數(shù)學建模的論文大全(21篇)

格式:DOC 上傳日期:2023-11-26 23:21:07
數(shù)學建模的論文大全(21篇)
時間:2023-11-26 23:21:07     小編:QJ墨客

別人的歡笑,是對你付出的肯定;如何應對信息爆炸時代的信息過載和信息安全問題是我們需要思考的問題。請參考下方的一些實用寫作技巧

數(shù)學建模的論文篇一

走美杯”是“走進美妙的數(shù)學花園”的簡稱。

“走進美妙的數(shù)學花園”中國青少年數(shù)學論壇是中國少年科學院創(chuàng)新素質(zhì)教育的品牌活動。20xx年,由國際數(shù)學家大會組委會、中國數(shù)學會、中國教育學會、中國少年科學院成功舉辦了首屆“走進美妙的數(shù)學花園”中國少年數(shù)學論壇,至今已連續(xù)舉辦七屆,全國三十多個城市近三十萬人參與了此項活動,在全國青少年中產(chǎn)生了巨大的影響?!白哌M美妙的數(shù)學花園”中國青少年數(shù)學論壇活動是一項面對小學三年級至初中二年級學生的綜合性數(shù)學活動。通過“趣味數(shù)學解題技能展示”、“數(shù)學建模小論文答辯”、“數(shù)學益智游戲”、“團體對抗賽”等一系列內(nèi)容豐富的活動提高廣大中小學生的數(shù)學建模意識和數(shù)學應用能力,培養(yǎng)他們一種正確的思想方法。著名數(shù)學家陳省身先生兩次為同學們親筆題詞“數(shù)學好玩”和“走進美妙的數(shù)學花園”,大大鼓舞了廣大青少年攀登數(shù)學高峰的熱情和信心,使同學們自覺地成為學習的主人,實現(xiàn)從“學數(shù)學”到“用數(shù)學”過程的轉(zhuǎn)變,從而進一步推動我國數(shù)學文化的傳播與普及。

“走美”活動已連續(xù)舉辦七屆,近30萬青少年踴躍參與,已取得良好社會效果,并被寫入全國少工委《少先隊輔導員工作綱要(試行)》,向全國少年兒童推廣。

“走美”作為數(shù)學競賽中的后起之秀,憑借其新穎的考試形式以及較高的競賽難度取得了非常迅速的發(fā)展,近年來在重點中學選拔中引起了廣泛的關(guān)注??陀^地說“走美”一、二等獎對小升初作用非常大,三等獎作用不大。

1、活動對象。

全國各地小學三年級至初中二年級學生。

2、總成績計算。

筆試獲獎率:

一等獎5%,二等獎10%,三等獎15%。

3、筆試時間。

每年3月上、中旬。

報名截止時間:每年12月底。

走美杯比賽流程。

1、全國組委會下發(fā)通知,各地組委會開始組織工作。

2、學生到當?shù)亟M委會報名,填寫《報名表》。

3、各地組委會將報名學生名單全部匯總至全國組委會。

4、全國“走進美妙的數(shù)學花園”趣味數(shù)學解題技能展示初賽(全國統(tǒng)一筆試)。

6、全國組委會公布初賽獲獎名單并頒發(fā)獲獎證書。

7、獲得初賽一、二、三等獎選手有資格報名參加暑期赴英國劍橋大學數(shù)學交流活動。

8、各地按照組委會要求提交數(shù)學建模小論文。

9、前各地組委會上報參加全國總論壇學生名單。

10、全國總論壇和表彰活動。

數(shù)學建模的論文篇二

數(shù)學,源于人們對生產(chǎn)與生活實際問題,抽象出的數(shù)量關(guān)系與空間結(jié)構(gòu)發(fā)展而成的.近年來,信息技術(shù)飛速發(fā)展,推動了應用數(shù)學的發(fā)展,使數(shù)學日益滲透到社會各個領(lǐng)域.中考實際應用題目更貼近日常生活,具有時代性、靈活性,涉及的模型有方程、函數(shù)、不等式、統(tǒng)計、幾何等模型.數(shù)學課程標準指出,教師在教學中應引導學生從實際背景中理清數(shù)學關(guān)系、把握變化規(guī)律,能從實際問題中建立數(shù)學模型.教師要為學生創(chuàng)造用數(shù)學的氛圍,引導學生參與自主學習、自主探索、自主提問、自主解決,體驗做數(shù)學的過程,從而提高解決實際問題的能力.

一是教師未能實現(xiàn)角色轉(zhuǎn)換.建模教學離不開學生“做”數(shù)學的過程,因而教師在教學中要留有讓學生思考、想象的空間,讓他們自主選擇方法.然而部分教師對學生缺乏信任,由“引導者”變?yōu)椤肮噍斦摺保瑢⒔忸}過程直接教給學生,影響了學生建模能力的提高.二是教師的專業(yè)素養(yǎng)有待提高.開展建模教學,需要教師具有一定的專業(yè)素養(yǎng),能駕馭課堂教學,激發(fā)學生的興趣,啟發(fā)學生進行思考,誘發(fā)學生進行探索,但是部分教師專業(yè)素養(yǎng)有待提高,或認為建模就是解應用題,或重生活味輕數(shù)學味,或使討論活動流于形式.三是學生的抽象能力較差.在建模教學中,教師須呈現(xiàn)生活中的實際問題,其題目長、信息量大、數(shù)據(jù)多,需要學生經(jīng)歷閱讀提取有用的信息,但是部分學生感悟能力差,不能明析已知與未知之間的關(guān)系,影響了學生成功建模.

1.自主探索原則.

學生長期處于師講、生聽的教學模式,淪為被動接受知識的“容器”,難有創(chuàng)造的意識.在教學中,教師要為學生創(chuàng)設(shè)輕松愉悅的探究氛圍,讓學生手腦并用,在探索、交流、操作中提高解決問題的`能力.

2.因材施教原則.

教師要著眼于學生原有的認知結(jié)構(gòu),要貼近學生的最近發(fā)展區(qū),引導他們從舊知的角度思考,找出問題的解決方法。

3.可接受性原則.

數(shù)學建模內(nèi)容的設(shè)計,要符合學生的年齡特點和認知能力,能讓學生理解所探究的內(nèi)容.若設(shè)計的問題不切實際,往往會扼殺學生的興趣,教師要密切聯(lián)系教學內(nèi)容、生活實際,讓學生有能力解決問題.

數(shù)學建模的論文篇三

將建模的思想有效的滲透到應用數(shù)學的教學過程中去,是我們當前開展應用數(shù)學教育的未來發(fā)展趨勢,怎樣才能夠使應用數(shù)學更好的服務社會經(jīng)濟的發(fā)展,充分發(fā)揮數(shù)學工具在實際問題解決中的重要作用,是我們當前進行應用數(shù)學研究的核心問題,而建模思想在應用數(shù)學中的運用則能夠很好的解決這一問題。

數(shù)學教育至少應該涵蓋純粹數(shù)學和應用數(shù)學兩方面內(nèi)容,目前我國數(shù)學教育內(nèi)容以純粹數(shù)學為主,極少包括應用數(shù)學內(nèi)容,這割裂了數(shù)學與外部世界的血肉聯(lián)系,使數(shù)學變成了多數(shù)學生眼中的抽象、枯燥、無用的思維游戲,而厭學成風。因此,大家對現(xiàn)行的數(shù)學教育不滿意,期望改革,期望找到方法激發(fā)學生的學習興趣、培養(yǎng)學生利用數(shù)學解決各種實際問題的能力。在不改變傳統(tǒng)的教學體系的前提下,有機地融入應用數(shù)學內(nèi)容,應是解決現(xiàn)存問題的有效方法。事實上,數(shù)學發(fā)展的根本原動力,它的最初的根源,是來自客觀實際的需要,數(shù)學教學中理應突出數(shù)學思想的來龍去脈,揭示數(shù)學概念和公式的實際來源和應用,恢復并暢通數(shù)學與外部世界的血肉聯(lián)系。伴隨著社會生產(chǎn)力的不斷發(fā)展,多個學科交叉發(fā)展,使得應用數(shù)學逐漸發(fā)展成擁有眾多發(fā)展方向的學科,應用數(shù)學所運用的領(lǐng)域不斷延伸,已經(jīng)不再局限于傳統(tǒng)的、而是想著更為寬闊的、新興的學科以及高新技術(shù)領(lǐng)域發(fā)展,應用數(shù)學目前已經(jīng)滲透到社會經(jīng)濟發(fā)展的各個行業(yè),在這一大背景下,應用數(shù)學的研究者就擁有了極大的發(fā)展空間以及展示才能的舞臺,也迎來了應用數(shù)學發(fā)展的新機遇。

數(shù)學這一學科不僅具有概念抽象性、邏輯嚴密性、體系完整性以及結(jié)論確定性,而且還具備非常明顯的應用廣泛性,伴隨著計算機網(wǎng)絡在社會生活中的廣泛運用,人們對于實踐問題的解決要求越來越精確,這就給應用數(shù)學的廣泛運用帶來了前所未有的機遇。應用數(shù)學在這一背景下也已經(jīng)成為當前高科技水平的一個重要內(nèi)容,應用數(shù)學建模思想的引入與使用能夠極大的提升自身應用數(shù)學的綜合水平以及思維意識,開展應用數(shù)學建模不僅能夠有效的提升自己的學習熱情與探究意識,而且還能夠?qū)I(yè)知識同建模密切結(jié)合在一起,對于專業(yè)知識的有效掌握是非常有益的。

3.1充分重視建模的橋梁作用。

建模是實現(xiàn)數(shù)學知識與現(xiàn)實問題相聯(lián)系的橋梁與紐帶,通過進行建模能夠有效的`將實際問題進行簡化。在這一轉(zhuǎn)化的過程中,應當深入實際進行調(diào)查、收集相關(guān)數(shù)據(jù)信息,認真分析對象的獨特特征及規(guī)律,構(gòu)建起反映實際問題的數(shù)學關(guān)系,運用數(shù)學理論進行問題的解決。這正是各個學科之間進行有效聯(lián)系的結(jié)合點,通過引進建模思想,不僅能夠使我們有效掌握數(shù)學理論之外的實踐問題,還能夠推動創(chuàng)新意識的提升,因此,我們應當充分重視建模的作用。

3.2將建模的方法以及相關(guān)理論引入到數(shù)學教學中來。

我國當前數(shù)學課程教學體系的現(xiàn)狀包括高等數(shù)學、線性代數(shù)、概率論與數(shù)理統(tǒng)計等幾個部分。當前應用數(shù)學的發(fā)展,滿足這一學科的建設(shè)以及其他學科對這一學科的需要,教師在教學中應當將問題的背景介紹清楚,并列出幾種解決方案,啟發(fā)學生進行討論并構(gòu)建數(shù)學模型。學生們在課堂上就能夠獲得更多的思考和討論的機會,能夠充分調(diào)動學生們的積極性,使其能夠立足實際進行思考,這樣一來就形成了以實際問題為基礎(chǔ)的數(shù)學建模教學特色。

3.3積極參加數(shù)學模型課等相關(guān)課程與活動。

數(shù)學應用綜合性的實驗,要求我們掌握數(shù)學知識的綜合性運用,做法是老師先講一些數(shù)學建模的一些應用實例,然后學生上機實踐,強調(diào)學生的動手實踐。數(shù)學實驗課應該說是數(shù)學模型的輔助課程,主要培養(yǎng)我們的數(shù)學思維和創(chuàng)新能力,還應當組織一些建模比賽,不斷提升數(shù)學建模的綜合水平。

上述幾個部分的論述與分析,我們看到,在應用數(shù)學中加強建模思想具有非常重要的意義,不僅需要在課堂學習過程中認真掌握數(shù)學理論知識,還應當深入了解數(shù)學理論在實際生活中的可用之處,盡可能的使應用數(shù)學與自身所學專業(yè)相聯(lián)系,這樣,才能夠使應用數(shù)學的能力與水平在日常實踐過程中得到提升。就當前高等數(shù)學的現(xiàn)狀來看,加強創(chuàng)新意識以及將實際問題轉(zhuǎn)化為數(shù)學問題能力的培養(yǎng),提升綜合運用本專業(yè)知識以來解決實踐問題的能力,使創(chuàng)新思維得到最大限度的發(fā)揮。

[1]余荷香,趙益民.數(shù)學建模在高職數(shù)學教學中的應用研究[j].出國與就業(yè)(就業(yè)版),20xx(10).

[2]關(guān)淮海.培養(yǎng)數(shù)學建模思想與方法高職高專數(shù)學教改之趨勢[j].職大學報,20xx(02).

[3]李傳欣.數(shù)學建模在工程類專業(yè)數(shù)學教學中的應用研究[j].中國科教創(chuàng)新導刊,20xx(35).

[4]李秀林.高等數(shù)學教學中滲透數(shù)學建模的探討[j].吉林省教育學院學報(學科版),20xx(08).

[5]吳健輝,黃志堅,汪龍虎.對數(shù)學建模思想融入高等數(shù)學教.學中的探討[j].景德鎮(zhèn)高專學報,20xx(04).

數(shù)學建模的論文篇四

信息化時代,數(shù)學科學與其他學科交叉融合,使得數(shù)學技術(shù)變成了一種普適性的關(guān)鍵技術(shù)。大學加強數(shù)學課程的應用功能,不但可以為學生提供解決問題的思想和方法,而且更為重要的是可以培養(yǎng)學生應用數(shù)學科學進行定量化、精確化思維的意識,學會創(chuàng)造性地解決問題的應用能力。數(shù)學建模課程將數(shù)學的基本原理、現(xiàn)代優(yōu)化算法以及程序設(shè)計知識很好地融合在一起,有助于培養(yǎng)學生綜合應用數(shù)學知識將現(xiàn)實問題化為數(shù)學問題,并進行求解運算的能力,激發(fā)學生對解決現(xiàn)實問題的探索欲望,強化數(shù)學課程本身的應用功能,凸顯數(shù)學課程的教育價值,適應大學數(shù)學課程以培養(yǎng)學生創(chuàng)新意識為宗旨的教育改革需要。

大學傳統(tǒng)的數(shù)學主干課程,如高等數(shù)學、線性代數(shù)、概率論與數(shù)理統(tǒng)計在奠定學生的數(shù)學基礎(chǔ)、培養(yǎng)自學能力以及為后續(xù)課程的學習在基礎(chǔ)方面發(fā)揮奠基作用。但是,這種原有的教學模式重在突出培養(yǎng)學生嚴格的邏輯思維能力,而對數(shù)學的應用重視不夠,這使得學生即使掌握了較為高深的數(shù)學理論,卻并不能將其靈活應用于現(xiàn)實生活解決實際問題,更是缺乏將數(shù)學應用于專業(yè)研究和軍事工程的能力,與創(chuàng)新教育的基本要求差距甚遠。教育轉(zhuǎn)型要求數(shù)學教學模式從傳統(tǒng)的傳授知識為主向以培養(yǎng)能力素質(zhì)為主轉(zhuǎn)變,特別是將數(shù)學建模的思想方法融入到數(shù)學主干課程之中,在教學過程中引導學生將數(shù)學知識內(nèi)化為學生的應用能力,充分發(fā)揮數(shù)學建模思想在數(shù)學教學過程中的引領(lǐng)作用。數(shù)學課程教學改革要適應這一教學模式轉(zhuǎn)型需要,深入探究融入式教學模式的理論與方式,是推進數(shù)學教育改革的重要舉措。

2.1理清數(shù)學建模思想方法與數(shù)學主干課程的關(guān)系。數(shù)學主干課程提供了大學數(shù)學的基礎(chǔ)理論與基本原理,將數(shù)學建模的思想方法有機地融入到數(shù)學主干課程中,不但可以有效地提升數(shù)學課程的應用功能,而且有利于深化學生對數(shù)學本原知識的理解,培養(yǎng)學生的綜合應用能力。深入研究數(shù)學主干課程的功能定位,主要從課程目標上的一致性、課程內(nèi)容上的互補性、學習形式上的互促性、功能上的整體優(yōu)化性等方面,研究數(shù)學建模本身所承載的思想、方法與數(shù)學主干課程的內(nèi)容與邏輯關(guān)系,闡述數(shù)學建模思想方法對提高學生創(chuàng)新能力和對數(shù)學教育改革的重要意義,探索開展融入式教學及創(chuàng)新數(shù)學課程教學模式的有效途徑。

2.2探索融入式教學模式提升數(shù)學主干課程應用功能的方式。融入式教學主要有輕度融入、中度融入和完全融入三種方式。根據(jù)主干課程的基本特點,對課程體系進行調(diào)整,在問題解決過程中安排需要融入的知識體系,按照三種方式融入數(shù)學建模的思想與方法。以學生能力訓練為主導,在培養(yǎng)深厚的數(shù)學基礎(chǔ)和嚴格的邏輯思維能力的基礎(chǔ)上,充分發(fā)揮數(shù)學建模思想方法對學生思維方式的培養(yǎng)功能和引導作用,培養(yǎng)學生敏銳的分析能力、深刻的'歸納演繹能力以及將數(shù)學知識應用于工程問題的創(chuàng)新能力。

