)用公式,要注意分清a、b。

(學(xué)生回答,教師總結(jié))。

(六)作業(yè)。

p106習(xí)題1—5題。

七、板書(shū)設(shè)計(jì):

教學(xué)反思。

通過(guò)精心備課,本節(jié)課在教學(xué)中是比較成功的。成功之處在于整個(gè)教學(xué)流程環(huán)環(huán)相扣,層層遞進(jìn),抓住了學(xué)生思維這條主線,遵循由淺入深,由特殊到一般的認(rèn)知規(guī)律,引起學(xué)生的興趣。使他們能夠積極參與其中,同時(shí),使他們的思維得到了鍛煉和發(fā)展。不足之處:時(shí)間安排不是很合理,前松后緊。課堂上沒(méi)有給更多的學(xué)生提供展示自己思考結(jié)果的機(jī)會(huì),過(guò)于注重“收”,而“放”不夠。

平方差公式教學(xué)教案篇二

指導(dǎo)學(xué)生用語(yǔ)言描述,兩數(shù)和與兩數(shù)差的積等于它們的平方差。這個(gè)公式叫做平方差公式。

指導(dǎo)學(xué)生發(fā)現(xiàn)公式的特點(diǎn):

1、左邊為兩數(shù)的和乘以?xún)蓴?shù)的差,即在左邊是兩個(gè)二項(xiàng)式的積,在這兩個(gè)二項(xiàng)式中有一項(xiàng)(a)完全相同,另一項(xiàng)(b與-b)互為相反數(shù)。右邊為這兩個(gè)數(shù)的平方差即完全相同的項(xiàng)的平方減去符號(hào)相反的平方。

2、公式中的a,b不僅可以表示具體的數(shù)字,還可以是單項(xiàng)式,多項(xiàng)式等代數(shù)式。

提醒學(xué)生利用平方公式計(jì)算,首先觀察是否符合公式的特點(diǎn),這兩個(gè)數(shù)分別是什么,其次要區(qū)別相同的項(xiàng)和相反的項(xiàng),表示兩數(shù)平方差時(shí)要加括號(hào)。

平方差公式教學(xué)教案篇三

學(xué)習(xí)目標(biāo):

1、能推導(dǎo)平方差公式,并會(huì)用幾何圖形解釋公式;。

3、經(jīng)歷探索平方差公式的推導(dǎo)過(guò)程,發(fā)展符號(hào)感,體會(huì)“特殊——一般——特殊”的認(rèn)識(shí)規(guī)律.

學(xué)習(xí)重難點(diǎn):

難點(diǎn):探索平方差公式,并用幾何圖形解釋公式.

學(xué)習(xí)過(guò)程:

一、自主探索。

1、計(jì)算:(1)(m+2)(m-2)(2)(1+3a)(1-3a)。

(3)(x+5y)(x-5y)(4)(y+3z)(y-3z)。

2、觀察以上算式及其運(yùn)算結(jié)果,你發(fā)現(xiàn)了什么規(guī)律?再舉兩例驗(yàn)證你的發(fā)現(xiàn).

3、你能用自己的語(yǔ)言敘述你的發(fā)現(xiàn)嗎?

(1)、公式左邊的兩個(gè)因式都是二項(xiàng)式。必須是相同的兩數(shù)的和與差?;蛘哒f(shuō)兩個(gè)二項(xiàng)式必須有一項(xiàng)完全相同,另一項(xiàng)只有符號(hào)不同。

(2)、公式中的a與b可以是數(shù),也可以換成一個(gè)代數(shù)式。

二、試一試。

平方差公式教學(xué)教案篇四

在探索平方差公式的過(guò)程中,發(fā)展學(xué)生的符號(hào)感和推理能力。在計(jì)算的過(guò)程中發(fā)現(xiàn)規(guī)律,并能用符號(hào)表達(dá),體會(huì)數(shù)學(xué)語(yǔ)言的嚴(yán)謹(jǐn)與簡(jiǎn)潔。

激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣,鼓勵(lì)學(xué)生自己探索,培養(yǎng)學(xué)生的合作意識(shí)與創(chuàng)新能力。

重點(diǎn)。

難點(diǎn)。

一、復(fù)習(xí)導(dǎo)入。

1.回顧多項(xiàng)式乘多項(xiàng)式的法則。

2.創(chuàng)設(shè)情境:你能快速地口算下列式子的值嗎?

(1);(2).

師生共同想辦法,想到能否把數(shù)轉(zhuǎn)化成較整的數(shù)?

變形成:,

再試試把它當(dāng)成多項(xiàng)式乘法來(lái)算算,有什么發(fā)現(xiàn)?

繼續(xù)用你發(fā)現(xiàn)的方法算算,,,成功了嗎?

