抽屜原理教學(xué)設(shè)計(優(yōu)質(zhì)13篇)

格式:DOC 上傳日期:2023-11-27 06:33:15
抽屜原理教學(xué)設(shè)計(優(yōu)質(zhì)13篇)
時間:2023-11-27 06:33:15     小編:FS文字使者

通過總結(jié),我們可以反思自己在一段時間內(nèi)的表現(xiàn)以及所取得的成績。怎樣培養(yǎng)自己的溝通能力和人際關(guān)系?如果你對總結(jié)寫作感到困惑,可以看看以下這些范文,或許能給你一些思路。

抽屜原理教學(xué)設(shè)計篇一

(留給學(xué)生思考的空間,師巡視了解各種情況)。

2.學(xué)生匯報。

生1:把5本書放進(jìn)2個抽屜里,如果每個抽屜里先放2本,還剩1本,這本書不管放到哪個抽屜里,總有一個抽屜里至少有3本書。

板書:5本2個2本……余1本(總有一個抽屜里至有3本書)。

7本2個3本……余1本(總有一個抽屜里至有4本書)。

9本2個4本……余1本(總有一個抽屜里至有5本書)。

師:2本、3本、4本是怎么得到的?生答完成除法算式。

5÷2=2本……1本(商加1)。

7÷2=3本……1本(商加1)。

9÷2=4本……1本(商加1)。

師:觀察板書你能發(fā)現(xiàn)什么?

生1:“總有一個抽屜里的至少有2本”只要用“商+1”就可以得到。

師:如果把5本書放進(jìn)3個抽屜里,不管怎么放,總有一個抽屜里至少有幾本書?

生:“總有一個抽屜里的至少有3本”只要用5÷3=1本……2本,用“商+2”就可以了。

生:不同意!先把5本書平均分放到3個抽屜里,每個抽屜里先放1本,還剩2本,這2本書再平均分,不管分到哪兩個抽屜里,總有一個抽屜里至少有2本書,不是3本書。

師:到底是“商+1”還是“商+余數(shù)”呢?誰的結(jié)論對呢?在小組里進(jìn)行研究、討論。

交流、說理活動:

生1:我們組通過討論并且實際分了分,結(jié)論是總有一個抽屜里至少有2本書,不是3本書。

生2:把5本書平均分放到3個抽屜里,每個抽屜里先放1本,余下的2本可以在2個抽屜里再各放1本,結(jié)論是“總有一個抽屜里至少有2本書”。

生3∶我們組的結(jié)論是5本書平均分放到3個抽屜里,“總有一個抽屜里至少有2本書”用“商加1”就可以了,不是“商加2”。

師:現(xiàn)在大家都明白了吧?那么怎樣才能夠確定總有一個抽屜里至少有幾個物體呢?

生4:如果書的本數(shù)是奇數(shù),用書的本數(shù)除以抽屜數(shù),再用所得的商加1,就會發(fā)現(xiàn)“總有一個抽屜里至少有商加1本書”了。

師:同學(xué)們同意吧?

師:同學(xué)們的這一發(fā)現(xiàn),稱為“抽屜原理”,“抽屜原理”又稱“鴿籠原理”,最先是由19世紀(jì)的德國數(shù)學(xué)家狄利克雷提出來的,所以又稱“狄里克雷原理”,也稱為“鴿巢原理”。這一原理在解決實際問題中有著廣泛的應(yīng)用。“抽屜原理”的應(yīng)用是千變?nèi)f化的,用它可以解決許多有趣的問題,并且常常能得到一些令人驚異的結(jié)果。下面我們應(yīng)用這一原理解決問題。

3.解決問題。71頁第3題。(獨立完成,交流反饋)。

小結(jié):經(jīng)過剛才的探索研究,我們經(jīng)歷了一個很不簡單的思維過程,我們獲得了解決這類問題的好辦法,下面讓我們輕松一下做個小游戲。

【點評】在這一環(huán)節(jié)的教學(xué)中教師抓住了假設(shè)法最核心的思路就是用“有余數(shù)除法”形式表示出來,使學(xué)生學(xué)生借助直觀,很好的理解了如果把書盡量多地“平均分”給各個抽屜里,看每個抽屜里能分到多少本書,余下的書不管放到哪個抽屜里,總有一個抽屜里比平均分得的書的本數(shù)多1本。特別是對“某個抽屜至少有書的本數(shù)”是除法算式中的商加“1”,而不是商加“余數(shù)”,教師適時挑出針對性問題進(jìn)行交流、討論,使學(xué)生從本質(zhì)上理解了“抽屜原理”。

抽屜原理教學(xué)設(shè)計篇二

六年級數(shù)學(xué)下冊70頁、71頁例1、例2。

2、經(jīng)歷“抽屜原理”的探究過程,體會比較、推理的學(xué)習(xí)方法,會用“抽屜原理”解決簡單的的實際問題。

4、感受數(shù)學(xué)的魅力,提高學(xué)習(xí)興趣,培養(yǎng)學(xué)生的探究精神。

經(jīng)歷“抽屜原理”探究過程,初步了解“抽屜原理”。

相應(yīng)數(shù)量的杯子、鉛筆、課件。

讓五位學(xué)生同時坐在四把椅子上,引出結(jié)論:不管怎么坐,總有一把椅子上至少坐了兩名學(xué)生。

師:同學(xué)們,你們想知道這是為什么嗎?今天,我們一起研究一個新的有趣的數(shù)學(xué)問題。

1、探究3根鉛筆放到2個杯子里的問題。

師:現(xiàn)在用3根鉛筆放在2個杯子里,怎么放?有幾種放法?大家擺擺看,有什么發(fā)現(xiàn)?