2.3建立數(shù)學建模思想方法融入數(shù)學主干課程的評價方式。融入式教學是處于探索中的教學模式,教學成效有待于實踐檢驗。選取開展融入式教學的實驗班級,對數(shù)學建模思想方法融入主干課程進行教學效果實踐驗證。設(shè)計相應的考察量表,從運用直覺思維深入理解背景知識、符號翻譯開展邏輯思維、依托圖表理順數(shù)量關(guān)系、大膽嘗試進行建模求解等多方面對實驗課程的教學效果進行檢驗,深入分析融入式教學模式的成效與不足,為探索有效的教學模式提出改進的對策。

3.1改革課程教學內(nèi)容,滲透數(shù)學建模的思想方法。傳統(tǒng)的數(shù)學主干課程教學內(nèi)容,將數(shù)學看作嚴謹?shù)难堇[體系,教學過程中著力于對學生傳授大學數(shù)學的基礎(chǔ)知識,而對應用能力的培養(yǎng)卻重視不夠。使得本應能夠發(fā)揮應用功能的數(shù)學知識則淪為僵死的教條性數(shù)學原理,這失去了教學的活力。學生即使掌握了再高深的數(shù)學知識,仍難以學會用數(shù)學的基本方法解決現(xiàn)實問題。現(xiàn)行的大學數(shù)學課程教學內(nèi)容中,適當?shù)貪B透一些應用性比較廣泛的數(shù)學方法,如微元法、迭代法及最佳逼近等方法,有利于促進學生對數(shù)學基礎(chǔ)知識的掌握,同時理解數(shù)學原理所蘊涵的思想與方法。

這樣,在解決實際問題的時候,學生就會有意識地從數(shù)學的角度進行思考,嘗試建立相應的數(shù)學模型并進行求解,拓展了數(shù)學知識的深度與廣度,提升了學生的數(shù)學應用能力四、結(jié)語數(shù)學建模是數(shù)學科學在科技、經(jīng)濟、軍事等領(lǐng)域廣泛應用的接口,是數(shù)學科學轉(zhuǎn)化成科學技術(shù)的重要途徑。在數(shù)學主干課程中融入數(shù)學建模的思想與方法,可以推動大學數(shù)學教育改革的深入發(fā)展,加深學生對相關(guān)知識的理解和掌握,有助于從思維方式上培養(yǎng)學生的創(chuàng)新意識與創(chuàng)新能力。

此外,數(shù)學建模思想方法融入教學主干課程還涉及到許多問題,比如數(shù)學建模與計算技術(shù)如何有效結(jié)合以進行模擬仿真、融入式教學模式的基本理論、構(gòu)建新的課程體系等問題,仍將有待于更深入的研究。

數(shù)學建模的論文篇五

就當前高等數(shù)學的教育教學而言,高數(shù)老師對學生的計算能力、思考能力以及邏輯思維能力過于重視,一切以課本為基礎(chǔ)開展教學活動。作為一門充滿活力并讓人感到新奇的學科,由于教育觀念和思想的落后,課堂教學之中沒有穿插應用實例,在工作的時候?qū)W生不知道怎樣把問題解決,工作效率無法進一步提升,不僅如此,陳舊的教學理念和思想讓學生漸漸的失去學習的興趣和動力。

(二)教學方法傳統(tǒng)化。

教學方法的優(yōu)秀與否在學生學習的過程中發(fā)揮著重要的作用,也直接影響著學生的學習成績。一般高數(shù)老師在授課的時候都是以課本的順次進行,也就意味著老師“由定義到定理”、“由習題到練習”,這種默守陳規(guī)的教學方式無法為學生營造活躍的學習氛圍,讓學生獨自學習、思考的能力進一步下降。這就要求教師致力于和諧課堂氛圍營造以及使用新穎的教育教學方法,讓學生在課堂中主動參與學習。

二、建模在高等數(shù)學教學中的作用。

對學生的想象力、觀察力、發(fā)現(xiàn)、分析并解決問題的能力進行培養(yǎng)的過程中,數(shù)學建模發(fā)揮著重要的作用。最近幾年,國內(nèi)出現(xiàn)很多以數(shù)學建模為主體的賽事活動以及教研活動,其在學生學習興趣的提升、激發(fā)學生主動學習的積極性上扮演著重要的角色,發(fā)揮著突出的作用,在高等數(shù)學教學中引入數(shù)學建模還能培養(yǎng)學生不畏困難的品質(zhì),培養(yǎng)踏實的工作精神,在協(xié)調(diào)學生學習的知識、實際應用能力等上有突出的作用。雖然國內(nèi)高等院校大都開設(shè)了數(shù)學建模選修課或者培訓班,但是由于課程的要求和學生的認知水平差異較大,所以課程無法普及為大眾化的教育。如今,高等院校都在積極的尋找一種載體,對學生的整體素質(zhì)進行培養(yǎng),提升學生的創(chuàng)新精神以及創(chuàng)造力,讓學生滿足社會對復合型人才的需求,而最好的載體則是高等數(shù)學。

高等數(shù)學作為工科類學生的一門基礎(chǔ)課,由于其必修課的性質(zhì),把數(shù)學建模引入高等數(shù)學課堂中具有較廣的影響力。把數(shù)學建模思想滲入高等數(shù)學教學中,不僅能讓數(shù)學知識的本來面貌得以還原,更讓學生在日常中應用數(shù)學知識的能力得到很好的培養(yǎng)。數(shù)學建模要求學生在簡化、抽象、翻譯部分現(xiàn)實世界信息的過程中使用數(shù)學的語言以及工具,把內(nèi)在的聯(lián)系使用圖形、表格等方式表現(xiàn)出來,以便于提升學生的表達能力。在實際的學習數(shù)學建模之后,需要檢驗現(xiàn)實的信息,確定最后的結(jié)果是否正確,通過這一過程中的鍛煉,學生在分析問題的過程中可以主動地、客觀的辯證的運用數(shù)學方法,最終得出解決問題的最好方法。因此,在高等數(shù)學教學中引入數(shù)學建模思想具有重要的意義。

三、將建模思想應用在高等數(shù)學教學中的具體措施。

(一)在公式中使用建模思想。

在高數(shù)教材中占有重要位置的是公式,也是要求學生必須掌握的內(nèi)容之一。為了讓教師的'教學效果進一步提升,在課堂上老師不僅要讓學生對計算的技巧進一步提升之余,還要和建模思想結(jié)合在一起,讓解題難度更容易,還讓課堂氛圍更活躍。為了讓學生對公式中使用建模思想理解的更透徹,老師還應該結(jié)合實例開展教學。

(二)講解習題的時候使用數(shù)學模型的方式。

課本例題使用建模思想進行解決,老師通過對例題的講解,很好的講述使用數(shù)學建模解決問題的方式,讓學生清醒的認識在解決問題的過程中怎樣使用數(shù)學建模。完成每章學習的內(nèi)容之后,充分的利用時間為學生解疑答惑,以學生所學的專業(yè)情況和學生水平的高低選擇合適的例題,完成建模、解決問題的全部過程,提升學生解決問題的效率。

(三)組織學生積極參加數(shù)學建模競賽。

一般而言,在競賽中可以很好地鍛煉學生競爭意識以及獨立思考的能力。這就要求學校充分的利用資源并廣泛的宣傳,讓學生積極的參加競賽,在實踐中鍛煉學生的實際能力。在日常生活中使用數(shù)學建模解決問題,讓學生獨自思考,然后在競爭的過程中意識到自己的不足,今后也會努力學習,改正錯誤,提升自身的能力。

四、結(jié)束語。

高等數(shù)學主要對學生從理論學習走向解決實際問題的能力進行培養(yǎng),在高等數(shù)學中應用建模思想,促使學生對高數(shù)知識更充分的理解,學習的難度進一步降低,提升應用能力和探索能力。當前,在高等教學過程中引入建模思想還存在一定的不足,需要高校高等數(shù)學老師進行深入的研究和探索的同時也需要學生很好的配合,以便于今后的教學中進一步提升教學的質(zhì)量。

參考文獻。

[1]謝鳳艷,楊永艷。高等數(shù)學教學中融入數(shù)學建模思想[j]。齊齊哈爾師范高等??茖W校學報,20xx(02):119—120。

[2]李薇。在高等數(shù)學教學中融入數(shù)學建模思想的探索與實踐[j]。教育實踐與改革,20xx(04):177—178,189。

[3]楊四香。淺析高等數(shù)學教學中數(shù)學建模思想的滲透[j]。長春教育學院學報,20xx(30):89,95。

[4]劉合財。在高等數(shù)學教學中融入數(shù)學建模思想[j]。貴陽學院學報,20xx(03):63—65。

數(shù)學建模的論文篇六

數(shù)學是在實際應用的需求中產(chǎn)生的,要描述一個實際現(xiàn)象可以有很多種方式,為了實際問題描述的更具邏輯性、科學性、客觀性和可重復性,人們采用一種普遍認為比較嚴格的語言來描述各種現(xiàn)象,這種語言就是數(shù)學。數(shù)學建模則是架于數(shù)學理論和實際問題之間的橋梁,數(shù)學模型是對于現(xiàn)實生活中的特定對象,根據(jù)其內(nèi)在的規(guī)律,做出一些必要的假設(shè),為了一個特定目的,運用數(shù)學工具,得到的一個數(shù)學結(jié)構(gòu),用來解釋現(xiàn)實現(xiàn)象,預測未來狀況。因此,數(shù)學建模就是用數(shù)學語言描述實際現(xiàn)象的過程。

大部分的獨立院校的數(shù)學建模工作純在一定的問題,主要體現(xiàn)在以下幾個方面:(一)學生方面的問題。獨立院校的大部分學生的數(shù)學功底差,對數(shù)學的學習興趣不大,普遍認為數(shù)學的學習對自身的專業(yè)的幫助不大。從而更不愿意接觸與數(shù)學有關(guān)的數(shù)學建模,對數(shù)學建模競賽的興趣不大。在獨立院校中,參加數(shù)學建模競賽的大都是低年級的學生,而這些學生的數(shù)學知識結(jié)構(gòu)還不完整,他們往往參加了一屆數(shù)學競賽并未獲得獎項后就不愿意再次參加。而高年級的同學忙于其他的就業(yè)、考研等壓力,無暇參加數(shù)學建模競賽的培訓。(二)教資方面的問題。首先。傳統(tǒng)的教學是知識為中心、以教師的講解為中心。數(shù)學建模的教學要求教師以學生為中心,培養(yǎng)學生學會學習的能力,發(fā)展學生的創(chuàng)新能力和創(chuàng)造能力。獨立院校外聘的老師常常對獨立院校的學生不夠了解,這直接影響到教學成果。其次,數(shù)學建模涉及的知識面廣,不但包括數(shù)學的各個分支,還包含了其他背景的專業(yè)知識。獨立院校的教師一部分是才從大學畢業(yè)不久的研究生,他們對于數(shù)學建模教學和競賽的培訓經(jīng)驗不足,科研能力不是很強,對數(shù)學的各個分支的把控能力不強,對其他專業(yè)的了解不夠全面。(三)教學實施方面的問題。大學生數(shù)學建模競賽的目的決不僅僅是獲獎,更重要的是通過參加大學生數(shù)學建模競賽活動,促進高校數(shù)學教學改革,起到培養(yǎng)全體學生能力、提高全體學生素質(zhì)的作用。獨立院校數(shù)學建模教學存在很多的問題。首先,大學數(shù)學建模教育在獨立院校中的普及性不夠。數(shù)學建模的宣傳力度不大,課程大多開在大一和大二的跨選課,這個時候?qū)W生的數(shù)學知識結(jié)構(gòu)還不完整。其次就是教材的選取,數(shù)學建模的相關(guān)教材大都是為了數(shù)學建模競賽而編寫的,對于獨立院校的學生來說,這些教材的難度系數(shù)大,涉及的知識面廣,遠遠超過了學生的接受能力。

(一)讓學生了解數(shù)學建模,培養(yǎng)學習數(shù)學建模的興趣。數(shù)學建模課程的開設(shè)有利于培養(yǎng)學生運用數(shù)學具體解決實際問題的能力,讓學生發(fā)現(xiàn)學習數(shù)學的用處,改變學生學習數(shù)學的態(tài)度,提高學習數(shù)學的能力,認識到數(shù)學的意義和價值。獨立院校學生的數(shù)學基礎(chǔ)雖然比較差,但是學生的動手能力強。學??梢栽诙嚅_展數(shù)學建模的講座和課程,讓學生了解數(shù)學建模。同時多向?qū)W生宣傳數(shù)學建模的成果。(二)在教學內(nèi)容中滲透數(shù)學建模思想和方法。1.在日常數(shù)學教學中滲透數(shù)學建模的思想方法。傳統(tǒng)的數(shù)學教學重視的是知識的培養(yǎng)和傳輸,而忽視的是實際應用能力。教師的教學目標是使學生掌握數(shù)學理論知識。一般的教學方法是:教師引入相關(guān)的的基本概念,證明定理,推導公式,列舉例題,學生記住公式,套用公式,掌握解題方法與技巧。學生往往學習了不少的純粹的數(shù)學理論知識,卻不知道如何應用到實際問題中。數(shù)學建模課程與傳統(tǒng)數(shù)學課程相比差別較大,學校開設(shè)的數(shù)學建??邕x課及數(shù)學建模培訓班,對培養(yǎng)學生觀察能力、分析能力、想象力、邏輯能力、解決實際問題的能力起到了很好的作用。由于學校開設(shè)的數(shù)學建模課程大多是選修課程,課時較少,參選的學生也有限,數(shù)學建模的作用不能很好的向?qū)W生傳輸。高等數(shù)學中的很多內(nèi)容都與數(shù)學建模的思想有關(guān),因此,在大學數(shù)學課程的教學過程中,教師應有意識地結(jié)合傳統(tǒng)的數(shù)學課程的特點,將數(shù)學建模的思想和內(nèi)容融入到數(shù)學課堂教學中。這樣既可以激發(fā)學生的學習興趣,又能很好的將突出數(shù)學建模的思想。2.數(shù)學建模與專業(yè)緊密聯(lián)系,發(fā)揮數(shù)學對專業(yè)知識的服務作用。數(shù)學建模與專業(yè)知識的結(jié)合,不僅可以讓學生認識到數(shù)學的重要作用,在專業(yè)知識學習中的地位,還可以培養(yǎng)學習數(shù)學知識的興趣,增強數(shù)學學習的凝聚力,同時加深對專業(yè)知識的理解。通過專業(yè)知識作為背景,學生更愿意嘗試問題的研究。在學習中遇到的專業(yè)問題也可以嘗試用數(shù)學建模的思想進行解決。這有利于提高學生的綜合能力的培養(yǎng)。3.分層次進行數(shù)學建模教育。大體說來獨立院校的數(shù)學建模課程的開設(shè)應該分成兩個階段:(1)第一階段:大學一年級,在這個階段,大部分學生對數(shù)學建模沒有了解,這時候適合開設(shè)一些數(shù)學建模的講座和活動,讓學生了解數(shù)學建模。同時,在日常的數(shù)學教學中選擇簡單的應用問題和改變后的數(shù)學建模題目,結(jié)合自身的專業(yè)知識進行講解,讓學生了解數(shù)學建模的一般含義?;痉椒ê筒襟E,讓學生具備初步的建模能力。(2)中級層次:大學二、三年級。在這個階段,學生基本具備了完整的數(shù)學結(jié)構(gòu),具有了基本的建模能力。這個時候應該開設(shè)數(shù)學建模專業(yè)課程,讓學生處理比較復雜的數(shù)學建模問題,讓學生自己去采集有用的信息,學會提出模型的假設(shè),對數(shù)據(jù)和信息需進行整理、分析和判斷,并模型進行分析和評價,最終完成科技論文。

(一)提高數(shù)學教師自身水平。在數(shù)學建模教學過程中,教師扮演著重要的角色。教師水平的高低決定著數(shù)學建模教學能否達到預期的目的。數(shù)學建模的教學,不僅要求教師具備較高的專業(yè)水平,還要求教師具備解決實際問題的能力和豐富的數(shù)學建模實踐經(jīng)驗。而獨立院校的教師部分教師是才畢業(yè)不久的研究生,缺乏實踐經(jīng)驗。這就對獨立院校的的數(shù)學建模教學工作產(chǎn)生了很大的障礙。為了提高教師的水平,可以多派青年教師進行專業(yè)培訓學習和學術(shù)交流,參加各種學術(shù)會議、到名校去做訪問學者等等。同時可以多請著名的數(shù)學專家教授來到校園做建模學術(shù)報告,使師生拓寬視野,增長知識,了解建模的新趨勢、新動態(tài)。青年教師還需要依據(jù)特定的教學內(nèi)容、教學對象和教學環(huán)境對自己的教學工作作出計劃、實施和調(diào)整以及反思和總結(jié)。青年數(shù)學教師還必須更新教育理念,改變傳統(tǒng)的教學理念。只有不斷創(chuàng)新,努力提高自身素質(zhì),才能適應新的形勢,符合建模發(fā)展的要求。(二)選取合適的教材。數(shù)學建模教材使用也存在諸多不足之處。絕大部分高校教學建模課程采用的是理工類專業(yè)數(shù)學建模教材。這些教材主要涵蓋的數(shù)學模型的難度系數(shù)大。而獨立院校的學生的基礎(chǔ)薄弱,無法接收這些模型。在教學過程中,教師可以將具體的案例或是歷年的數(shù)學建模題目做為教學內(nèi)容。通過具體的建模實例,講解建模的思想和方法。一邊講解,一邊讓學生分組討論,提出對問題的新的理解和對魔性的認識,嘗試提出新的模型。(三)豐富建?;顒?。全面開展數(shù)學建?;顒邮菙?shù)學建模思想的最重要的形式,它既使課內(nèi)和課外知識相互結(jié)合,又可以普及建模知識與提高建模能力結(jié)合,可以培養(yǎng)學生利用數(shù)學知識分析和解決實際問題的能力,可以有效地提升了學生的數(shù)學綜合素質(zhì)。學??梢远ㄆ诘拈_展數(shù)學建模宣傳活動,擴大數(shù)學建模的知名度。學校還可以邀請有經(jīng)驗的專家和獲獎學生開展建模講座,提高對數(shù)學建模的重視,積極的組織建?;顒?。實踐證明,只有根據(jù)獨立院校的自身特點和培養(yǎng)目標,對數(shù)學建模課程的教學不斷進行改革,才能解決獨立院校數(shù)學建模課程教學的問題,才能真正的讓學生喜歡上數(shù)學,喜歡上數(shù)學建模。

[1]李大潛.將數(shù)學建模思想融入數(shù)學主干課程[j].中國大學教育.20xx.