我們把這個(gè)有趣的結(jié)論整理并推廣,就可以得到今天要學(xué)習(xí)的一個(gè)乘法公式,平方差公式。

二、新課講解。

探究新知。

1.觀察相乘的兩個(gè)多項(xiàng)式有什么特點(diǎn)?運(yùn)算的結(jié)果有什么特點(diǎn)?

討論交流后總結(jié)出:兩個(gè)數(shù)的和與這兩個(gè)數(shù)的差的積,等于這兩個(gè)數(shù)的平方差。

2.把式子里具體的數(shù)換成字母表示的數(shù),結(jié)論還成立嗎?

3.從上面的計(jì)算中你有什么發(fā)現(xiàn)呢?

引導(dǎo)學(xué)生發(fā)現(xiàn)對(duì)于不同形式的兩個(gè)數(shù),都有它們的和與它們的差的積都等于它們的平方差!用公式表示就是:,這里字母是任意形式的兩個(gè)數(shù)。這個(gè)公式叫做平方差公式。

下列多項(xiàng)式乘法中,能用平方差公式計(jì)算的是_______________(填寫(xiě)序號(hào))。

(1);(2);(3);

(4);(5);(6).

學(xué)生分組討論交流,歸納什么情況下可以使用平方差公式。通過(guò)討論,對(duì)平方差公式的理解達(dá)到一個(gè)新的高度:所謂兩數(shù)和、兩數(shù)差,從多項(xiàng)式的角度來(lái)看,就是有一項(xiàng)相同(),有一項(xiàng)相反(和),只要相乘的兩個(gè)多項(xiàng)式具備這樣的特點(diǎn),都可以用平方差公式計(jì)算。不難判斷,上面的式子中(2)、(5)、(6)都可以用平方差公式計(jì)算。

三、典例剖析。

師生共同解答,教師板書(shū)。初學(xué)運(yùn)用時(shí)要寫(xiě)清楚步驟。

學(xué)生解答,關(guān)注學(xué)生是否理解平方差公式,能否正確識(shí)別乘法公式里的。

例3.計(jì)算:

學(xué)生解答,教師巡視,關(guān)注學(xué)生能否合理變形,靈活運(yùn)用公式計(jì)算。

四、課堂練習(xí)。

1.下面各式的計(jì)算對(duì)不對(duì)?如果不對(duì),應(yīng)怎樣改正?

(1);

(1);(2);

(3);(4).

3.計(jì)算:

(1);(2);

教師要注意發(fā)現(xiàn)學(xué)生的錯(cuò)誤,組織學(xué)生對(duì)錯(cuò)誤進(jìn)行分析,對(duì)于第1題可以引導(dǎo)學(xué)生分析導(dǎo)致錯(cuò)誤的原因。

五、小結(jié)。

師生共同回顧平方差公式的結(jié)構(gòu)特點(diǎn),體會(huì)公式的作用,交流計(jì)算的經(jīng)驗(yàn)。教師對(duì)課堂上學(xué)生掌握不夠牢固的知識(shí)進(jìn)行辨析、強(qiáng)調(diào)與補(bǔ)充,學(xué)生也可以談一談個(gè)人的學(xué)習(xí)感受。

六、布置作業(yè)。

p50第1、6題。

平方差公式教學(xué)教案篇五

2、注意培養(yǎng)學(xué)生分析、綜合和抽象、概括以及運(yùn)算能力。

教學(xué)重點(diǎn)和難點(diǎn)。

難點(diǎn):用公式的結(jié)構(gòu)特征判斷題目能否使用公式。

教學(xué)過(guò)程設(shè)計(jì)。

我們已經(jīng)學(xué)過(guò)了多項(xiàng)式的乘法,兩個(gè)二項(xiàng)式相乘,在合并同類(lèi)項(xiàng)前應(yīng)該有幾項(xiàng)?合并同類(lèi)項(xiàng)以后,積可能會(huì)是三項(xiàng)嗎?積可能是二項(xiàng)嗎?請(qǐng)舉出例子。

讓學(xué)生動(dòng)腦、動(dòng)筆進(jìn)行探討,并發(fā)表自己的見(jiàn)解。教師根據(jù)學(xué)生的回答,引導(dǎo)學(xué)生進(jìn)一步思考:

(當(dāng)乘式是兩個(gè)數(shù)之和以及這兩個(gè)數(shù)之差相乘時(shí),積是二項(xiàng)式。這是因?yàn)榫邆溥@樣特點(diǎn)的兩個(gè)二項(xiàng)式相乘,積的四項(xiàng)中,會(huì)出現(xiàn)互為相反數(shù)的兩項(xiàng),合并這兩項(xiàng)的結(jié)果為零,于是就剩下兩項(xiàng)了。而它們的積等于乘式中這兩個(gè)數(shù)的平方差)。

繼而指出,在多項(xiàng)式的乘法中,對(duì)于某些特殊形式的多項(xiàng)式相乘,我們把它寫(xiě)成公式,并加以熟記,以便遇到類(lèi)似形式的多項(xiàng)式相乘時(shí)就可以直接運(yùn)用公式進(jìn)行計(jì)算。以后經(jīng)常遇到(a+b)(a-b)這種乘法,所以把(a+b)(a-b)=a2-b2作為公式,叫做乘法的平方差公式。

在此基礎(chǔ)上,讓學(xué)生用語(yǔ)言敘述公式。

例1計(jì)算(1+2x)(1-2x)。

解:(1+2x)(1-2x)。

=12-(2x)2。

=1-4x2.