[2]賈曉峰等.大學生數(shù)學建模競賽與高等學校數(shù)學改革[j].工科數(shù)學.20xx:162.

[3]融入數(shù)學建模思想的高等數(shù)學教學研究[j].科技創(chuàng)新導報.20xx:162.

作者:李雙單位:湖北文理學院理工學院。

數(shù)學建模的論文篇七

摘要:數(shù)學作為很多學科的計算工具,可以說是現(xiàn)代科學的基礎(chǔ),要想利用數(shù)學來解決實際問題,首先要建立相應的數(shù)學模型,本文在數(shù)學建模思想概念和特點的基礎(chǔ)上,從計算機軟件、實際生活中的應用等方面,對其應用的發(fā)展進行了分析,最后從分析問題、建立模型、校驗模型三個階段,對數(shù)學建模的方法,進行了深入的研究。

引言。

隨著自然科學的發(fā)展,利用數(shù)學等思想來解決實際問題,越來越受到人們的重視,數(shù)學作為一門歷史悠久的自然科學,是在實際應用的基礎(chǔ)上發(fā)展起來,但是隨著理論研究的深入,現(xiàn)在數(shù)學理論已經(jīng)非常先進,很多理論都無法付諸實踐,在這種背景下,如何利用現(xiàn)有的數(shù)學理論來解決實際問題,成為了很多專家和學者研究的問題。通過實際的調(diào)查發(fā)現(xiàn),要想利用數(shù)學來解決實際問題,首先要建立相應的數(shù)學模型,將實際的問題轉(zhuǎn)化成數(shù)學符號的表達方式,這樣才能夠通過數(shù)學計算,來解決一些實際問題,從某種意義上來說,計算機就是由若干個數(shù)學模型組成的,計算機軟件之所以能夠解決實際問題,就是根據(jù)實際應用的需要,建立了一個相應的數(shù)學模型,這樣才能夠讓計算機來解決。

數(shù)學是一門歷史悠久的自然科學,在古時候,由于實際應用的需要,人們就已經(jīng)開始使用數(shù)學來解決實際問題,但是受到當時技術(shù)條件的限制,數(shù)學理論的水平比較低,只是利用數(shù)學來進行計數(shù)等,隨著經(jīng)濟和科技水平的提高,尤其是在工業(yè)革命之后,自然科學得到了極大的發(fā)展,對于利用自然科學來解決實際問題,也成為了人們研究的重點,在市場經(jīng)濟的推動下,人們將這些理論知識轉(zhuǎn)化成為產(chǎn)品。計算機就是在這種背景下產(chǎn)生的,在數(shù)學理論的基礎(chǔ)上,將電路的通和不通兩種狀態(tài),與數(shù)學的二進制相結(jié)合,這樣就能夠讓計算機來處理實際問題,從本質(zhì)上來說,這就是數(shù)學建模思想的范疇,但是在計算機出現(xiàn)的早期,數(shù)學建模的理論還沒有形成,隨著計算機軟件技術(shù)的發(fā)展,人們逐漸的意識到數(shù)學建模的重要性,發(fā)現(xiàn)利用數(shù)學建模思想,可以解決很多實際的問題,而數(shù)學建模的概念,就是將遇到的實際問題,利用特定的數(shù)學符號進行描述,這樣實際問題就轉(zhuǎn)化為數(shù)學問題,可以利用數(shù)學的計算方法來解決。

如何解決實際問題,從有人類文明開始,就成為了人們研究的重點,隨著自然科學的發(fā)展,出現(xiàn)了很多具體的學科,利用這些不同的學科,可以解決不同的實際問題,而數(shù)學就是其中最重要的一門學科,而且是其他學科的基礎(chǔ),如物理學科中,數(shù)學就是一個計算的工具,由此可以看出數(shù)學的重要性,進入到信息時代后,計算機得到了普及應用,無論是日常生活中還是工作中,計算機都有非常重要的應用,而在信息時代,注重的是解決問題的效率。與其他解決問題的方式相比,數(shù)學建模顯然更加科學,現(xiàn)在數(shù)學建模已經(jīng)成為了一門獨立的學科,很多高校中都開設(shè)了這門課程,為了培養(yǎng)學生們利用數(shù)學解決實際問題的能力,我國每年都會舉辦全國性的數(shù)學建模大賽,采用開放式的參賽方式,對學生們的數(shù)學建模能力進行考驗,而大賽的題目,很多都是一些實際問題,對于比賽的結(jié)果,每個參賽隊伍的建模方式都有一定的差異,其中選出一個最有效的方式成為冠軍。由此可以看出,對于一個實際的問題,可以建立多個數(shù)學模型進行解決,但是執(zhí)行的效率具有一定的差異,如有些計算的步驟較少,而有些計算的過程比較簡單,而如何評價一個模型的效率,必須從各個方面進行綜合的考慮。

2.1計算機軟件中數(shù)學建模思想的應用。

通過深入的分析可以知道,計算機之所以能夠解決實際問題,很大程度上依賴與計算機軟件,而計算機軟件自身就是一個或幾個數(shù)學模型,在軟件開發(fā)的過程中,首先要進行需求的分析,這其實就是數(shù)學建模的第一個環(huán)節(jié),對問題進行分析,在了解到問題之后,就要通過計算機語言,對問題進行描述,而計算機語言是人與計算機進行溝通的語言,最終這些語言都要轉(zhuǎn)化成0和1二進制的方式,這樣計算機才能夠進行具體的計算。由此可以看出,計算機就是依靠數(shù)學來解決實際問題,而每個計算機軟件,都可以認為是一個數(shù)學模型,如在早期的計算機程序設(shè)計中,受到當時計算機技術(shù)水平的限制,采用的還是低級語言,由于低級語言人們很難理解,因此在程序編寫之前,都會先建立一個數(shù)學模型,然后將這個模型轉(zhuǎn)化成相應的計算機語言,這樣計算機就可以解決實際的問題,由于計算機能夠自行計算的特點,只要輸入相應的參數(shù)后,就可以直接得到結(jié)果,不再需要人為的計算。

經(jīng)過了多年的發(fā)展,現(xiàn)在數(shù)學建模自身已經(jīng)非常完善,為了培養(yǎng)我國的數(shù)學建模人才,從1992年開始,每年我國都會舉辦一屆全國數(shù)學建模大賽,所有的高校學生都可以參加,大賽采用了開放性的參賽方式,通常情況下,對于題目設(shè)置的也比較靈活,會有多個題目提供給隊員選擇,學生可以根據(jù)自己的實際情況,來選擇一個最適合自己的問題。而數(shù)學建模大賽舉辦的主要目的,就是讓學生們掌握如何利用數(shù)學理論,來解決實際問題,在學習數(shù)學知識的過程中,很多學生會認為,數(shù)學與實踐的距離很遠,學習的都是純理論的知識,學習的興趣很低,與一些實踐密切相關(guān)的學科相比,選擇數(shù)學專業(yè)的學生很少,而數(shù)學建模的出現(xiàn),在很大程度上改善了這種情況,讓人們真正的了解數(shù)學,并利用數(shù)學來解決復雜的問題。受到特殊的歷史因素影響,我國自然科學發(fā)展的起步較晚,在建國后經(jīng)歷了很長一段時間封,閉發(fā)展,與西方發(fā)達國家之間的交流比較少,因此對于數(shù)學建模等現(xiàn)代科學,研究的時間比較短,導致目前我國很少會利用數(shù)學建模來解決實際問題,相比之下,發(fā)達國家在很多領(lǐng)域中,經(jīng)常會用到數(shù)學建模的知識,如在企業(yè)日常運營中,需要進行市場調(diào)研等工作,而對于這些調(diào)研工作的處理,在進行之前都會建立一個數(shù)學模型,然后按照這個建立的模型來處理。

從本質(zhì)上來說,數(shù)學是在實際應用的基礎(chǔ)上,逐漸形成的一門學科,但是受到當時技術(shù)水平的限制,雖然人們已經(jīng)懂得去計算,卻并知道自己使用的是數(shù)學知識,隨著自然科學的發(fā)展,對數(shù)學的應用越來越多,而數(shù)學自身理論的發(fā)展速度很快,遠遠超過了實際應用的范圍,同時隨著其他學科的發(fā)展,數(shù)學變成了一種計算的工具,因此數(shù)學應用的第一個階段中,主要是作為一種工具。隨著電子計算機的出現(xiàn),對數(shù)學的應用達到了一個極限,人們在數(shù)學和物理的基礎(chǔ)上,制作出了能夠自動計算的機器,在計算機出現(xiàn)的早期,受到性能和體積上的限制,只能進行一些簡單的數(shù)學計算,還不能解決實際的問題,但是計算機語言和軟件技術(shù)的.發(fā)展,使其在很多領(lǐng)域得到了應用,在計算的基礎(chǔ)上,能夠解決很多問題,而軟件程序的開發(fā),其實就是建立數(shù)學模型的過程,由此可以看出,數(shù)學建模思想應用的第二階段中,主要是以現(xiàn)代計算機等電子設(shè)備的方式,來解決實際的問題。

3.1分析問題。

數(shù)學模型的應用都是為了解決實際問題,雖然很多問題都可以通過建模的方式來解決,但是并不是所有的問題,因此在遇到實際問題時,首先要對問題進行具體的分析,首先就是看是否能夠轉(zhuǎn)化成數(shù)學符號,如果能夠直接用數(shù)學語言來進行描述,那么就可以容易的建立相應的數(shù)學模型,但是通過實際的調(diào)查發(fā)現(xiàn),隨著經(jīng)濟和科技的發(fā)展,遇到的問題越來越復雜,其中很多都無法直接用數(shù)學語言來描述,這就增加了數(shù)學建模的難度。由此可以看出,分析問題作為數(shù)學建模的第一個環(huán)節(jié),也是最重要的一個環(huán)節(jié),如果問題分析的不夠具體,那么將無法建立出數(shù)學模型,同時對數(shù)學模型的建立也具有非常重要的影響,通過實際的調(diào)查發(fā)現(xiàn),能夠建立高效率的數(shù)學模型,都是對問題分析的比較徹底,甚至有些獨特的理解,只有這樣才能夠采用建立一個最簡單的模型,而隨著數(shù)學建模自身的發(fā)展,現(xiàn)在建立模型的過程中,對于一個實際的問題,經(jīng)常需要建立多個模型,這樣通過多個數(shù)學模型協(xié)同來解決一個問題。

在分析實際問題后,就要用數(shù)學符號來描述要解決的問題,這是建立數(shù)學模型的準備環(huán)節(jié),要想利用數(shù)學來解決實際問題,無論采用哪種方式,都要轉(zhuǎn)化成數(shù)學語言,然后才能夠通過計算的方式解決,而數(shù)學模型的過程,就是在描述完成后,建立相應的數(shù)學表達式,通常情況下,在分析問題時,都能夠發(fā)現(xiàn)某種內(nèi)在的規(guī)律,這個規(guī)律是數(shù)學建模的基礎(chǔ)。如果無法找到這個規(guī)律,顯然就不能利用現(xiàn)有的一些數(shù)學定律,從而建立相應的表達式,最后解決相應的問題,由此可以看出,分析問題的內(nèi)在規(guī)律,是影響數(shù)學建模的重要因素,而這個規(guī)律的發(fā)現(xiàn),除了在現(xiàn)有的數(shù)學知識外,也可以結(jié)合其他學科的知識,尤其是現(xiàn)在遇到的問題越來越復雜,對于以往簡單的問題,只需要建立一個簡單的模型即可解決,而現(xiàn)在復雜的問題,經(jīng)常需要建立多個模型。因此現(xiàn)在數(shù)學建模的難度越來越大,從近些年全國數(shù)學建模大賽的題目就可以看出,對于問題的描述越來越模糊,甚至出現(xiàn)了一些歷史上的難題,而不同學生根據(jù)自己的理解,建立的模型也具有很大的差異,其中一些模型非常新穎,為實際問題的解決提供了良好的參考,目前我國對數(shù)學建模的研究有限,尤其是與西方發(fā)達國家相比,實踐的機會還比較少。

在數(shù)學模型建立之后,對于這個模型是否能夠解決實際問題,具體的執(zhí)行效率如何,都需要進行校驗,因此檢驗是數(shù)學模型建立最后的一個環(huán)節(jié),也是非常重要的一個步驟,通常情況下,經(jīng)過校驗都能夠發(fā)現(xiàn)模型中存在的一些問題,從而進行完善,這樣才能夠保證嚴謹性,在實際校驗的過程中,要對數(shù)學模型的每個部分進行驗證,通過輸入特定的數(shù)據(jù),看得到的結(jié)果是否符合理論值,如果沒有問題,就說明該模型可以解決實際問題。除了檢驗模型的準確外,校驗還有另外一個作用,就是優(yōu)化模型,在選定數(shù)據(jù)后,能夠看到數(shù)學模型計算的整個過程,這時就可以對具體的細節(jié)進行優(yōu)化,如哪部分可以減少計算的步驟,或者簡化計算的方式等,這樣可以使整個模型更加科學、合理,由此可以看出,校驗工作對于數(shù)學模型的建立,具有非常重要的意義。

4結(jié)語。

通過全文的分析可以知道,對于數(shù)學理論的應用,從很久之前就已經(jīng)開始了,但是數(shù)學建模思想的出現(xiàn),卻是隨著計算機技術(shù)的發(fā)展,逐漸形成的一門學科,電子計算機的出現(xiàn),在很大程度上改變了處理事情的方式,利用計算機軟件,只要輸入相應的參數(shù),就可以直接得到結(jié)果,這正是數(shù)學模型完成的任務,只是計算機的出現(xiàn),省略了中間的計算過程,因此計算機軟件的方式,是數(shù)學建模思想最好的應用方法,要想解決不同的問題,只要建立不同的模型,然后編寫相應的程序。

數(shù)學建模的論文篇八

第一條,論文用白色a4紙打印(單面、雙面均可);上下左右各留出至少2.5厘米的頁邊距;從左側(cè)裝訂。

第二條,論文第一頁為承諾書,第二頁為編號專用頁,具體內(nèi)容見本規(guī)范第3、4頁。

第三條,論文第三頁為摘要專用頁(含標題和關(guān)鍵詞,但不需要翻譯成英文),從此頁開始編寫頁碼;頁碼必須位于每頁頁腳中部,用阿拉伯數(shù)字從“1”開始連續(xù)編號。摘要專用頁必須單獨一頁,且篇幅不能超過一頁。

第四條,從第四頁開始是論文正文(不要目錄,盡量控制在20頁以內(nèi));正文之后是論文附錄(頁數(shù)不限)。

第五條,論文附錄至少應包括參賽論文的所有源程序代碼,如實際使用的軟件名稱、命令和編寫的全部可運行的源程序(含excel、spss等軟件的交互命令);通常還應包括自主查閱使用的數(shù)據(jù)等資料。賽題中提供的數(shù)據(jù)不要放在附錄。如果缺少必要的源程序或程序不能運行,可能會被取消評獎資格。論文附錄必須打印裝訂在論文紙質(zhì)版中。如果確實沒有需要以附錄形式提供的信息,論文可以沒有附錄。

第六條,論文正文和附錄不能有任何可能顯示答題人身份和所在學校及賽區(qū)的信息。

第七條,引用別人的成果或其他公開的資料(包括網(wǎng)上資料)必須按照科技論文寫作的規(guī)范格式列出參考文獻,并在正文引用處予以標注。

第八條,本規(guī)范中未作規(guī)定的,如排版格式(字號、字體、行距、顏色等)不做統(tǒng)一要求,可由賽區(qū)自行決定。在不違反本規(guī)范的前提下,各賽區(qū)可以對論文增加其他要求。

第九條,參賽隊應按照《全國大學生數(shù)學建模競賽報名和參賽須知》的要求命名和提交以下兩個電子文件,分別對應于參賽論文和相關(guān)的支撐材料。

第十條,參賽論文的電子版不能包含承諾書和編號專用頁(即電子版論文第一頁為摘要頁)。除此之外,其內(nèi)容及格式必須與紙質(zhì)版完全一致(包括正文及附錄),且必須是一個單獨的文件,文件格式只能為pdf或者word格式之一(建議使用pdf格式),不要壓縮,文件大小不要超過20mb。

第十一條,支撐材料(不超過20mb)包括用于支撐論文模型、結(jié)果、結(jié)論的所有必要文件,至少應包含參賽論文的所有源程序,通常還應包含參賽論文使用的`數(shù)據(jù)(賽題中提供的原始數(shù)據(jù)除外)、較大篇幅的中間結(jié)果的圖形或表格、難以從公開渠道找到的相關(guān)資料等。所有支撐材料使用winrar軟件壓縮在一個文件中(后綴為rar);如果支撐材料與論文內(nèi)容不相符,該論文可能會被取消評獎資格。支撐材料中不能包含承諾書和編號專用頁,不能有任何可能顯示答題人身份和所在學校及賽區(qū)的信息。如果確實沒有需要提供的支撐材料,可以不提供支撐材料。

第十二條,不符合本格式規(guī)范的論文將被視為違反競賽規(guī)則,可能被取消評獎資格。

第十三條,本規(guī)范的解釋權(quán)屬于全國大學生數(shù)學建模競賽組委會。

說明:

(1)本科組參賽隊從a、b題中任選一題,??平M參賽隊從c、d題中任選一題。

(2)賽區(qū)可自行決定是否在競賽結(jié)束時收集參賽論文的紙質(zhì)版,但對于送全國評閱的論文,賽區(qū)必須提供符合本規(guī)范要求的紙質(zhì)版論文(承諾書由賽區(qū)組委會保存,不必提交給全國組委會)。

(3)賽區(qū)評閱前將紙質(zhì)版論文第一頁(承諾書)取下保存,同時在第一頁和第二頁建立“賽區(qū)評閱編號”(由各賽區(qū)規(guī)定編號方式),“賽區(qū)評閱紀錄”表格可供賽區(qū)評閱時使用(由各賽區(qū)自行決定是否使用)。評閱后,賽區(qū)對送全國評閱的論文在第二頁建立“送全國評閱統(tǒng)一編號”(編號方式由全國組委會規(guī)定),然后送全國評閱。

數(shù)學建模的論文篇九

數(shù)學建模隨著人類的進步,科技的發(fā)展和社會的日趨數(shù)字化,應用領(lǐng)域越來越廣泛,人們身邊的數(shù)學內(nèi)容越來越豐富。強調(diào)數(shù)學應用及培養(yǎng)應用數(shù)學意識對推動素質(zhì)教育的實施意義十分巨大。數(shù)學建模在數(shù)學教育中的地位被提到了新的高度,通過數(shù)學建模解數(shù)學應用題,提高學生的綜合素質(zhì)。本文將結(jié)合數(shù)學應用題的特點,把怎樣利用數(shù)學建模解好數(shù)學應用問題進行剖析,希望得到同仁的幫助和指正。

一、數(shù)學應用題的特點。

我們常把來源于客觀世界的實際,具有實際意義或?qū)嶋H背景,要通過數(shù)學建模的方法將問題轉(zhuǎn)化為數(shù)學形式表示,從而獲得解決的.一類數(shù)學問題叫做數(shù)學應用題。數(shù)學應用題具有如下特點:

第一、數(shù)學應用題的本身具有實際意義或?qū)嶋H背景。這里的實際是指生產(chǎn)實際、社會實際、生活實際等現(xiàn)實世界的各個方面的實際。如與課本知識密切聯(lián)系的源于實際生活的應用題;與模向?qū)W科知識網(wǎng)絡交匯點有聯(lián)系的應用題;與現(xiàn)代科技發(fā)展、社會市場經(jīng)濟、環(huán)境保護、實事政治等有關(guān)的應用題等。

第二、數(shù)學應用題的求解需要采用數(shù)學建模的方法,使所求問題數(shù)學化,即將問題轉(zhuǎn)化成數(shù)學形式來表示后再求解。

第三、數(shù)學應用題涉及的知識點多。是對綜合運用數(shù)學知識和方法解決實際問題能力的檢驗,考查的是學生的綜合能力,涉及的知識點一般在三個以上,如果某一知識點掌握的不過關(guān),很難將問題正確解答。

第一層次:直接建模。

根據(jù)題設(shè)條件,套用現(xiàn)成的數(shù)學公式、定理等數(shù)學模型,注解圖為:

第二層次:直接建模??衫矛F(xiàn)成的數(shù)學模型,但必須概括這個數(shù)學模型,對應用題進行分析,然后確定解題所需要的具體數(shù)學模型或數(shù)學模型中所需數(shù)學量需進一步求出,然后才能使用現(xiàn)有數(shù)學模型。

第三層次:多重建模。對復雜的關(guān)系進行提煉加工,忽略次要因素,建立若干個數(shù)學模型方能解決問題。

第四層次:假設(shè)建模。要進行分析、加工和作出假設(shè),然后才能建立數(shù)學模型。如研究十字路口車流量問題,假設(shè)車流平穩(wěn),沒有突發(fā)事件等才能建模。

三、建立數(shù)學模型應具備的能力。

從實際問題中建立數(shù)學模型,解決數(shù)學問題從而解決實際問題,這一數(shù)學全過程的教學關(guān)鍵是建立數(shù)學模型,數(shù)學建模能力的強弱,直接關(guān)系到數(shù)學應用題的解題質(zhì)量,同時也體現(xiàn)一個學生的綜合能力。

1提高分析、理解、閱讀能力。

2強化將文字語言敘述轉(zhuǎn)譯成數(shù)學符號語言的能力。

3增強選擇數(shù)學模型的能力。

4加強數(shù)學運算能力。

數(shù)學應用題一般運算量較大、較復雜,且有近似計算。有的盡管思路正確、建模合理,但計算能力欠缺,就會前功盡棄。所以加強數(shù)學運算推理能力是使數(shù)學建模正確求解的關(guān)鍵所在,忽視運算能力,特別是計算能力的培養(yǎng),只重視推理過程,不重視計算過程的做法是不可取的。

數(shù)學建模的論文篇十

大量的應用型技能型人才,有效滿足了社會各行各業(yè)的用工需求。隨著國家對高職教育的重視和不斷投入,提高教育的教學質(zhì)量勢在必行[1]。數(shù)學建模的核心是以數(shù)學模型為基礎(chǔ)的實際運用,鑒于數(shù)學建模的這種特點,國內(nèi)高職數(shù)學教育逐步把數(shù)學建模理念融入到課題教學中,提高學生的應用能力。以數(shù)學建模理念的告知書明確教學改革要求學生結(jié)合計算機技術(shù),靈活運用數(shù)學的思想和方法獨立地分析和解決問題,不僅能培養(yǎng)學生的探索精神和創(chuàng)新意識,而且能培養(yǎng)學生團結(jié)協(xié)作、不怕困難、求實嚴謹?shù)淖黠L[2]。筆者結(jié)合自身的教學工作經(jīng)驗,對基于數(shù)學建模理念的高職數(shù)學教學改革進行了探索,對教學實踐中出現(xiàn)的問題進行了分析梳理,以期為高職數(shù)學教學改革提供新思路,推動高職數(shù)學教學水平的不斷提高,培養(yǎng)出具有良好數(shù)學素養(yǎng)和專業(yè)技能的新型高職人才。

近年來,隨著國內(nèi)產(chǎn)業(yè)結(jié)構(gòu)的不斷調(diào)整,對于高等職業(yè)技術(shù)人才需求不斷增大,社會對高等職業(yè)技術(shù)教育寄予厚望。但是傳統(tǒng)的高職教育由于專業(yè)設(shè)置不合理,使用教材落后,實訓實踐場地不足,培養(yǎng)出的學生動手能力差、專業(yè)能力不足,面對社會發(fā)展的新形勢,高職教育必須進行教學改革,提高學生的職業(yè)能力和就業(yè)競爭力。高職教育不同于普通本科教育,它有以下幾方面的特點。

1人才培養(yǎng)目標不同。

高職教育和本科教育人才培養(yǎng)目標不同,高職教育是以技術(shù)應用型高技能人才為培養(yǎng)目標,所有的教學課程設(shè)計和人才培養(yǎng)體系設(shè)計都是基于此目標展開的,高職教育主要是為了向產(chǎn)業(yè)發(fā)展提供生產(chǎn)、服務、管理等一線工作的高級技術(shù)應用型人才,專業(yè)能力培養(yǎng)和目標職業(yè)匹配度高,所以高職教育教學成果最直接的評價就是畢業(yè)生的就業(yè)競爭力和上崗后的適應能力。

2兩者的教學內(nèi)容不同。

高職教育的教學重點是學生要掌握與實踐工作關(guān)系較為密切的業(yè)務處理能力、動手能力與交流能力,把學生的職業(yè)能力建設(shè)列為教學重點,課程設(shè)計專業(yè)性強,一旦就業(yè)能為企業(yè)創(chuàng)造明顯的效益,高職教育各專業(yè)課程差別較大。

3生源情況不同。

在當前的教育教學體系下,高職教育的生源普遍較差,大多是沒有希望考上大學,轉(zhuǎn)而進入高職學習,希望通過掌握一定的技術(shù)來實現(xiàn)就業(yè),所以高職學生的基礎(chǔ)知識普遍較差,學習興趣不高。數(shù)學建模給高職數(shù)學教學改革開辟了新思路,數(shù)學建模為數(shù)學理論學習和工程實踐應用搭建了橋梁,在工學結(jié)合的基本原則下,采取數(shù)學建模教學理念,培養(yǎng)學生的數(shù)學素養(yǎng)及動手應用能力是一個非常有效的手段[3]。

1數(shù)學建模的概念數(shù)學建模是將數(shù)學理論和現(xiàn)實問題相結(jié)合的一門科學,它將實際問題抽象、歸納成為相應的數(shù)學模型,在此基礎(chǔ)上應用數(shù)學概念、數(shù)學定理、數(shù)學方法等手段研究處理實際問題,從定性或者定理的角度給出科學的結(jié)果[4]。數(shù)學建模的發(fā)展為數(shù)學知識的應用提供了途徑,對于現(xiàn)實中的特點問題,可以用數(shù)學語言來描述其內(nèi)在規(guī)律和問題,運用數(shù)學研究的成果,結(jié)合計算機專業(yè)軟件,通過抽象、簡化、假設(shè)、引進變量等處理過程后,將實際問題用數(shù)學方式表達,轉(zhuǎn)化成為數(shù)學問題,借助數(shù)學思想建立起數(shù)學模型,從而解決實際問題。2基于數(shù)學建模思想的教學理念基于數(shù)學建模的這種學科特點,可以把數(shù)學知識應用化,因此,基于數(shù)學建模思想的教學理念可以概括為三個層次:首先,確立提高學生數(shù)學應用能力為目標,以提高學生數(shù)學學習興趣為手段,以學習數(shù)學建模為途徑;其次,結(jié)合教學內(nèi)容,開發(fā)相應的數(shù)學建模案例,因地制宜、因生制宜,根據(jù)專業(yè)不同編寫相應的校本教材;最后,改進教學方法,創(chuàng)新課堂教學模式,建立課外數(shù)學建模學習興趣小組,帶領(lǐng)學生進行數(shù)學應用實踐活動,鼓勵學生參加各種數(shù)學建模競賽[5]。

傳統(tǒng)的數(shù)學教學模式以教師課堂講授為中心,學生只能被動的接受,由于學生的基礎(chǔ)知識水平不同,掌握新知識的能力也不同,這種沒有區(qū)分的教學模式教學效果差,往往帶來的結(jié)果是造成基礎(chǔ)差的學生跟不上,對數(shù)學感興趣的學生失去興趣?;跀?shù)學建模理念的高職數(shù)學教學改革,是以學生數(shù)學應用能力提高為目標,以數(shù)學學習興趣培養(yǎng)為出發(fā)點,以數(shù)學建模為途徑,以教學方式改革為保障,打造高職數(shù)學教學改革新模式,全面提高高職教育應用型人才培養(yǎng)水平。

1結(jié)合專業(yè)特色,突出數(shù)學教育的應用性。

數(shù)學作為高職教育的基礎(chǔ)性學科,理論性強,體系性強,對于基礎(chǔ)知識薄弱、學習興趣差的高職生來說感覺難學、枯燥,這是因為高職數(shù)學教育沒有教會學生如何在專業(yè)學習中和以后的工作中如何去用學到的數(shù)學知識,學生感覺知識無用自然也就不會主動去學,之所以引入數(shù)學建模的思想就是為了讓學生利用學到的數(shù)學知識去解決實際問題,讓學生認識到數(shù)學不只是紙面上的寫寫算算,數(shù)學可以把實際問題抽象化,變成數(shù)學問題,利用數(shù)學的研究方法給實際問題進行科學的指導,這樣高職數(shù)學教育就不再是課堂上的照本宣科,課下的演算作業(yè),將基礎(chǔ)數(shù)學教育和學生的專業(yè)教育相結(jié)合,帶來學生用數(shù)學解決專業(yè)問題是大幅度提高學生專業(yè)能力的有效途徑。

2結(jié)合學生能力,因材施教、因地制宜。

高職學校的生源不如普通高校,一般學習基礎(chǔ)較差,對于專業(yè)實訓課并不明顯,但是在基礎(chǔ)學科教學過程特別突出,很多基礎(chǔ)知識掌握不牢,甚至一點印象都沒有,教師在上課時要充分考慮到這種情況,在課堂授課時給予實時的補充,以助于知識的過渡。因材施教是我國傳統(tǒng)的教育思想,在掌握學生知識水平的基礎(chǔ)上,教師要根據(jù)不同學習層次學生的具體情況,安排教學內(nèi)容和設(shè)置教學目標,對于基礎(chǔ)知識水平不高、學習興趣較差、學習能力較弱的學生要進行課外輔導。高職基礎(chǔ)課教育是專業(yè)課學習的基礎(chǔ),授課教師要根據(jù)學生的專業(yè)學習情況和專業(yè)特點,把遷移知識運用能力在課堂上結(jié)合學生的專業(yè)背景進行輔導,高職數(shù)學教育不僅僅是為了學習數(shù)學,更多的是發(fā)揮數(shù)學知識在其專業(yè)能力培養(yǎng)中的作用。

3培養(yǎng)學生學習興趣,促進整體教學質(zhì)量提高。

高職學校的學生學習興趣普遍不高,尤其是對于學了十幾年都感覺頭痛的數(shù)學,要想提高數(shù)學的教學質(zhì)量,首先必須要培養(yǎng)學生的學習興趣,長期以來學生在數(shù)學學習上已經(jīng)有了根深蒂固的認識,培養(yǎng)數(shù)學學習興趣很難,但是如果學生沒有學習興趣,教師授課內(nèi)容、授課方式改革都起不了太大的作用,學生對于數(shù)學學習興趣低由于低年級學習時受到的挫敗感,因此要讓學生建立學習數(shù)學的自信心,讓他們體驗學會數(shù)學的成就感,這樣才能逐步培養(yǎng)他們的學習興趣。教師可以采取以點帶面的方式,先選擇有一定基礎(chǔ)的學生,再從全部課程學習中發(fā)現(xiàn)表現(xiàn)優(yōu)秀的個體,組織參加建模競賽,進行單獨賽前加強指導,用這些榜樣的力量提高全體同學的學習積極性。數(shù)學建模作為提高高職數(shù)學教育教學水平的“點”,能夠以其趣味性強,帶動學生的學習興趣,促進高職數(shù)學教育教學水平的全面提高。

4改革教學及評價方式,建立面向應用的數(shù)學教育體系。

由于基于數(shù)學建模思想的高職數(shù)學教學改革打破了以往的課堂教學方式和考核方式,學生面對的不再是期末的一張試卷,而是一個個數(shù)學建模案例,需要學生運用本學期學到的數(shù)學知識解決實際問題,教師根據(jù)學生對案例的理解程度,數(shù)學模型運用能力,實際過程分析和解題技巧等多方面給出評價,同時積極評價、鼓勵學生的創(chuàng)新思維,并將其納入到考核體系當中。通過以上各個方面評價的加權(quán)作為最后的評價指標。這種以數(shù)學知識應用為基礎(chǔ),直接面向應用的高職數(shù)學教育模式能極大的激發(fā)學生的學習積極性和知識應用能力,符合高職應用型人才培養(yǎng)理念,對提高高職學生的專業(yè)能力也打下了堅實的基礎(chǔ)。基于數(shù)學建模理念的高職數(shù)學教學改革是推動高職應用型人才培養(yǎng)體系建設(shè)的新舉措,也是推動高職基礎(chǔ)課教學水平的重要內(nèi)容,能有效解決學生學習興趣低,基礎(chǔ)知識掌握不牢,數(shù)學知識應用能力低等問題,通過“案例驅(qū)動法+討論法”,引導學生再次對課本知識進行思考和應用,有利于培養(yǎng)學生的創(chuàng)新思維和應用能力。引入數(shù)學建模理念教學,把課堂學習的主動權(quán)交回給學生,既保證了高等數(shù)學原有的知識體系的完整,也可以提高教學效率。通過教學方式和評價方式改革,學生的學習主動性增強,也改變了以往對于數(shù)學學習的學習態(tài)度。高等數(shù)學作為高職教育學生必修的基礎(chǔ)課,在培養(yǎng)學生基本數(shù)學素養(yǎng)上具有重要作用,是理工類專業(yè)課程體系的重要組成部分,基于數(shù)學建模理念的高職數(shù)學教學改革也為同類基礎(chǔ)理論課改革提供了新思路和范例。

[1]孫麗.在高職數(shù)學教學改革中應注重數(shù)學建模思想的滲透[j].科技資訊,20xx(22):188.