教師引導(dǎo)學(xué)生分析題目條件是否符合平方差公式特征,并讓學(xué)生說(shuō)出本題中a,b分別表示什么。

例2計(jì)算(b2+2a3)(2a3-b2)。

解:(b2+2a3)(2a3-b2)。

=(2a3+b2)(2a3-b2)。

=(2a3)2-(b2)2。

=4a6-b4.

教師引導(dǎo)學(xué)生發(fā)現(xiàn),只需將(b2+2a3)中的兩項(xiàng)交換位置,就可用平方差公式進(jìn)行計(jì)算。

課堂練習(xí)。

(l)(x+a)(x-a);(2)(m+n)(m-n);

(3)(a+3b)(a-3b);(4)(1-5y)(l+5y)。

例3計(jì)算(-4a-1)(-4a+1)。

讓學(xué)生在練習(xí)本上計(jì)算,教師巡視學(xué)生解題情況,讓采用不同解法的兩個(gè)學(xué)生進(jìn)行板演。

解法1:(-4a-1)(-4a+1)。

=[-(4a+l)][-(4a-l)]。

=(4a+1)(4a-l)。

=(4a)2-l2。

=16a2-1.

解法2:(-4a-l)(-4a+l)。

=(-4a)2-l。

=16a2-1.

根據(jù)學(xué)生板演,教師指出兩種解法都很正確,解法1先用了提出負(fù)號(hào)的辦法,使兩乘式首項(xiàng)都變成正的,而后看出兩數(shù)的和與這兩數(shù)的差相乘的形式,應(yīng)用平方差公式,寫(xiě)出結(jié)果。解法2把-4a看成一個(gè)數(shù),把1看成另一個(gè)數(shù),直接寫(xiě)出(-4a)2-l2后得出結(jié)果。采用解法2的同學(xué)比較注意平方差公式的特征,能看到問(wèn)題的本質(zhì),運(yùn)算簡(jiǎn)捷。因此,我們?cè)谟?jì)算中,先要分析題目的數(shù)字特征,然后正確應(yīng)用平方差公式,就能比較簡(jiǎn)捷地得到答案。

課堂練習(xí)。

1、口答下列各題:

(l)(-a+b)(a+b);(2)(a-b)(b+a);

(3)(-a-b)(-a+b);(4)(a-b)(-a-b)。

2、計(jì)算下列各題:

(1)(4x-5y)(4x+5y);(2)(-2x2+5)(-2x2-5);

教師巡視學(xué)生練習(xí)情況,請(qǐng)不同解法的學(xué)生,或發(fā)生錯(cuò)誤的學(xué)生板演,教師和學(xué)生一起分析解法。

2、運(yùn)用公式要注意什么?

(1)要符合公式特征才能運(yùn)用平方差公式;

(2)有些式子表面不能應(yīng)用公式,但實(shí)質(zhì)能應(yīng)用公式,要注意變形。

(l)(x+2y)(x-2y);(2)(2a-3b)(3b+2a);

(3)(-1+3x)(-1-3x);(4)(-2b-5)(2b-5);

平方差公式教學(xué)教案篇六

(4)(+3z)(-3z)=_____.

(1)(x+1)(1+x),。

(2)(2x+)(-2x),。

(3)(a-b)(-a+b),。

(4)(-a-b)(-a+b)。

幫助學(xué)生理解公式的特征,掌握公式的特征是正確運(yùn)用公式的關(guān)鍵,除了掌握公式的特征外還有必要理解公式中的字母a、b具有廣泛的含義,幾字母a、b可以表示具體的數(shù)、也可以表示單項(xiàng)式或多項(xiàng)式,由于學(xué)生的認(rèn)知能力有一個(gè)過(guò)程,教學(xué)中應(yīng)由易到難逐步安排學(xué)習(xí)這方面的內(nèi)容。

平方差公式教學(xué)教案篇七

3、在緊張而輕松地教學(xué)氛圍內(nèi),進(jìn)一步激發(fā)學(xué)生的學(xué)習(xí)興趣熱情。

重點(diǎn)是掌握公式的結(jié)構(gòu)特征及正確運(yùn)用公式。難點(diǎn)是公式推導(dǎo)的理解及字母的廣泛含義。

以教師的精講、引導(dǎo)為主,輔以引導(dǎo)發(fā)現(xiàn)、合作交流。

(一)創(chuàng)設(shè)問(wèn)題情境,引入新課。

1、你會(huì)做嗎?