數(shù)學建模的論文篇十一

1培養(yǎng)創(chuàng)造性思維學生在學習數(shù)學知識的過程中,雖然其接受的知識和經(jīng)驗是前人研究和發(fā)現(xiàn)的成果,但對于學生來說,其處于知識再發(fā)現(xiàn)的地位。教師向?qū)W生教授數(shù)學發(fā)現(xiàn)的思維和方法,換言之就是重點引導學生重溫數(shù)學經(jīng)驗和知識的研究道路,進而保證學生的再發(fā)現(xiàn)能夠順利實現(xiàn)。這也是培養(yǎng)學生創(chuàng)新思維和能力的一個重要途徑。利用數(shù)學建模能夠有效地彌補數(shù)學教學過程中存在的缺陷,使學生充分體會到數(shù)學發(fā)現(xiàn)過程中的樂趣,進而激發(fā)學生學習數(shù)學的熱情和積極性,培養(yǎng)其創(chuàng)造性思維。

2選擇經(jīng)典案例開展數(shù)學建模討論、分析教師在實際的數(shù)學課堂教學中,可選擇一些社會實際案例為講授分析的主要對象,如實際生活和高科技的熱點話題。教師可對此類實例進行必要的分析與講解,在此過程中,積極引導學生獨立鉆研和研究問題,并培養(yǎng)學生主動查閱相關(guān)資料、自主討論的能力。與此同時,教師還要及時與學生進行交流,答疑釋難,并要求學生在自己實際能力的基礎(chǔ)上構(gòu)建恰當?shù)哪P停梢椎诫y,循序漸進。除此之外,還要使學生充分發(fā)揮其主觀能動性,培養(yǎng)學生發(fā)現(xiàn)問題,思考問題以及處理問題的能力。以微積分方程為例,教師在課堂教學中,可以“經(jīng)濟增長”作為主要案例,向?qū)W生系統(tǒng)地闡述微積分方程的實際應用過程,進一步加深學生對知識的理解、掌握和應用。

3同時開設(shè)數(shù)學建模與高等數(shù)學課程在職業(yè)院校數(shù)學教學過程中,同時開設(shè)數(shù)學建模與高等數(shù)學課程,能夠有效提高學生對基礎(chǔ)知識的理解能力和掌握程度,促進學生實踐動手能力的培養(yǎng)。在數(shù)學建模課程的開設(shè)中,應該在教師的指導下,充分利用教學軟件,引導學生動手實驗和計算,加深學生對知識的掌握。在此過程中,使學生充分了解到運用數(shù)學理論和方法去分析和解決實際問題的全過程,進一步提高學生的積極性和思維意識能力,使他們意識到數(shù)學在實際生活應用中的關(guān)鍵作用。同時,促使學生將計算機技術(shù)融入數(shù)學學習中去,以現(xiàn)代化的高新科技為媒介,著手實際社會問題的解決。

4創(chuàng)新教學模式根據(jù)職業(yè)院校學生學習的特點和知識水平,重點提高學生運用數(shù)學的技能和思維方式來處理實際生活和專業(yè)問題的能力。要想從根本上培養(yǎng)學生的創(chuàng)新能力,一定要改變原來單一固定的教學模式,嘗試和探索基于學生實際情況的教學措施和方式。經(jīng)過長期的實踐經(jīng)驗研究,討論式教學和雙向教學方式對培養(yǎng)學生的能力非常有效。這兩種教學模式能夠加深學生參與課堂教學的程度,激發(fā)學生學習數(shù)學的'主動性,最終達到提高教學效率的目的。所以,數(shù)學建模可以以具體問題為媒介,采用小組集體討論解決問題的方法,培養(yǎng)學生的創(chuàng)新能力和意識,進一步加快職業(yè)技術(shù)院校數(shù)學教學模式的創(chuàng)新。

5組建數(shù)學建模團隊在實際的數(shù)學教學中,教師可引導學生構(gòu)建數(shù)學建模團隊。在教師對數(shù)學建模的深入分析為基礎(chǔ),充分調(diào)動學生參與問題解決的主動性,師生積極互動,最終完成數(shù)學建模。如此一來,不僅能夠有效培養(yǎng)學生積極進取的良好學習態(tài)度,而且還能夠促進學生數(shù)學邏輯思維能力的提高。

6搭建校內(nèi)數(shù)學建模網(wǎng)絡平臺在職業(yè)技術(shù)院校中構(gòu)建校內(nèi)數(shù)學建模網(wǎng)絡平臺,積極宣傳與數(shù)學建模有關(guān)的知識經(jīng)驗,為學生主動獲取數(shù)學建模信息提供各種數(shù)據(jù)資料。數(shù)學建模網(wǎng)絡平臺的搭建,能夠有效促進教師和學生,學生與學生之間的交流與溝通,大大縮短學生和數(shù)學建模之間的距離,進而促進學生自主學習能力的提高和培養(yǎng)。

總而言之,數(shù)學建模思想是學生將基礎(chǔ)理論知識與實際解決問題的方法相結(jié)合的最佳途徑。將數(shù)學建模融入職業(yè)院校數(shù)學中,全面培養(yǎng)學生的創(chuàng)新意識和數(shù)學應用能力,進一步使數(shù)學為達成學院的教學和培養(yǎng)計劃奠定基礎(chǔ),為培養(yǎng)更多更優(yōu)秀的現(xiàn)代化社會人才服務。

數(shù)學建模的論文篇十二

運籌學與數(shù)學建模2門課程聯(lián)系密切,在運籌學教學中,適當融入數(shù)學建模思想,能大幅度提高學生應用數(shù)學解決實際問題的能力.從運籌學教學中教學大綱的改革、教學環(huán)節(jié)的設(shè)計等方面進行了探索與實踐.教學實踐表明,將數(shù)學建模思想融入到運籌學教學中能提高課堂教學的效果,鍛煉學生的動手實踐能力.

數(shù)學建模的論文篇十三

培養(yǎng)應用型人才是我國高等教育從精英教育向大眾教育發(fā)展的必然產(chǎn)物,也是知識經(jīng)濟飛速發(fā)展和市場對人才多元化需求的必然要求。隨著科學技術(shù)的不斷發(fā)展,各學科各領(lǐng)域?qū)嶋H問題的研究日益精確化與定量化,數(shù)學在科學研究與工程技術(shù)中的作用不斷增強,其應用的范圍幾乎覆蓋了所有學科分支,滲透到社會生活中的各個領(lǐng)域。前蘇聯(lián)數(shù)學家亞歷山大洛夫曾說過,“數(shù)學在其它科學中,在技術(shù)中,在全部生活實踐中都有廣泛的應用”。1993年,王梓坤院士發(fā)表的著名報告《今日數(shù)學及其應用》中也深刻指出:“現(xiàn)代世界國家間的競爭本質(zhì)上是高技術(shù)的競爭,而高技術(shù)本質(zhì)上是一種數(shù)學技術(shù)。”數(shù)學是一門技術(shù)已經(jīng)成為人們的共識。數(shù)學技術(shù)離不開數(shù)學建模,數(shù)學建模是把數(shù)學作為工具,并應用它解決實際問題的一種活動,它是一個跨學科、跨專業(yè)、綜合性和應用性都非常強的過程,是數(shù)學應用的必由之路,是聯(lián)系數(shù)學與實際問題的橋梁,是數(shù)學在各個領(lǐng)域廣泛應用的媒介。因此,數(shù)學建模的過程是一個全而培養(yǎng)學生綜合素質(zhì)、提高學生各種能力的過程,數(shù)學建模是培養(yǎng)生產(chǎn)一線應用型人才的一條重要途徑。

應用型人才是將專業(yè)知識和專業(yè)技能應用于社會實踐的專門人才是熟練掌握社會生產(chǎn)或社會活動一線的基礎(chǔ)知識和基本技能,主要從事一線生產(chǎn)的技術(shù)或?qū)iT人才社會對應用型人才的基本要求是具有基礎(chǔ)扎實,知識而寬,應用能力強,素質(zhì)高,有較強的創(chuàng)新精神和團隊合作精神。他們的突出特點是既具有寬廣的知識而和深厚的基礎(chǔ)理論,又能將所學知識應用于本行業(yè)相關(guān)技術(shù)領(lǐng)域,適應產(chǎn)業(yè)發(fā)展對應用型人才市場需求的不斷變化,還有接受繼續(xù)教育的基礎(chǔ)條件和進一步獲取新知識的基本能力和擴展與職業(yè)相關(guān)的學科知識能力。

隨著高等教育的不斷擴招,高等教育的大眾化趨勢已越來越明顯,在這種背景下,傳統(tǒng)的“研究型”、“學術(shù)型”人才培養(yǎng)模式受到了嚴峻的挑戰(zhàn),因此,一些發(fā)達國家率先提出了“發(fā)展應用型大學”,“培養(yǎng)應用型人才”的口號。德國早在20世紀70年代就成立了應用科技大學,其應用型人才的培養(yǎng)特色鮮明,深受歡迎。美國的工程教育,英國的技術(shù)學院,日本的短期大學都以培養(yǎng)應用型人才而著稱。近年來,我國高等院校對應用型人才的培養(yǎng)取得了一定的進展,但仍然存在認識上的不足,培養(yǎng)方案和措施仍有許多不盡如人意的地方,應用型人才的培養(yǎng)模式還有待于進一步探索。通過多年的實踐和探索,根據(jù)應用型人才的特點和社會日益數(shù)字化,對應用型人才的要求以及數(shù)學在各行各業(yè)中的廣泛應用、數(shù)學建模在應用型人才培養(yǎng)中具有不可替代的重要作用。

數(shù)學建模就是用數(shù)學語言、方法近似地刻畫要解決的實際問題,對于已建立的模型采用推理、證明、數(shù)值計算等技術(shù)手段及相應的數(shù)學軟件求解,并利用所得的結(jié)果擬合實際問題。數(shù)學建模在應用型人才培養(yǎng)中的作用主要體現(xiàn)在以下幾個方面:。

由于實際問題的'復雜性,在數(shù)學建模過程中要涉及到大量的數(shù)據(jù)收集和對數(shù)據(jù)的分析與處理,一個完整的建模過程一般要經(jīng)歷模型的假設(shè)、模型的建立與求解、算法的設(shè)計和計算機實現(xiàn)、對結(jié)果的分析與檢驗并將所得的結(jié)果模擬實際問題等幾個階段。這些過程只靠個人的力量在有限時間內(nèi)是很難完成的,這就注定了數(shù)學建模是一個團隊的集體行為,需要有師生之間、學生之間以及學生與社會之間的交流與合作。因此數(shù)學建模有利于提高學生的團隊合作精神,而團隊合作精神又是社會對應用型人才的基本要求。

數(shù)學建模所面臨的數(shù)據(jù)是雜亂無章的,這就要求學生對這些數(shù)據(jù)進行去粗取精,去偽存真,歸納、提煉、整理、加工和總結(jié),還需要對一些已知條件進行符號化和量化,然后從中抽象出恰當?shù)臄?shù)學關(guān)系,從而組建一定的數(shù)學模型,再用所學的數(shù)學理論和方法去求解數(shù)學模型。在對實際問題中的數(shù)據(jù)進行加工和整理過程中,為使問題簡化,有些因素是可以忽略的,但有些因素不能忽略,究竟哪些因素可以忽略、哪些因素不能忽略并沒有一定的范式,這要根據(jù)建模者對實際問題的理解、研究問題的目的以及數(shù)學背景來完成這個過程,應該說這是一個創(chuàng)造性的過程。另外,數(shù)學模型是對實際問題的近似刻畫,為了使建立的數(shù)學模型盡可能完美地表達實際問題,又使模型易于求解,需要對模型進行不斷的改進和不斷的完善,這就要求學生不斷對問題進行深入的了解,深入到知識的更深層面,這樣又會產(chǎn)生新的疑問,這個過程多次循環(huán)們復,學生的創(chuàng)新能力將不斷得到加強。創(chuàng)新能力也是社會對應用型人才的基本要求。

一個完整的數(shù)學建模過程是綜合運用知識和能力,解決實際問題的過程。這不僅需要學生有較好的數(shù)學基礎(chǔ)和嚴密的邏輯推理能力,還要求學生對問題的實際背景有一定的了解,要求學生有廣博的知識和深厚的專業(yè)基礎(chǔ),并能對這些知識進行融會貫通。數(shù)學建模面臨的數(shù)據(jù)}i-.}i是龐大而復雜的,對數(shù)據(jù)的處理過程是一個分析與綜合,抽象與概括,比較與類比,系統(tǒng)化與具體化的過程。在這個過程中,學生的應變能力和多角度分析,多方位思考能力不斷得到提高,綜合素質(zhì)不斷得到加強。綜合素質(zhì)和能力是應用型人才的基本特征和社會對應用型人才的起碼要求。

從實際問題中抽象出來的數(shù)學模型一般很復雜,因此模型的求解一般很困難,甚至無法求出模型的解析解,即使能求出模型的解析解,由于其復雜性而無多大的應用價值。所以數(shù)學模型的求解通常需要編寫算法,運用某些數(shù)學軟件利用計算機求其數(shù)值解,這就要求學生有較強的數(shù)學軟件應用能力和對計算機的實際操作能力。在操作的過程中,學生的動手能力和實踐能力自然而然得到提高。另外在數(shù)學建模中,需要進行調(diào)查研究,需要對有關(guān)的數(shù)據(jù)進行廣泛的采集和補充,這就是應用型人才培養(yǎng)中所強調(diào)的實踐性。

數(shù)學建模本身就是綜合運用知識,解決實際問題的過程。數(shù)學建模中的很多典型案例,如“最優(yōu)捕魚策略”,“投資的收入和風險”,“車燈線光源的優(yōu)化設(shè)計”等就較好地突現(xiàn)了知識的應用性。數(shù)學建模是數(shù)學應用的必由之路,是聯(lián)系數(shù)學與實際問題的橋梁。一方面數(shù)學建模需要用數(shù)學語言、方法近似地刻畫要解決的實際問題,另一方面數(shù)學建模需要利用所得的結(jié)果擬合實際問題,所有這些都與應用型人才的突出特點和社會對應用型人才的要求是一致的。

數(shù)學建模需要學生親自參與問題的研究與探索,數(shù)據(jù)的收集和補充需要學生的積極參與,數(shù)據(jù)的處理和模型的建立需要學生的主動參與,模型的求解需要學生獨立完成。數(shù)學建模一般需要綜合運用多方面的知識,需要了解相關(guān)問題的背景材料,需要對相關(guān)的數(shù)據(jù)進行合理的取舍和有效的篩選,有些知識和相關(guān)的資料需要學生自己去查詢,所有這些都為學生的自主學習提供了一個良好的“下臺。另外,數(shù)學建模需要用自己的語言描述問題的解決過程,需要廣泛的交流與合作,還需要進行論文的寫作等等,這些都對學生語言表達能力的提高具有重要的作用。應用型人才的一個突出特點就是具有接受繼續(xù)教育的基礎(chǔ)條件和進一步獲取新知識的基本能力和擴展與職業(yè)相關(guān)的學科知識能力,而自學能力和語言表達能力為進一步獲取新知識等能力提供了良好的基礎(chǔ)。

應該說,數(shù)學建模的作用是多方面的,通過數(shù)學建模的訓練,學生獲得了參與研究探索的體驗,培養(yǎng)了收集、分析和利用信息的能力,學會了分享與合作,鍛煉了學生的意志力、洞察力、想象力、自學能力、語言的翻譯和表達能力以及綜合應用專業(yè)知識解決實際問題的能力與分析問題、解決問題的能力,所有這一切都是應用型人才培養(yǎng)所要達到的目標,也是與應用型人才培養(yǎng)模式的四個基本點是一致的。因此數(shù)學建模能將應用型人才的突出特征和社會對應用型人才的要求體現(xiàn)得淋漓盡致,它在應用型人才的培養(yǎng)中具有不可替代的重要作用。

1.馬克思有一句名言,“一門科學只有成功地應用了數(shù)學時,才算真正達到了完善的地步”。不論是自然科學還是社會科學都需要數(shù)學,都蘊含數(shù)學。一門科學要成功地應用數(shù)學,必須對這門學科中的問題建立數(shù)學模型。因此,建議高等院校的各個專業(yè)都要不同程度地開設(shè)數(shù)學建模課程,并根據(jù)專業(yè)的不同要求選擇合適的數(shù)學建模內(nèi)容,真正做到“人人學有用的數(shù)學,人人做有用的數(shù)學,人人用有用的數(shù)學”。

2.數(shù)學建模課程應增加實訓內(nèi)容,數(shù)學建模的學習應以實訓內(nèi)容為主。教師應根據(jù)學生的具體情況,女排布置具有綜合性、開放性、靈活性和趣味性的實訓題目,讓學生自己進行調(diào)查研究,自己收集數(shù)據(jù)、分析數(shù)據(jù)和處理數(shù)據(jù),模型的建立和求解要以學生為主體,并以論文的形式提交給教師,教師提供實時指導和幫助,對建模的結(jié)果進行有的放矢的點評,并將實訓內(nèi)容作為學生期末考評的主要內(nèi)容和重要依據(jù)。

3.舉辦多種形式的數(shù)學建模競賽,豐富數(shù)學建模的教學內(nèi)容和教學方式,引進案例教學和專題講座,通過對典型案例的深入剖析,激發(fā)學生的學習興趣和積極性,培養(yǎng)學生的數(shù)學建模思想和堅忍不拔的毅力,聘請專家對一些典型問題進行專題講座。

數(shù)學建模的論文篇十四

為了培養(yǎng)小學生良好的數(shù)學學習興趣,激發(fā)他們的數(shù)學潛能,教師需要采取必要的措施注重數(shù)學建模思想的有效培養(yǎng),促進學生的全面發(fā)展。在制定相關(guān)培養(yǎng)策略的過程中,教師應充分考慮小學生的性格特點,提高數(shù)學建模思想培養(yǎng)的有效性。基于此,文章將從不同的方面對小學生數(shù)學建模思想的培養(yǎng)策略進行初步的探討。

作為小學數(shù)學教學中的重要組成部分,數(shù)學建模思想的滲透及相關(guān)教學活動的順利開展,有利于提高復雜數(shù)學問題的處理效率,保持數(shù)學課堂教學的高效性。要實現(xiàn)這樣的發(fā)展目標,增強小學生數(shù)學建模思想的實際培養(yǎng)效果,需要加強對學生動手實踐能力的培養(yǎng),激發(fā)學生的更高興趣。建模的過程涉及問題表述、求解、必要解釋及有效驗證,在這四個環(huán)節(jié)中,可能會存在一定的問題,影響著數(shù)學教學計劃的實施。因此,教師需要利用學生動手實踐能力的作用,實現(xiàn)數(shù)學建模思想的有效培養(yǎng),促使小學生能夠在數(shù)學建模過程中享受到更多的快樂。比如,在講解“認識角”知識的過程中,某些學生認為邊越長角度也越大。為了使學生能夠?qū)ζ渲械闹R點有更加正確而全面的認識,教師可以通過在黑板上設(shè)置一些能夠活動的三角板,讓學生親自動手操作,以此得出角與邊長的正確關(guān)系,為后續(xù)教學計劃的實施打下堅實的基礎(chǔ)。通過這種教學方法的合理運用,可以激發(fā)出學生們在數(shù)學建模學習中的更高興趣,豐富他們的想象力,從而使他們對數(shù)學建模思想有一定的了解,在未來學習過程中能夠保持良好的`數(shù)學建模能力。

通過對小學階段各種數(shù)學實踐教學活動實際概況的深入分析,可知構(gòu)建良好的數(shù)學模型有利于加深學生對各知識(福建省莆田市秀嶼區(qū)東嶠前江小學,福建莆田351164)點的深入理解,增強其主動參與數(shù)學建模教學活動的積極性。因此,為了使小學生數(shù)學建模思想培養(yǎng)能夠達到預期的效果,教師需要結(jié)合實際的教學內(nèi)容,建立必要的數(shù)學參考模型,提升學生對數(shù)學建模思想的整體認知水平。比如,在講授“異分母分數(shù)加減法”這部分知識的過程中,可以設(shè)置“0.8千克+300克”“1.6千克-400克”等問題,向?qū)W生提問是否可以直接計算,并說出原因。當學生通過對問題的深入思考,總結(jié)出“單位不同不能直接計算”的結(jié)論后,繼續(xù)向?qū)W生提問小數(shù)計算中為什么每一位都要對齊,實現(xiàn)“計數(shù)單位統(tǒng)一后才能計算”這一數(shù)學模型的構(gòu)建。在這樣的教學過程中,學生可以加深對知識點的理解,實現(xiàn)數(shù)學建模思想的有效培養(yǎng)。

加強小學生數(shù)學建模思想的有效培養(yǎng),需要在具體的教學活動開展中注重對數(shù)學思想的靈活運用,增強相關(guān)模型構(gòu)建的可靠性,促使學生在長期的數(shù)學學習中能夠不斷提高自身的數(shù)學能力,運用各種數(shù)學知識處理實際問題。比如,在“角的度量”這部分內(nèi)容講解的過程中,為了提高學生對角的分類及畫角相關(guān)知識點的深入理解,教師可以將所有的學生分為不同的小組,讓學生們通過小組討論的方式,對角的正確分類及如何畫角有一定的了解,并讓每個小組代表在講臺上演示畫角的過程。此時,教師可以通過對多媒體教學設(shè)備的合理運用,利用動態(tài)化的文字與圖片對其中的知識要點進行展示,確保學生們能夠在良好的教學模式中提升自身的認知水平,并在不斷的思考過程中逐漸形成良好的創(chuàng)造性思維,強化自身的創(chuàng)新意識。比如,在講解“圖形變換”中的軸對稱、旋轉(zhuǎn)知識點的過程中,教師應通過對學生的正確引導,運用三角板、圓柱等教學輔助工具,讓學生從不同的角度對各種軸對稱圖形、旋轉(zhuǎn)后得到的圖形進行深入思考,提高自身數(shù)學建模過程中的創(chuàng)新能力,從不同的角度深入理解圖像變換過程,對這部分內(nèi)容有更多的了解。因此,教師應注重小學生數(shù)學建模思想培養(yǎng)中多方位思考方式的針對性培養(yǎng),提高學生的創(chuàng)新能力,優(yōu)化學生的思維方式,全面提升小學數(shù)學建模教學水平。

總之,加強小學生數(shù)學建模思想培養(yǎng)策略的制定與實施,有利于滿足素質(zhì)教育的更高要求,實現(xiàn)對小學生數(shù)學能力的有效鍛煉,確保相關(guān)的教學計劃能夠在規(guī)定的時間內(nèi)順利地完成。與此同時,結(jié)合當前小學數(shù)學教育教學的實際發(fā)展概況,可知靈活運用各種科學的數(shù)學建模思想培養(yǎng)策略,有利于滿足學生數(shù)學建模學習中的多樣化需求,為相關(guān)教學目標的順利實現(xiàn)提供可靠的保障。

[1]童小艷.小學數(shù)學教學中培養(yǎng)學生建模思想的策略[j].學子(教育新理念),20xx(6).

[2]白寧.先學而后教——小學生數(shù)學建模思想培養(yǎng)的捷徑[j].數(shù)學學習與研究,20xx(16).

數(shù)學建模的論文篇十五

數(shù)學建模是銜接數(shù)學與應用問題的橋梁,該課程主要培養(yǎng)學生的綜合素質(zhì)要求。本文針對于數(shù)學建模的課程考核問題進行探討,分析數(shù)學建模課程考核存在問題,改革思路,并提出多層次綜合考核方式,應用于數(shù)學建模的課程考核,效果良好。

數(shù)學建模是一門介紹數(shù)學知識應用于解決實際問題的方法課程,該課程主要講授如何針對日常生活中的實際問題,做假設(shè)簡化并進行抽象提取,然后用數(shù)學表達式或者數(shù)學公式等將該問題表達出來,并求解該問題,從而達到解決實際問題的目的。數(shù)學建模的教學內(nèi)容包含常見數(shù)學模型的介紹、數(shù)學軟件編程和處理實際問題的數(shù)學方法。即數(shù)學建模是一門銜接數(shù)學與實際問題的應用型課程,其教學、考核等都與其他數(shù)學課程不同。中共中央國務院《關(guān)于深化教育改革全面推進素質(zhì)教育的決定》明確指出:“高等教育要重視培養(yǎng)大學生的創(chuàng)新能力、實踐能力和創(chuàng)業(yè)精神,普遍提高大學生的人文素養(yǎng)和科學素質(zhì)。”特別對于當前處于經(jīng)濟結(jié)構(gòu)調(diào)整期,“中國制造”向“中國創(chuàng)造”轉(zhuǎn)型,國家需要大量的高素質(zhì)創(chuàng)新型人才。而高校是培養(yǎng)高素質(zhì)創(chuàng)新型人才的重要基地,需要改變原有的人才培養(yǎng)模式,提高學生的動手能力和綜合素質(zhì),培養(yǎng)適合經(jīng)濟發(fā)展需要的高素質(zhì)創(chuàng)新型人才。因此,本科教學中越來越重視培養(yǎng)學生收集處理信息的能力、獲取新知識的能力、分析和解決問題的能力、語言文字表達能力以及團結(jié)協(xié)作和社會活動的能力。數(shù)學建模競賽是利用數(shù)學知識解決實際問題的競賽活動,要求參賽學生利用三天三夜的時間完成數(shù)學建模競賽,整個競賽過程中學生需要分析問題、查找資料、建立模型、編程求解、撰寫建模論文等步驟。這些步驟要求參賽學生具有較強的信息收集、知識獲取、分析、編程、論文撰寫、團隊協(xié)作等能力。因此,數(shù)學建模競賽活動是培養(yǎng)學生各方面能力的競賽,也是全國參與人數(shù)最多、受益面最廣、舉辦時間最長的競賽活動之一。數(shù)學建模是信息與計算科學和應用數(shù)學專業(yè)的專業(yè)必修課,參加數(shù)學建模競賽的必須培訓課程,數(shù)學建模的考核不僅僅是給出該課程的成績,更重要的承擔為數(shù)學建模競賽選拔參賽人員的任務。本文針對數(shù)學建模的考核問題進行討論。

(1)考核手段和目的存在誤區(qū)。傳統(tǒng)的考核方法注重于理論知識的檢驗,忽略了對學生創(chuàng)新意識、實踐能力的培養(yǎng)。同時,教育主管部門對于該課程的考核要求與其他課程類似,僅僅考核知識點的.掌握,忽視了該課程的開設(shè)目地,從而使得部分學生的利用數(shù)學方法解決實際問題的能力未能提高,沒有達到學習此課程的目的。(2)考核重結(jié)果,輕過程。目前,數(shù)學建模是考查課程,該課程的考核存在兩個極端:簡單根據(jù)學生的數(shù)學建模論文給予成績或試卷考試成績??己私Y(jié)果忽略了對學生的各方面能力的考察,導致開卷考試變成了學生的簡單應付了事;而且部分考核只看最后的結(jié)果,而忽略了數(shù)學建模的整個訓練過程。(3)考核方式單一。數(shù)學建模課程牽涉數(shù)學方法、編程能力、論文的寫作能力、及其綜合動手能力等。單純從試卷或最終數(shù)學建模論文不能體現(xiàn)學生的各種能力。導致學生的某一種能力掩蓋了其他能力的展現(xiàn),導致數(shù)學建模競賽學生選拔過程中存在一種現(xiàn)象:通過各種方式選拔的“優(yōu)秀”學生,真正參加數(shù)學建模競賽時,根本無法動手。(4)教學改革需要。隨著大數(shù)據(jù)、人工智能、深度學習等領(lǐng)域的興起,數(shù)學知識是解決此類實際問題的必須工具,解決該類問題的過程其實就是數(shù)學建模的過程。隨著“新工科”培養(yǎng)計劃的興起,數(shù)學、編程、寫作能力成為衡量人才的重要指標。數(shù)學建模是銜接數(shù)學和實際問題的橋梁,設(shè)置合理的考核方式,體現(xiàn)學生多方面能力是數(shù)學建模課程考核改革的動力。

(1)轉(zhuǎn)變教育觀念,樹立科學考核。數(shù)學建模是一門利用數(shù)學方法、計算機編程、論文寫作等方面知識解決實際問題的課程。該課程主要培養(yǎng)學生利用數(shù)學建模方法解決實際問題的能力。因此,任課教師改變課程考核等同于考試的觀念,將考核過程貫穿學生的學習階段,學習階段融入整個考核過程。從而避免教、考脫節(jié)的現(xiàn)象,形成教考相互融合,提高學生的積極性。(2)實施多元化考核,提高學生的動手能力。數(shù)學建模課程是綜合利用各種能力解決實際問題的方法論型課程,該課程的最終目的是培養(yǎng)學生的各種能力及其解決實際問題的綜合能力。包含多個知識點的試卷測試是應試教育的體現(xiàn),不足以反映學生的動手能力。多元化的考核方式能促進教學過程逐步向以訓練學生的解決實際問題能力為導向,激發(fā)學生的創(chuàng)新意識、鍛煉學生的實踐能力。(3)實施多元化考核,促進學生學風。多元化考核將教學和考核的過程相互融合,學生的學習和考核交替進行,能夠促使學生、自我反省,發(fā)現(xiàn)自己學習的不足,及時改進。同時,教考融合能夠促使學生自發(fā)學習,調(diào)到學生的學習積極性,避免出現(xiàn)“平時送、考前緊、考后忘”的現(xiàn)象。

鑒于數(shù)學建模是利用計算機、數(shù)學解決實際問題的方法論文課程。該課程的教學過程包含介紹數(shù)學建模所用知識點和綜合利用各個知識點解決實際問題兩個階段。該課程考核改革主要訓練學生綜合利用知識解決實際問題的能力,過程的訓練是教學的重點。考試改革需貫穿于該課程的具體教學過程,因此將考核分為階段考核、綜合考核、結(jié)課考核、參賽考核四種方式。(1)階段考核。數(shù)學建模的教學內(nèi)容包括編程語言介紹、數(shù)學建模方法介紹和數(shù)學論文寫作介紹幾個主要的方面。相應地,編程能力、應用數(shù)學建模能力和論文寫作能力的訓練是數(shù)學建模的根本目的。因此,本項目擬根據(jù)數(shù)學建模的教學大綱安排,對每種能力進行單獨考核,結(jié)合每種能力的特點,設(shè)置不同的題目,考核每種能力的得分。根據(jù)教學進度發(fā)布測試題目,初步擬定每種能力的測試成績各占總成績的10%,共占總成績的30%。(2)綜合考核。數(shù)學建模是綜合運用各種能力的解決實際問題。在各種能力訓練的基礎(chǔ)上,強化訓練學生的綜合運用各種知識的能力。在此階段,從歷年數(shù)學建模題目和日常生活中挑出2~3個題目,進行適當簡化處理,促使學生利用3~5天的時間完成一篇論文,進行點評評分,挑選部分典型論文進行講解;然后要求學生繼續(xù)完善論文,再次點評評分,如此循環(huán)多次。每個題目的成績約占總成績的10%,該階段共占總成績的30%。(3)結(jié)課考核。針對數(shù)學建模授課期間的知識點訓練和綜合訓練,最后仿照數(shù)學建模的參賽組織形式,從實際生活中挑選2個側(cè)重點不同的題目;同時,建議選課學生自由組合,3人一組,共同完成數(shù)學建模論文。該階段對前期訓練的檢測,同時考核學生的團隊精神,最終論文的成績占總成績的40%。(4)參賽考核。數(shù)學建模課程可作為數(shù)學建模競賽的前期培訓,從選課選手中選取部分成績優(yōu)秀的學生,組織他們參加全國大學生數(shù)學建模競賽,競賽獲國家級獎,最終成績直接評為優(yōu)秀;廣西區(qū)級獎最終成績可直接評為良好。