(1)(x+1)(x—1)=_____=()()。

(3)(3x+2)(3x—2)=_____=()()。

2、能否用簡(jiǎn)便方法運(yùn)算:×(這里需要用到平方差公式,設(shè)疑激發(fā)學(xué)生興趣。)。

交流上面第1題的答案,引導(dǎo)學(xué)生進(jìn)一步思考:

(合作交流,探究新知:兩數(shù)之和與這兩數(shù)之差相乘時(shí),積是二項(xiàng)式。這是因?yàn)榫邆溥@樣特點(diǎn)的兩個(gè)二項(xiàng)式相乘,積的四項(xiàng)中,會(huì)出現(xiàn)互為相反數(shù)的兩項(xiàng),合并這兩項(xiàng)的結(jié)果為零,于是就剩下兩項(xiàng)了。而它們的積等于這兩個(gè)數(shù)的平方差。)。

我們把(a+b)(a—b)=a—b叫做乘法的平方差公式。再遇到類(lèi)似形式的多項(xiàng)式相乘時(shí),就可以直接運(yùn)用公式進(jìn)行計(jì)算。(在此基礎(chǔ)上,讓學(xué)生用語(yǔ)言敘述公式,并讓學(xué)生熟記。)。

(三)嘗試探究。

(四)鞏固練習(xí)。

(l)(x+a)(x—a)。

(2)(m+n)(m—n)(3)(a+3b)(a—3b)。

(4)(1—5y)(l+5y)(5)998×1002。

(6)395×405。

2、直接寫(xiě)出答案:

(l)(—a+b)(a+b)。

(2)(a—b)(b+a)。

(3)(—a—b)(—a+b)。

(4)(a—b)(—a—b)(5)999×1001。

(6)×(讓學(xué)生獨(dú)立完成,互評(píng)互改。)。

(五)小結(jié)。

2.運(yùn)用公式要注意什么?

(1)要符合公式特征才能運(yùn)用平方差公式;

(2)有些式子表面不能應(yīng)用公式,但實(shí)質(zhì)能應(yīng)用公式,要注意分清a、b。

(學(xué)生回答,教師總結(jié))。

(六)作業(yè)。

p106習(xí)題1—5題。

教學(xué)反思。

通過(guò)精心備課,本節(jié)課在教學(xué)中是比較成功的。成功之處在于整個(gè)教學(xué)流程環(huán)環(huán)相扣,層層遞進(jìn),抓住了學(xué)生思維這條主線,遵循由淺入深,由特殊到一般的認(rèn)知規(guī)律,引起學(xué)生的興趣。使他們能夠積極參與其中,同時(shí),使他們的思維得到了鍛煉和發(fā)展。不足之處:時(shí)間安排不是很合理,前松后緊。課堂上沒(méi)有給更多的學(xué)生提供展示自己思考結(jié)果的機(jī)會(huì),過(guò)于注重“收”,而“放”不夠。

平方差公式教學(xué)教案篇八

2.注意培養(yǎng)學(xué)生分析、綜合和抽象、概括以及運(yùn)算能力.

教學(xué)重點(diǎn)和難點(diǎn)。

難點(diǎn):用公式的結(jié)構(gòu)特征判斷題目能否使用公式.

教學(xué)過(guò)程設(shè)計(jì)。

我們已經(jīng)學(xué)過(guò)了多項(xiàng)式的乘法,兩個(gè)二項(xiàng)式相乘,在合并同類(lèi)項(xiàng)前應(yīng)該有幾項(xiàng)?合并同類(lèi)項(xiàng)以后,積可能會(huì)是三項(xiàng)嗎?積可能是二項(xiàng)嗎?請(qǐng)舉出例子.

讓學(xué)生動(dòng)腦、動(dòng)筆進(jìn)行探討,并發(fā)表自己的見(jiàn)解.教師根據(jù)學(xué)生的回答,引導(dǎo)學(xué)生進(jìn)一步思考:

(當(dāng)乘式是兩個(gè)數(shù)之和以及這兩個(gè)數(shù)之差相乘時(shí),積是二項(xiàng)式.這是因?yàn)榫邆溥@樣特點(diǎn)的兩個(gè)二項(xiàng)式相乘,積的四項(xiàng)中,會(huì)出現(xiàn)互為相反數(shù)的兩項(xiàng),合并這兩項(xiàng)的結(jié)果為零,于是就剩下兩項(xiàng)了.而它們的積等于乘式中這兩個(gè)數(shù)的平方差)。

繼而指出,在多項(xiàng)式的乘法中,對(duì)于某些特殊形式的多項(xiàng)式相乘,我們把它寫(xiě)成公式,并加以熟記,以便遇到類(lèi)似形式的多項(xiàng)式相乘時(shí)就可以直接運(yùn)用公式進(jìn)行計(jì)算.以后經(jīng)常遇到(a+b)(a-b)這種乘法,所以把(a+b)(a-b)=a2-b2作為公式,叫做乘法的平方差公式.