該考核方案在信息與計算科學專業(yè)的數(shù)學建模課程試用。教學中將考核過程融入教學過程,教學過程穿插考核,這樣能夠防止“考核型學習現(xiàn)象”,促使學生逐步向“學習型考核”轉(zhuǎn)變。同時,數(shù)學建模是應用型課程,多元化考試能夠訓練學生的應用數(shù)學、計算機編程和論文書寫能力,單一考核不再適應,多元化考核能夠發(fā)現(xiàn)學生的優(yōu)點,促進教學過程轉(zhuǎn)變?yōu)椤耙阅芰閷颉保袭斍暗慕逃母锢砟睢?shù)學建模講授的內(nèi)容有:線性規(guī)劃模型、非線性規(guī)劃模型、圖論模型(最短路模型、生成樹模型、網(wǎng)絡圖模型)、微分方程模型、差分方程模型、插值模型、擬合模型、回歸分析模型、因子分析模型、統(tǒng)計檢驗模型、綜合評價模型、模擬仿真模型等模型及其相關(guān)算法的軟件編程。在教學安排中,對于數(shù)學模型部分盡可能講解數(shù)學建模中常見模型的建模方法、模型特點及其適應范圍、該模型的求解算法等。對于涉及模型求解算法的理論及其具體的求解步驟略講或者不講解,對于調(diào)用軟件的算法集成命令及其調(diào)用方法等詳細介紹。對于數(shù)學建模論文寫作方面,通過閱讀優(yōu)秀論文,特別是我校20xx年的“matlab創(chuàng)新獎”論文。同時,選取部分簡單例題,根據(jù)完整數(shù)學建模論文的章節(jié)要求布置任務,要求完成相應論文。然后根據(jù)學生的完成情況,進行詳細點評,特別數(shù)學建模論文的寫作及其注意事項。學生主動完成平時練習的積極性高,80%的同學能夠按時完成布置的任務。剩下部分同學再經(jīng)過多次提醒之后也補交了布置的任務。從提交的作業(yè)發(fā)現(xiàn),大部分同學的作業(yè)都是自己認真完成,少數(shù)同學是在參考他人的基礎(chǔ)之上完成。在課程結(jié)束后,參照數(shù)學建模的形式,要求同學們可以自由組隊,隊員人數(shù)為1~3人,根據(jù)人數(shù)的多少,設(shè)置不同的評價標準。為考查學生的學習情況,本人給出幾道歷年真題或類真題,這些題目是根據(jù)當前的熱點新聞等經(jīng)過加工而提出。從學生提交的結(jié)課論文來看,已經(jīng)達到了預期效果,大部分同學具備了數(shù)學建模的基本素質(zhì),掌握了數(shù)學建模技巧,能夠完成數(shù)學建模論文。通過兩年的試用,信息與計算科學專業(yè)參加數(shù)學建模競賽的人數(shù)比往年增加20%,而獲得?。▍^(qū))級獎以上的獎項比往年增加40%。因此,說明數(shù)學建??己朔桨笇W生的評價具備一定的準確性。

為配合考核方案的實施,特擬定考核改革調(diào)查問卷,本人共做了兩次問卷調(diào)查,共收到近八十分問卷。問卷包括數(shù)學學習興趣、參加數(shù)學建模的積極性、考核嚴厲與否、考核方案認同度等內(nèi)容。統(tǒng)計調(diào)查問卷發(fā)現(xiàn),學生對數(shù)學知識的學習興趣明顯提高,參加數(shù)學建模競賽的積極性也大幅度提高。并且大部分學生認同考核方案,也贊成將考核過程與教學過程相結(jié)合。從調(diào)查問卷的統(tǒng)計結(jié)果看:有近70%的學生認為該課程應該嚴格考核;76%的學生認同該考核方案。由此可見,數(shù)學建??己朔绞礁母锞哂幸欢ǖ耐茝V和實施價值(見圖1)。

根據(jù)實施《數(shù)學建?!房己烁母锓桨傅膶W生反饋情況,總的來看,學生對考核方案比較認同,也同意嚴格考核。從學生的參賽人數(shù)和獲獎比例也說明了該考核方案能有效提升學生的學習興趣,提高學生的各方面能力。

[2]謝發(fā)忠,楊彩霞,馬修水.創(chuàng)新人才培養(yǎng)與高校課程考試改革[j].合肥工業(yè)大學學報,20xx.24(2):21-4.

[3]李紅枝,毛建文,古宏標,黃榕波,邢德剛.創(chuàng)新意識和創(chuàng)新能力培養(yǎng)中高??荚嚫母锏奶剿鱗j].山西醫(yī)科大學學報,20xx.13(4):397-400.

[5]蒲俊,張朝倫,李順初,付曉艦.地方綜合性大學理工科學生數(shù)學建模創(chuàng)新培養(yǎng)改革的探討[j].中國大學教學,20xx.7:56-8.

數(shù)學建模的論文篇十六

使學生的綜合應用能力、實踐創(chuàng)新能力和綜合應用素質(zhì)等多方面均能得到提升和發(fā)展。

對于醫(yī)學專業(yè)的學生來說,在校所學的數(shù)學基礎(chǔ)理論課程比較有限,并且學生對純粹的數(shù)學知識與復雜的理論推導已經(jīng)極為厭倦,如果數(shù)學建模還是以傳統(tǒng)的“灌輸式”和教師“主導型”為主、簡單的應用案例為主要教學內(nèi)容的話,其結(jié)果勢必會使學生有一種再講數(shù)學課和做應用題的感覺,既不能很好地激發(fā)學生的學習興趣,也不能體現(xiàn)數(shù)學建模的思想方法和本質(zhì)特色。

因此,如何使學生擺脫這種尷尬的現(xiàn)狀已成為我們教學的一大難點。針對這種情況,在教學模式上,我們大膽嘗試研究型教學模式,即采用“從實踐中來,到實踐中去”的教學理念。一方面,從最現(xiàn)實、最熱門的醫(yī)學話題出發(fā),從學生最感興趣的.問題入手,激發(fā)學生的學習興趣和進一步學習的主動性,使他們從一開始就能進入到學習的角色中去;另一方面,通過開展多種方式的實踐教學活動,使學生在實踐中掌握數(shù)學建模的常用方法和基本技能,忽略繁瑣的數(shù)學推導過程,讓學生體會發(fā)現(xiàn)問題和思考問題的過程,培養(yǎng)學生解決問題的創(chuàng)新能力。

近些年來,我們開設(shè)的醫(yī)藥數(shù)學建模課受到了學生的一致好評,其關(guān)鍵之處在于我們一改傳統(tǒng)的教學模式,通過組織數(shù)學建模興趣研討班,讓每位同學都能充分地參與到研究中去并且使每位學生都有發(fā)言的機會。這些舉措旨在進一步激發(fā)學生的創(chuàng)新意識,提高學生的數(shù)學建模實踐能力。研討班面向全校各類醫(yī)學專業(yè)的學生,并以三人為單位,劃分成若干個組,通過專題研討的形式開展活動。實踐證明:通過這種研討過程,學生不僅對所學的醫(yī)學知識有了更深刻的理解與認識,在文獻資料查閱、計算機編程、語言表達能力等諸多方面也都有了顯著的提高。通過這個過程的學習,為學生今后從事醫(yī)學科研工作打下了良好的基礎(chǔ)。

為了有效的培養(yǎng)學生綜合應用能力和深層次學習的習慣與意識,我們在教學方法上一改往日的“講透,講懂”的方法,忽略純理論的繁瑣推導,突出知識的應用思想和應用意識,讓學生帶著問題上課,嘗試在解決問題中與教師進行交流,下課帶著問題回去。

在課堂教學中,重點講解發(fā)現(xiàn)問題和解決問題的方法與技巧。通過課前作業(yè),引導學生自我發(fā)現(xiàn)問題;通過課堂講解和研討,引導學生解決問題;通過課后作業(yè),總結(jié)和鞏固所學知識,學習應用與拓展知識。這種完全以學生為主,教師為輔的做法,有利于培養(yǎng)學生樹立勇于探索求知的信心和探索新知識的能力與意識,提高學生的創(chuàng)新能力和敏銳的洞察力及想象力,從而提升學生的綜合應用素質(zhì)。

在現(xiàn)實生活中的實際問題是比較復雜的,往往單一的方法是難以解決的,通常是需要多種方法的綜合應用方能解決。

因此,以實際問題驅(qū)動的教學模式,主要是引導學生如何將復雜的實際問題分解為一系列簡單的小問題,在解決每一個小問題的過程中,讓學生學習并掌握相關(guān)的數(shù)學知識與方法。這種在應用中學習的教學方法,在很大程度上解決了學生普遍存在的“學數(shù)學有什么用、學了數(shù)學不知怎么用”的困惑。

在整個教學過程中,貫穿以學生為主體,通過案例分析引導學生的思維方法,針對一個案例的解決過程和方法,要求實現(xiàn)舉一反三,促使學生對所掌握的知識進行重組再現(xiàn)和優(yōu)化構(gòu)建,讓學生在學習和問題的解決中學會不斷地總結(jié)與歸納,用成功的方法再去演繹解決新的問題,通過不斷地歸納演繹、對比分析、總結(jié)經(jīng)驗、彌補不足,進一步學習相關(guān)知識和方法,再進行實踐,從而不斷增強自身的綜合應用能力和素質(zhì)。

隨著醫(yī)學院校教育理念的轉(zhuǎn)變以及教育體制改革的深入,對培養(yǎng)適應科學技術(shù)迅速發(fā)展的創(chuàng)新型醫(yī)學人才提出了更高的要求。如何培養(yǎng)出具有創(chuàng)新能力、綜合素質(zhì)高的專業(yè)人才已成為亟待解決的問題之一。本文探討了醫(yī)藥數(shù)學建模課程的開設(shè)對培養(yǎng)大學生實踐創(chuàng)新能力的幾點做法。教學實踐證明:數(shù)學建模課充分鍛煉了學生的各項能力,是提高醫(yī)學專業(yè)學生綜合應用素質(zhì)行之有效的方法。

數(shù)學建模的論文篇十七

摘要:隨著現(xiàn)代社會的發(fā)展,數(shù)學的廣泛用途已經(jīng)無需質(zhì)疑,他深入到我們生活的方方面面。現(xiàn)階段,數(shù)學建模已經(jīng)成為應用數(shù)學知識解決日常問題的一個重要手段。本文通過簡述數(shù)學建模的方法與過程,以及應用數(shù)學建模解決實際經(jīng)濟問題的應用,展現(xiàn)的了數(shù)學學習的重要意義,以及數(shù)學在經(jīng)濟問題解決中的重要作用。

經(jīng)濟現(xiàn)象具有多變性,隨著經(jīng)濟社會的發(fā)展,國際間貿(mào)易往來的日趨緊密,日常經(jīng)濟形勢受到的影響因素越來越復雜多變。而日常經(jīng)濟生活中所遇到的經(jīng)濟現(xiàn)象同樣存在著諸多的變化的影響因素。如何應對這些難以把控的變量,做好風險的預估、成本的核算、進行最大成本的規(guī)劃,所有這些都可以借助數(shù)學知識、應用數(shù)學建模為工具進行較為理性的計算,為經(jīng)濟決策、企業(yè)規(guī)劃提供重要的幫助。

數(shù)學建模,其實就是建立數(shù)學模型的簡稱,實際上數(shù)學建模可以稱之為解決問題的一種思考方法,借助數(shù)學工具應用已知的定理定義進行合理的運算,推導出一種理性的結(jié)果的過程。數(shù)學建模是可以聯(lián)系數(shù)學和外部世界的一個中介和橋梁,在工業(yè)設(shè)計、經(jīng)濟領(lǐng)域、工程建設(shè)等各個方面,運用數(shù)學的語言和方法進行問題的求解和推導,實際上,都是一種數(shù)學建模的過程。數(shù)學建模的主要過程可以總結(jié)為如下的框圖形式:實際上,數(shù)學模型的最終建立是一個反復驗證、修改、完善的動態(tài)過程,很少能夠通過一次過程就建立起完美適合實際問題的數(shù)學模型。通過上述過程的多次循環(huán)執(zhí)行:1.模型準備:分析問題,明確建模的目的,統(tǒng)計各種信息數(shù)據(jù);2.模型假設(shè):根據(jù)建模目的,結(jié)合實際對象的特性,對復雜問題進行簡化,提取主要因素,提煉精確的數(shù)學語言;3.模型建立:根據(jù)提煉的主要因素,選擇適當?shù)臄?shù)學工具,建立各個量(變量、常量)間的數(shù)學關(guān)系,化實際問題為數(shù)學語言;4.模型求解:對上述數(shù)學關(guān)系進行求解(包括解方程、圖形分析、邏輯運算等);5.模型分析:將求解結(jié)果與實際問題結(jié)合,綜合分析,找到模型的缺陷和不足,進行數(shù)學上的優(yōu)化,建立穩(wěn)定模型;6.模型檢驗:將模型得到的結(jié)果與實際情況相驗證,檢驗模型的合理性和適用性。

二、經(jīng)濟問題數(shù)學模型的建立。

經(jīng)濟類問題因為其特有的特點,可以按照變量的性質(zhì)分為兩類:概率型和確定型。概率型應用于處理具有隨機性情況的模型,可以解決類似風險評估、最優(yōu)產(chǎn)量計算、庫存平衡等問題;確定型則可以基于一定的條件與假設(shè),精確的對一種特定情況的結(jié)果做出判斷,如成本核算、損失評估等。對經(jīng)濟問題的建模計算實際上是一個從經(jīng)濟世界進入數(shù)學世界再回到經(jīng)濟世界的過程。建立經(jīng)濟數(shù)學模型,需要首先對實際經(jīng)濟問題和情況有一個較為深入的認識,然后通過細致的觀察梳理,抽出最為本質(zhì)的特征性的東西。將原始的復雜的經(jīng)濟問題簡化提煉為一個較為理想的自然模型,然后基于這個原始模型應用數(shù)學知識建立完整的數(shù)學經(jīng)濟模型。

三、建模舉例。

四、結(jié)語。

綜上所述,我們可以看到,數(shù)學建模在經(jīng)濟中的應用可以非常廣泛,對很多的決策和工作都可以提供參考和指導,如提高利潤、規(guī)避風險、降低成本、節(jié)省開支等各個方面。上文只提供了一個簡單的例子,和初步的介紹,其深入的理念和概念更加值得我們?nèi)ヅΦ膶W習和思考。

數(shù)學建模的論文篇十八

3.3增強選擇數(shù)學模型的能力。

選擇數(shù)學模型是數(shù)學能力的反映。數(shù)學模型的建立有多種方法,怎樣選擇一個最佳的模型,體現(xiàn)數(shù)學能力的強弱。建立數(shù)學模型主要涉及到方程、函數(shù)、不等式、數(shù)列通項公式、求和公式、曲線方程等類型。結(jié)合教學內(nèi)容,以函數(shù)建模為例,以下實際問題所選擇的數(shù)學模型列表:

一次函數(shù)成本、利潤、銷售收入等。

二次函數(shù)優(yōu)化問題、用料最省問題、造價最低、利潤最大等。

冪函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)細胞分裂、生物繁殖等。

三角函數(shù)測量、交流量、力學問題等。

3.4加強數(shù)學運算能力。

數(shù)學應用題一般運算量較大、較復雜,且有近似計算。有的盡管思路正確、建模合理,但計算能力欠缺,就會前功盡棄。所以加強數(shù)學運算推理能力是使數(shù)學建模正確求解的關(guān)鍵所在,忽視運算能力,特別是計算能力的培養(yǎng),只重視推理過程,不重視計算過程的做法是不可取的。

利用數(shù)學建模解數(shù)學應用題對于多角度、多層次、多側(cè)面思考問題,培養(yǎng)學生發(fā)散思維能力是很有益的,是提高學生素質(zhì),進行素質(zhì)教育的一條有效途徑。同時數(shù)學建模的`應用也是科學實踐,有利于實踐能力的培養(yǎng),是實施素質(zhì)教育所必須的,需要引起教育工作者的足夠重視。

數(shù)學建模的論文篇十九

:隨著經(jīng)濟的快速發(fā)展,我國的科學技術(shù)也得到了長足的進步,在計算機應用方面,從對計算機技術(shù)尚存新鮮感到運用成熟,可以說有了質(zhì)的飛躍。在日常生活以及技術(shù)操作當中,計算機已經(jīng)融入其中,廣泛地應用于各行各業(yè),筆者以數(shù)學建模為例,分析了數(shù)學建模與計算機應用之間的關(guān)系,與此同時,也探尋了計算機應用技術(shù)在數(shù)學建模的輔助之下發(fā)揮的作用,并對數(shù)學建模進行概念定義,使得讀者能夠?qū)?shù)學建模的意義有著更深層次的了解,希望能夠起到促進二者之間的良性發(fā)展。

隨著經(jīng)濟的快速發(fā)展,我國的科學技術(shù)也有了長足的進步,而與之密不可分的數(shù)學學科也有著不可小覷的進步,與此同時,數(shù)學學科的延伸領(lǐng)域從物理等逐漸擴展到環(huán)境、人口、社會、經(jīng)濟范圍,使得其作用力逐漸增強。不僅如此,數(shù)學學科由原本的研究事物的性質(zhì)分析逐漸轉(zhuǎn)變到研究定量性質(zhì)范圍,促進了多方面多層次的發(fā)展,由此可見,數(shù)學學科的重要性質(zhì)。在日常生活中,運用數(shù)學學科去解決實際問題時,首要完成的就是從復雜的事物中找到普遍的規(guī)律現(xiàn)象存在,并用最為清晰的數(shù)字、符號、公式等將潛在的信息表達出來,再運用計算機技術(shù)加以呈現(xiàn),形成人們所要完成的結(jié)果。筆者以數(shù)學建模為例,分析了數(shù)學建模與計算機應用之間的關(guān)系,與此同時,也探尋了計算機應用技術(shù)在數(shù)學建模的輔助之下發(fā)揮的作用,并對數(shù)學建模進行概念定義,使得讀者能夠?qū)?shù)學建模的意義有著更深層次的了解,希望能夠起到促進二者之間的良性發(fā)展。

從宏觀角度上來講,數(shù)學建模是更側(cè)重于實際研究方面,并不僅僅是通過數(shù)字演示來完成事物的一般發(fā)展規(guī)律,與一般的理論研究截然不同。其研究范圍之廣,能夠深入到各個領(lǐng)域當中,從任何一個相關(guān)領(lǐng)域中都能夠找到數(shù)學學科的發(fā)展軌跡,從中不難看出數(shù)學學科的實際意義與鮮明特點。數(shù)學為一門注重實際問題研究的學科,這一性質(zhì)方向決定了其研究的層次,其研究范圍大到漫無邊際的宇宙,小到對于個體微生物或者單細胞物體,綜合性之強形成了研究范圍廣的特點。多個學科之間互相影響,從中找到互相之間存在的相互聯(lián)系,其中有許多不能夠被忽視的數(shù)學元素,且這些元素都是至關(guān)重要的,所以這個計算過程十分復雜,計算量與數(shù)據(jù)驗算過程也十分耗費時間,因此需要充足的存儲空間支持這一過程的運行。在數(shù)學建模的過程當中,所涉獵的數(shù)學算法并不是很簡單,而建立的模型也遵循個人習慣,因此建成的模型也不是一成不變的,但是都能夠得出相同的答案。正因如此,在數(shù)學建模的過程當中,就需要使用各種輔助工具來完成這一過程。由于計算機軟件具有的高速運轉(zhuǎn)空間,使得計算機技術(shù)應用于數(shù)學學科的建模過程當中,與數(shù)學建模過程密不可分息息相關(guān)。由此可見,計算機技術(shù)的應用水平對于數(shù)學學科的重要作用。

2。1計算機的獨特性與數(shù)學建模的實際性特點計算機的獨特性與數(shù)學建模的實際性特點,使得二者之間有著密不可分的聯(lián)系,正是因為這種聯(lián)系使得雙方都能夠有長足的發(fā)展,在技術(shù)上是起著互相促進的作用。計算機的廣泛應用為數(shù)學建模提供了較為便利的服務,在使用過程當中,數(shù)學建模也能夠起到完成對計算機技術(shù)的促進,能夠在這一過程中形成更為便捷高速的使用方法與途徑,使得計算機技術(shù)應用更為靈活,也可以說數(shù)學建模為計算機技術(shù)的實際應用提供了更為廣闊的應用空間,從中不難發(fā)現(xiàn),數(shù)學建模對于計算機應用技術(shù)的支持性。計算機應用技術(shù)需要合成的是多方面的技術(shù)支持,而數(shù)學建模則是需要首要完成的,二者之間是相互影響共同促進的作用。

2。2計算機為數(shù)學建模提供了重要的技術(shù)支持數(shù)學建模對于計算機應用技術(shù)的重要的指導意義與作用。第一點,計算機在其技術(shù)的支持之下,有著大量的存儲空間能夠完成存儲資料的這一過程,許多重要資料在計算機技術(shù)的保護之下,存儲時間較為長久,且保護力度較大,不容易被破壞及減少了不必要的人力以及物力;第二點,計算機是多媒體的一個分支,運用其成熟的互聯(lián)網(wǎng)思維技術(shù),能夠完成數(shù)學建模從平面到空間的轉(zhuǎn)化,能夠提供更為成熟的模擬環(huán)境,從而提高實踐的效率。由于數(shù)學建模過程的復雜化及對于實際問題的研究方向的特質(zhì),使得對于各項技術(shù)的要求就很高,所以,需要涉及的操作與數(shù)據(jù)量非常大,過程也十分復雜,常見的過程有三維打印、三維激光掃描等。這些都是需要計算機技術(shù)的支持才能夠完成的,所以對于計算機技術(shù)的要求非常高,與此同時,計算機應用技術(shù)為數(shù)學建模提供了更為便捷、快速的解決方案與途徑。

2。3數(shù)學建模為計算機的發(fā)展提供了基石計算機的產(chǎn)生起源于數(shù)學建模的過程,在二十世紀八十年代,由于導彈在飛行時的運行軌跡的計算量過大,人工無法滿足這一高速率的運算條件,基于這一背景條件,產(chǎn)生了計算機,計算機應用技術(shù)由此拉開了序幕。數(shù)學建模的過程是需要計算機來完成的,在全部的過程當中,計算機參與計算的比重很大,從某種意義程度上來講,計算機技術(shù)對于數(shù)學建模的發(fā)展是起著推動性的作用的,二者之間是有著聯(lián)系的。

數(shù)學建模的論文篇二十

隨著我國高等教育的發(fā)展,高校招生規(guī)模越來越大,而生源質(zhì)量較低,特別是獨立學院院校。就我校而言,絕大多數(shù)專業(yè)都開設(shè)了數(shù)學類課程。但在教學中,普遍認為理論性太強,與實際脫節(jié)嚴重,不能引起學生的學習興趣。并且,傳統(tǒng)教學忽視了學生用數(shù)學解決實際問題的能力,所以,進行數(shù)學教學改革勢在必行。數(shù)學建模可培養(yǎng)學生利用數(shù)學知識解決實際問題的能力,通過數(shù)模方法對實際問題進行巧妙處理,讓學生體會到數(shù)學不僅能傳播理論知識和求解一些數(shù)學問題,還可將其應用到實際問題中,讓學生看到一些實際模型的來龍去脈,提高學生的學習積極性。數(shù)學建模是培養(yǎng)學生綜合科學素質(zhì)和創(chuàng)新能力的一個極好載體,而且能充分考驗學生的洞察能力、創(chuàng)新能力、聯(lián)想能力、使用當代科技最新成果的能力等。學生們同舟共濟的團隊合作精神和協(xié)調(diào)組織能力,以及誠信意識和自律精神的塑造,都能得到很好的培養(yǎng)。技能技術(shù)的掌握和團隊合作精神對于獨立學院學生將來進入社會十分重要,這也是衡量獨立學院辦學成功與否的一個方面。因此,獨立學院的人才培養(yǎng)目標定位,既要達到本科生應具備的理論基礎(chǔ),又要有相對突出的專業(yè)技能,應培養(yǎng)“應用型本科”人才。因而,獨立學院的數(shù)學課堂上應該多方面滲透數(shù)學模型的思想。

(一)人才培養(yǎng)創(chuàng)新的需要。

根據(jù)獨立學院人才培養(yǎng)目標和實際情況,有針對性的加大基礎(chǔ)課和實踐環(huán)節(jié)教學的'比重,側(cè)重于實踐能力的培養(yǎng),在專業(yè)課程體系中適當增加實驗、實踐教學內(nèi)容,加強與社會實體的聯(lián)系。力求培養(yǎng)出具有實際操作能力的高素質(zhì)大學生。數(shù)學建模是將一個實際問題,對其作出一些必要的簡化與假設(shè),將其轉(zhuǎn)化成一個數(shù)學問題,借助數(shù)學工具和數(shù)學方法精確或近似地解決該問題,并用數(shù)學結(jié)果解釋客觀現(xiàn)象、回答實際問題并接受客觀實際的檢驗。數(shù)學建模能彌補傳統(tǒng)數(shù)學教學在實際應用方面的不足,促進數(shù)學教師在現(xiàn)代化教學手段、教學模式方面的更新。數(shù)學建模有助于調(diào)動學生的學習興趣,在計算機應用能力、實踐能力和創(chuàng)新意識的培養(yǎng)方面都有著非常大的作用,以便學生將來能更好地適應工作崗位。

(二)高校教學改革的需要。

當今社會信息高度發(fā)達,競爭日益激烈,必須具備一定的創(chuàng)新意識和創(chuàng)新能力,否則很難適應社會信息時代的要求。傳統(tǒng)的教學模式是以課堂理論講授為主,學生絕大部分時間都集中學習書本知識,很少有機會接觸社會,也難做到學以致用。絕大多數(shù)課程都是教師的一言堂,考試也是以教師講課內(nèi)容為主。學生忙于記錄和背誦而閑置其聰慧的頭腦。長期的灌輸式教學導致學生明顯缺乏學習的主動性,會聽從而不會質(zhì)疑,更不會形成開創(chuàng)性的觀點,很難適應企事業(yè)單位動態(tài)的工作環(huán)境。數(shù)學作為一門傳統(tǒng)基礎(chǔ)學科,對獨立學院的學生來說,學習上有一定的難度。我們的教學應以“必需,夠用”為度。數(shù)學建模從形式到內(nèi)容,都與畢業(yè)后工作時的條件非常相近,是一次非常好的鍛煉,學生通過自主的學習,把實際的問題轉(zhuǎn)化為數(shù)學理論解決,有助于學生創(chuàng)新能力的培養(yǎng)動手能力的提高,這也正是獨立學院院校應用型本科人才培養(yǎng)的方向。

(三)學生參加數(shù)學建模競賽的需要。

獨立學院學生思維活躍,且比較注重個人能力素質(zhì)的提高。很多學生愿意在學校參加一些競賽來提高自己。全國大學生數(shù)學建模競賽尤其受學生重視,但仍有很多大學生不了解這類競賽,因此,在數(shù)學課堂上引入數(shù)學建模思想,學生既了解了數(shù)學建模,又對數(shù)學公式提起了興趣,還有助于獨立學院學生在全國大學生數(shù)學建模競賽中取得優(yōu)異成績。

高等數(shù)學的作用表現(xiàn)在為各專業(yè)后續(xù)課程的學習提供必要的數(shù)學知識,培養(yǎng)各專業(yè)學生的數(shù)學思想與數(shù)學修養(yǎng),全面提高大學生創(chuàng)新思維和應用能力。只有把數(shù)學建模思想融入數(shù)學教學中,才能調(diào)動學生學習數(shù)學的積極性,培養(yǎng)學生的創(chuàng)新能力,實現(xiàn)提高學生綜合分析問題能力的最終目標。

作者:崔瑋王文麗單位:中國地質(zhì)大學長城學院信息工程系。

數(shù)學建模的論文篇二十一

摘要:數(shù)學建模課堂中學生的自主探究、合作學習與教師的科學引導并不矛盾而是相輔相成的。只有在教師科學、適時、適當?shù)匾龑虏拍芨玫赝怀鰧W生的主體地位,從而打造出自主探究、合作學習、愉悅發(fā)展的高效數(shù)學建模課堂。

一、新課的引入需要發(fā)揮教師的作用。

教師在數(shù)學建模課堂上的引導作用首先體現(xiàn)在教師對新課的引入上。教師一段精彩的導入會點燃學生學習的熱情、激發(fā)學生的學習興趣、喚起學生的好奇心,能把學生的注意力迅速集中到要學的知識上來。這對提高教學質(zhì)量、提高學生的學習效果起著不可估量的作用。同時,新課前的導入環(huán)節(jié)是對學生進行情感教育的最佳時刻。學生只有在教師的引導下才能夠體會到數(shù)學建模的價值、增強學好數(shù)學建模的信心。俗話說:“好的開始是成功的一半?!睌?shù)學建模課堂也是這樣。因此,在新課引入時要充分發(fā)揮教師的作用。

二、在教學任務的設(shè)計上需要發(fā)揮教師的作用。

數(shù)學建模課堂一般應采用任務型教學模式,是讓學生通過自主探究、合作學習、交流展示的方式完成一系列學習任務來達到特定的教學目標和學習目標。學生在課堂中的主體作用能否得到有效發(fā)揮取決于教師對問題設(shè)計質(zhì)量的高低。教師應通過設(shè)計一系列高質(zhì)量的問題把復雜的數(shù)學建模問題分解成若干簡單問題來引導學生更好地發(fā)揮其主動性。學生也只有在這些問題的正確引導下才能突破難點并向著學習目標努力,有效防止學生思考、探究、交流的內(nèi)容偏離學習目標等現(xiàn)象的出現(xiàn)。這些任務的制訂需要充分發(fā)揮教師的作用。

三、在新舊知識的聯(lián)系點上需要發(fā)揮教師的作用。

建構(gòu)主義強調(diào)新知識是在學生已有知識的基礎(chǔ)上通過學生自身有意義的建構(gòu)獲得的。筆者認為,學生自主建構(gòu)知識應在教師的科學引導下進行。尤其是對于數(shù)學建模這樣高難度的知識更是這樣。失去了教師的科學引導,學生易產(chǎn)生疲倦感,久而久之會喪失學習數(shù)學建模的興趣和信心。因此,在新舊知識聯(lián)系點上應發(fā)揮教師的作用。教師應在準確掌握教學目標、難點的基礎(chǔ)上,充分考慮學生的認知能力、習慣、思維方式,通過有針對性的具體問題喚起學生對舊知識的回憶,再通過啟發(fā)性問題引導學生去發(fā)現(xiàn)新知識,從而實現(xiàn)溫故知新的目的。在教師引領(lǐng)下學生自主建構(gòu)知識可以使學生少走彎路,從而使學生更加高效地自主探究、掌握新知識。

四、在教學重點、難點上需要教師的引導。

教學的重點、難點是每一節(jié)課的核心和主線,只有準確把握了重點、突破了難點才能更好地掌握本節(jié)課的內(nèi)容。在強調(diào)學生自主探究、小組合作學習的課堂教學模式中,數(shù)學建模教材的重點、難點學生往往把握不準、難以突破。這就需要教師科學引導學生主動去發(fā)現(xiàn)重點、突破難點。教師引導學生發(fā)現(xiàn)重點、突破難點并不是讓教師直接告訴學生本節(jié)課的重點是什么、怎樣突破難點,而是通過具體問題的引導讓學生自己找到重點、并通過學生自己的思考、討論解決疑難問題。學生在教師的引導下通過自己的努力、討論解決了疑難后,學生會非常興奮,從而會越來越喜歡數(shù)學建模課。相反,在沒有教師引導的數(shù)學建模課堂中,學生經(jīng)常被困難嚇倒,從而對數(shù)學建模課產(chǎn)生畏懼感。由此可見,教師對學生的科學引導是學生學好數(shù)學建模必不可少的環(huán)節(jié)。在以學生為本、注重學生全面發(fā)展、提倡課堂中突出學生主體地位的背景下,教師的引導仍是數(shù)學建模課堂中不可缺失的要素。數(shù)學建模課堂中學生的自主探究、合作學習與教師的科學引導并不矛盾而是相輔相成的。只有在教師科學、適時、適當?shù)匾龑虏拍芨玫赝怀鰧W生的主體地位,從而打造出自主探究、合作學習、愉悅發(fā)展的高效數(shù)學建模課堂。

【本文地址:http://www.aiweibaby.com/zuowen/15444432.html】

全文閱讀已結(jié)束,如果需要下載本文請點擊

下載此文檔