在此基礎(chǔ)上,讓學(xué)生用語(yǔ)言敘述公式.

二、運(yùn)用舉例變式練習(xí)。

例1計(jì)算(1+2x)(1-2x).

解:(1+2x)(1-2x)。

=12-(2x)2。

=1-4x2.

教師引導(dǎo)學(xué)生分析題目條件是否符合平方差公式特征,并讓學(xué)生說(shuō)出本題中a,b分別表示什么.

例2計(jì)算(b2+2a3)(2a3-b2).

解:(b2+2a3)(2a3-b2)。

=(2a3+b2)(2a3-b2)。

=(2a3)2-(b2)2。

=4a6-b4.

教師引導(dǎo)學(xué)生發(fā)現(xiàn),只需將(b2+2a3)中的兩項(xiàng)交換位置,就可用平方差公式進(jìn)行計(jì)算.

課堂練習(xí)。

(l)(x+a)(x-a);(2)(m+n)(m-n);。

(3)(a+3b)(a-3b);(4)(1-5y)(l+5y).

例3計(jì)算(-4a-1)(-4a+1).

讓學(xué)生在練習(xí)本上計(jì)算,教師巡視學(xué)生解題情況,讓采用不同解法的兩個(gè)學(xué)生進(jìn)行板演.

解法1:(-4a-1)(-4a+1)。

=[-(4a+l)][-(4a-l)]。

=(4a+1)(4a-l)。

=(4a)2-l2。

=16a2-1.

解法2:(-4a-l)(-4a+l)。

=(-4a)2-l。

=16a2-1.

根據(jù)學(xué)生板演,教師指出兩種解法都很正確,解法1先用了提出負(fù)號(hào)的辦法,使兩乘式首項(xiàng)都變成正的,而后看出兩數(shù)的和與這兩數(shù)的差相乘的形式,應(yīng)用平方差公式,寫(xiě)出結(jié)果.解法2把-4a看成一個(gè)數(shù),把1看成另一個(gè)數(shù),直接寫(xiě)出(-4a)2-l2后得出結(jié)果.采用解法2的同學(xué)比較注意平方差公式的特征,能看到問(wèn)題的本質(zhì),運(yùn)算簡(jiǎn)捷.因此,我們?cè)谟?jì)算中,先要分析題目的數(shù)字特征,然后正確應(yīng)用平方差公式,就能比較簡(jiǎn)捷地得到答案.

課堂練習(xí)。

1.口答下列各題:

(l)(-a+b)(a+b);(2)(a-b)(b+a);。

(3)(-a-b)(-a+b);(4)(a-b)(-a-b).

2.計(jì)算下列各題:

(1)(4x-5y)(4x+5y);(2)(-2x2+5)(-2x2-5);。

教師巡視學(xué)生練習(xí)情況,請(qǐng)不同解法的學(xué)生,或發(fā)生錯(cuò)誤的學(xué)生板演,教師和學(xué)生一起分析解法.

三、小結(jié)。

2.運(yùn)用公式要注意什么?

(1)要符合公式特征才能運(yùn)用平方差公式;。

(2)有些式子表面不能應(yīng)用公式,但實(shí)質(zhì)能應(yīng)用公式,要注意變形.

四、作業(yè)。

(l)(x+2y)(x-2y);(2)(2a-3b)(3b+2a);。

(3)(-1+3x)(-1-3x);(4)(-2b-5)(2b-5);。

2.計(jì)算:

(3)x(x-3)-(x+7)(x-7);(4)(2x-5)(x-2)+(3x-4)(3x+4).

平方差公式教學(xué)教案篇九

導(dǎo)入新課,是課堂教學(xué)的重要一環(huán)。“好的開(kāi)始是成功的一半”,首先是一個(gè)智力搶答,學(xué)生通過(guò)搶答初步感知平方差公式,接下來(lái),采用小組合作學(xué)習(xí)的方式,利用“四問(wèn)”讓學(xué)生進(jìn)行試驗(yàn)操作,學(xué)生選擇的字母有很多種,讓它們都有其共性。由此,學(xué)生在探索中驗(yàn)證自己的猜想,同時(shí)也感受和認(rèn)識(shí)知識(shí)的發(fā)生和發(fā)展的過(guò)程,得出(a+b)(a-b)=a2-b2.經(jīng)過(guò)不斷的嘗試小組合作學(xué)習(xí)方式的教學(xué),我發(fā)現(xiàn)也真正體會(huì)到,只要我們給學(xué)生創(chuàng)造一個(gè)自由活動(dòng)的空間,學(xué)生便會(huì)還給我們一個(gè)意外的驚喜。

把探究的機(jī)會(huì)留給學(xué)生,讓學(xué)生在動(dòng)腦思考中構(gòu)建知識(shí),真正成為教學(xué)活動(dòng)的主體。使他們?cè)诨顒?dòng)中進(jìn)行規(guī)律的總結(jié),并且通過(guò)交流練習(xí)、應(yīng)用,深化了對(duì)規(guī)律的理解。學(xué)生對(duì)知識(shí)的掌握往往通過(guò)練習(xí)來(lái)達(dá)到目的。新授后要有針對(duì)性強(qiáng)的有效訓(xùn)練,讓學(xué)生對(duì)所學(xué)知識(shí)建立初步的表象,以達(dá)到對(duì)知識(shí)的理解、掌握及應(yīng)用,實(shí)現(xiàn)從感性認(rèn)識(shí)到理性認(rèn)識(shí)的升華。在此設(shè)計(jì)了三個(gè)層次的有效訓(xùn)練,讓學(xué)生體會(huì)平方差公式的特點(diǎn):第一層次是直接運(yùn)用公式,第二層次是將式子進(jìn)行適當(dāng)變形后應(yīng)用公式,第三個(gè)層次是平方差公式的靈活應(yīng)用。通過(guò)做題學(xué)生歸納出平方差公式的運(yùn)用技巧。

以四人小組為單位,各小組出兩道具有平方差公式的結(jié)構(gòu)特征的題目,看誰(shuí)出得有水平。學(xué)生每人都設(shè)計(jì)了題目,任意叫了四位學(xué)生在黑板上寫(xiě),經(jīng)評(píng)價(jià)結(jié)果都對(duì)了。這種方法,不僅令人耳目一新,而且把學(xué)生引入不協(xié)調(diào)——探究——發(fā)現(xiàn)——解決問(wèn)題的一個(gè)學(xué)習(xí)過(guò)程,使學(xué)生獲得思維之趣,參與之樂(lè),成功之悅。

本節(jié)課在采用小組學(xué)習(xí)之后,為了讓學(xué)生的鞏固有效果,采用了學(xué)生上臺(tái)講解、作業(yè)實(shí)物投影的方式來(lái)進(jìn)行,多種方式的選擇,讓學(xué)生暴露出自己的問(wèn)題,然后通過(guò)生生互動(dòng)、師生互動(dòng)解決問(wèn)題,實(shí)現(xiàn)問(wèn)題及時(shí)處理,學(xué)習(xí)效果不錯(cuò)。

1、節(jié)奏的把握上。

這一節(jié)我覺(jué)得不是很順,尤其在從幾何角度解釋平方差公式、例2⑵的其他計(jì)算方法等問(wèn)題上,花了不少時(shí)間,節(jié)奏把握的不是很好。

2、充分發(fā)揮學(xué)生的主體地位上。

這節(jié)課上,我覺(jué)得學(xué)生的積極性不很高,回答問(wèn)題沒(méi)有激情,說(shuō)明我背學(xué)生還不夠,自己想象的比現(xiàn)實(shí)的好。

平方差公式教學(xué)教案篇十

上周我們學(xué)習(xí)了“乘法公式”,乘法公式在簡(jiǎn)化多項(xiàng)式乘法運(yùn)算、因式分解及以后的數(shù)學(xué)學(xué)習(xí)中有著廣泛的應(yīng)用。根據(jù)課標(biāo)的規(guī)定主要學(xué)習(xí)兩個(gè)最基本的乘法公式,留出更多的時(shí)間和空間給學(xué)生自主探索,發(fā)現(xiàn)規(guī)律,體驗(yàn)乘法公式的來(lái)源,理解公式的意義和作用,掌握公式的應(yīng)用。

通過(guò)一周的學(xué)習(xí),學(xué)生基本上掌握了公式的形式,并能運(yùn)用公式解答簡(jiǎn)單的乘法運(yùn)算,化簡(jiǎn)多項(xiàng)式乘法。但是,對(duì)于形式較復(fù)雜的,3、4學(xué)生就辨認(rèn)不出運(yùn)用哪個(gè)公式,或者把公式用混,特別是符號(hào)問(wèn)題。所以,要多訓(xùn)練,多強(qiáng)化,在作題中掌握技巧,掌握公式的特點(diǎn)。

平方差公式教學(xué)教案篇十一

平方差公式本節(jié)課的重點(diǎn)是要學(xué)生明白平方差公式及其推導(dǎo)(含代數(shù)驗(yàn)證和幾何驗(yàn)證),并能應(yīng)用平方差公式簡(jiǎn)化運(yùn)算,其中關(guān)鍵是要學(xué)生明確平方差公式的結(jié)構(gòu)特征,準(zhǔn)確找到a、b。為了讓學(xué)生對(duì)平方差公式有個(gè)全面的認(rèn)識(shí)和了解。先讓學(xué)生計(jì)算符合平方差公式的兩位數(shù)乘法,進(jìn)而將數(shù)轉(zhuǎn)化為字母,從代數(shù)的角度,利用多項(xiàng)式乘多項(xiàng)式的知識(shí),推導(dǎo)出平方差公式,接著從幾何角度讓學(xué)生加以解釋說(shuō)明。在此基礎(chǔ)上,通過(guò)分析公式的結(jié)構(gòu)特征,加深對(duì)公式的理解。之后,設(shè)計(jì)了一個(gè)“尋找a、b”的環(huán)節(jié),通過(guò)這個(gè)練習(xí)進(jìn)行難點(diǎn)突破。引導(dǎo)學(xué)生反思練習(xí)過(guò)程,得出“誰(shuí)是a,誰(shuí)是b,并不以先后為準(zhǔn),而是以符號(hào)為準(zhǔn)”這一結(jié)論。緊接著給出兩組例題,考察學(xué)生對(duì)公式的應(yīng)用。最后通過(guò)一組判斷題和補(bǔ)充練習(xí),拓展學(xué)生的.思維水平。

為了給學(xué)生滲透數(shù)形結(jié)合的思想,要從代數(shù)、幾何兩個(gè)角度證明平方差公式,但是從哪個(gè)角度入手,有利于知識(shí)的銜接,便于學(xué)生理解。最終決定給讓學(xué)生猜想結(jié)論,再用代數(shù)方法加以證明,后給出幾何解釋?zhuān)现R(shí)的發(fā)生過(guò)程。

對(duì)于課本中的公式文字說(shuō)明是“兩數(shù)和與這兩數(shù)差的積”的理解:公式中“a、b不僅表示一個(gè)數(shù)或字母,還可以表示代數(shù)式”。但這里說(shuō)的是“兩數(shù)”,原因是所有的規(guī)律最初都是在具體的數(shù)字中發(fā)現(xiàn)的,然后才推廣到字母。所以這里說(shuō)的數(shù)不再是具體的數(shù),而是代表一個(gè)整體;公式中說(shuō)的“兩數(shù)和與兩數(shù)差的積”,從這個(gè)角度說(shuō),這兩項(xiàng)應(yīng)是完全相同的,差別只在于運(yùn)算符號(hào)上。但由于我們之前介紹過(guò)“代數(shù)和”,(a+b)(a-b)也可以理解為(a+b)[a(-b)],就像許多教參上說(shuō)的,是相同項(xiàng)與互為相反數(shù)的項(xiàng),這樣就與課本定義發(fā)生矛盾。為了避免這個(gè)問(wèn)題,我在介紹公式結(jié)構(gòu)特征時(shí),只說(shuō)“有一項(xiàng)完全相同,另一項(xiàng)只有符號(hào)不同”,學(xué)生可以自己去理解。

平方差公式教學(xué)教案篇十二

(4)(+3z)(—3z)=_____。

(1)(x+1)(1+x),

(2)(2x+)(—2x),

(3)(a—b)(—a+b),

(4)(—a—b)(—a+b)。

幫助學(xué)生理解公式的特征,掌握公式的特征是正確運(yùn)用公式的關(guān)鍵,除了掌握公式的特征外還有必要理解公式中的字母a、b具有廣泛的含義,幾字母a、b可以表示具體的數(shù)、也可以表示單項(xiàng)式或多項(xiàng)式,由于學(xué)生的認(rèn)知能力有一個(gè)過(guò)程,教學(xué)中應(yīng)由易到難逐步安排學(xué)習(xí)這方面的內(nèi)容。

平方差公式教學(xué)教案篇十三

會(huì)推導(dǎo)公式(a+b)(a-b)=a2-b2。

通過(guò)教學(xué)我對(duì)本節(jié)課的反思如下:

1、本節(jié)課我從復(fù)習(xí)舊知入手,在教學(xué)設(shè)計(jì)時(shí)提供充分探索與交流的空間,使學(xué)生經(jīng)歷觀察,猜測(cè)、推理、交流、等活動(dòng)。對(duì)于平方差公式的教學(xué)要重視結(jié)果更要重視其發(fā)現(xiàn)過(guò)程,充分發(fā)揮其教育價(jià)值。不要回到傳統(tǒng)的“講公式、用公式、練公式、背公式”學(xué)生被動(dòng)學(xué)習(xí)的局面。我在教學(xué)時(shí)沒(méi)有直接讓學(xué)生推導(dǎo)平方差公式,而是設(shè)置了一個(gè)做一做,讓學(xué)生通過(guò)計(jì)算四個(gè)多項(xiàng)式乘以多項(xiàng)式的題目,讓學(xué)生通過(guò)運(yùn)算并觀察這幾個(gè)算式及其結(jié)果,自己發(fā)現(xiàn)規(guī)律。目的是讓學(xué)生經(jīng)歷觀察、歸納、概括公式的全過(guò)程,以培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的一般能力,讓學(xué)生體會(huì)發(fā)現(xiàn)的愉悅,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,感覺(jué)效果很好。

不足:在學(xué)生將4個(gè)多項(xiàng)式乘多項(xiàng)式做完評(píng)價(jià)后,應(yīng)及時(shí)把他們歸納為某式的平方差的形式,以便學(xué)生順理成章的猜測(cè)公式的結(jié)果。

2、學(xué)生剛接觸這類(lèi)乘法,我設(shè)計(jì)了兩個(gè)問(wèn)題(1)等號(hào)左邊是幾個(gè)因式的積,兩個(gè)因式中的每一項(xiàng)有什么相同或不同之處。(2)等號(hào)右邊兩項(xiàng)有什么特點(diǎn)?便于學(xué)生發(fā)現(xiàn)總結(jié)。在這兩個(gè)二項(xiàng)式中有一項(xiàng)(a)完全相同,另一項(xiàng)(b與-b)互為相反數(shù)。右邊為這兩個(gè)數(shù)的平方差即完全相同的項(xiàng)的平方減去符號(hào)相反的平方。公式中的a,b不僅可以表示具體的數(shù)字,還可以是單項(xiàng)式,多項(xiàng)式等代數(shù)式。提醒學(xué)生利用平方公式計(jì)算,首先觀察是否符合公式的特點(diǎn),這兩個(gè)數(shù)分別是什么,其次要區(qū)別相同的項(xiàng)和相反的項(xiàng),表示兩數(shù)平方差時(shí)要加括號(hào)。平方差公式(a-b)(a+b)=a2-b2,它是特殊的整式的乘法,運(yùn)用這一公式可以簡(jiǎn)捷地計(jì)算出符合公式的特征的多項(xiàng)式乘法的結(jié)果.我很細(xì)地給學(xué)生講了以上特點(diǎn),學(xué)生容易接受,課堂氣氛活躍,收到了一定的效果。

3、本節(jié)課如能將平方差公式的幾何意義簡(jiǎn)要的結(jié)合說(shuō)明,更能體會(huì)數(shù)學(xué)中數(shù)形結(jié)合的特點(diǎn),因時(shí)間關(guān)系放在下一課時(shí)。

4、學(xué)生錯(cuò)誤主要是:

(1)判斷不出哪些項(xiàng)是公式中的a,哪些項(xiàng)是公式中的b;

(2)平方時(shí)忽視系數(shù)的平方,如(2m)2=2m2。針對(duì)這一點(diǎn)在課堂教學(xué)中應(yīng)著重對(duì)于共性的或思維方式方面的錯(cuò)誤及時(shí)指正,以確保達(dá)到教學(xué)效果。平方差公式是乘法公式中一個(gè)重要的公式,形式雖然簡(jiǎn)單,學(xué)生往往學(xué)起來(lái)容易,真正掌握起來(lái)困難。部分學(xué)生只是死記硬背公式,不能完全理解其含義和具體應(yīng)用。

總之,在以后的教學(xué)中我會(huì)更深入的專(zhuān)研教材,結(jié)合教學(xué)目標(biāo)與要求,結(jié)合學(xué)生的實(shí)際特點(diǎn),克服自己的弱點(diǎn),盡量使數(shù)學(xué)課生動(dòng)、自然、有趣。

平方差公式教學(xué)教案篇十四

教學(xué)目標(biāo):

一、知識(shí)與技能。

1、參與探索平方差公式的過(guò)程,發(fā)展學(xué)生的推理能力2、會(huì)運(yùn)用公式進(jìn)行簡(jiǎn)單的乘法運(yùn)算。

二、過(guò)程與方法。

1、經(jīng)歷探索過(guò)程,學(xué)會(huì)歸納推導(dǎo)出某種特種特定類(lèi)型乘法并用簡(jiǎn)單的。

數(shù)學(xué)式子表達(dá)出,即給出公式。

2、在探索過(guò)程的教學(xué)中,培養(yǎng)學(xué)生觀察、歸納的能力,發(fā)展學(xué)生的符。

號(hào)感和語(yǔ)言描述能力。

三、情感與態(tài)度。

以探索、歸納公式和簡(jiǎn)單運(yùn)用公式這一數(shù)學(xué)情景,加深學(xué)生的體驗(yàn),增加學(xué)習(xí)數(shù)學(xué)和使用的信心。培養(yǎng)學(xué)生由觀察-發(fā)現(xiàn)-歸納-驗(yàn)證-使用這一數(shù)學(xué)方法的逐步形成.

教學(xué)重點(diǎn):公式的簡(jiǎn)單運(yùn)用。

教學(xué)難點(diǎn):公式的推導(dǎo)。

教學(xué)方法:學(xué)生探索歸納與教師講授結(jié)合。

課前準(zhǔn)備:投影儀、幻燈片。

【本文地址:http://www.aiweibaby.com/zuowen/15005341.html】

全文閱讀已結(jié)束,如果需要下載本文請(qǐng)點(diǎn)擊

下載此文檔