擺完后學(xué)生匯報,教師作相應(yīng)的板書(3,0)(2,1),引導(dǎo)學(xué)生觀察理解說出:不管怎么放總有一個杯子至少有2根鉛筆。

(2)、學(xué)生匯報放結(jié)果,結(jié)合學(xué)具操作解釋。教師作相應(yīng)記錄。

(4,0,0)(3,1,0)(2,2,0)(2,1,1)。

(學(xué)生通過操作觀察、比較不難發(fā)現(xiàn)有與上個問題同樣結(jié)論。)。

(3)學(xué)生回答后讓學(xué)生閱讀例1中對話框:不管怎么放,總有一個杯子里至少放進(jìn)2根鉛筆。

師:“總有”是什么意思?“至少”呢?讓學(xué)生理解它們的含義。

師:怎樣放才能總有一個杯子里鉛筆數(shù)最少?引導(dǎo)學(xué)生理解需要“平均放”。

教師出示課件演示讓學(xué)生進(jìn)一步理解“平均放”。

3、探究n+1根鉛筆放進(jìn)n個杯子問題。

師:那我們再往下想,6根鉛筆放在5個杯子里,你感覺會有什么結(jié)論?

讓學(xué)生思考發(fā)現(xiàn)不管怎么放,總有一個杯子里至少有2根鉛筆。

師:7根鉛筆放進(jìn)6個杯子,你們又有什么發(fā)現(xiàn)?

……。

學(xué)生回答完之后,師提出:是不是只要鉛筆數(shù)比杯子數(shù)多1,總有一個杯子里至少放進(jìn)2根鉛筆?讓學(xué)生進(jìn)行小組合作討論匯報。

學(xué)生匯報后引導(dǎo)學(xué)生用實驗驗證想法。

師:把10根小棒放在9個杯子里呢,總有一個杯子里至少有幾根小棒?(2根)。

師:把100根小棒放在99個杯子里,會有什么結(jié)論呢?(2根)。

4、總結(jié)規(guī)律。

a、先同桌擺一擺,再說一說。

b、你怎么分的?

引導(dǎo)學(xué)生知道再把兩根鉛筆平均分,分別放入兩個杯子里。

(2)探究把15根鉛筆放在4個杯子里的結(jié)論。

(3)、引導(dǎo)學(xué)生總結(jié)得出結(jié)論:商加1是總有一個杯子至少個數(shù)。

(4)教學(xué)例2。

課件出示:

1、把5本書放進(jìn)2個抽屜里,不管怎么放,總有一個抽屜里至少有幾本書?

2、把7本書放進(jìn)2個抽屜里,不管怎么放,總有一個抽屜里至少有幾本書?

3、把9本書放進(jìn)2個抽屜里,不管怎么放,總有一個抽屜里至少有幾本書?

學(xué)生匯報。

小結(jié):不管怎么放,總有一個抽屜里至少有“商加1”本書了。

師:這就是有趣的“抽屜原理”,又稱“鴿籠原理”,最先同19世紀(jì)的德國數(shù)學(xué)家狄里克雷提出來的,所以又稱“狄里克雷原理”。這一原理在解決實際問題中有著廣泛的應(yīng)用?!俺閷显怼钡膽?yīng)用是千變?nèi)f化的,用它可以解決許多有趣的問題,并且常常能得到一些今人驚異的`結(jié)果。

1、7枝筆入進(jìn)5個筆筒里,不管怎么放,總有一個筆筒中至少有2枝筆。為什么?

2、8只鴿子飛回3鴿籠,不管飛,總有一個鴿籠里至少有3只鴿子。為什么?

板書設(shè)計:

鉛筆數(shù)(物體數(shù))杯子數(shù)(抽屜數(shù))總有一個杯子(抽屜)至少放進(jìn)物體數(shù)。

322。

432。

652。

762。

100992。

n+1n2。

535÷3=1…21+1。

15415÷4=3…33+1。

總有一個抽屜里至少放進(jìn)物體的個數(shù):商數(shù)+1。

抽屜原理教學(xué)設(shè)計篇三

1.經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”,會用“抽屜原理”解決簡單的實際問題。

2.通過操作發(fā)展學(xué)生的類推能力,形成比較抽象的數(shù)學(xué)思維。

3.通過“抽屜原理”的靈活應(yīng)用感受數(shù)學(xué)的魅力。

經(jīng)歷“抽屜原理”的探究過程,理解“抽屜原理”,并對一些簡單實際問題加以“模型化”。

一、問題引入。

1.游戲要求:開始以后,請你們5個都坐在椅子上,每個人必須都坐下。

2.討論:“不管怎么坐,總有一把椅子上至少坐兩個同學(xué)”這句話說得對嗎?

游戲開始,讓學(xué)生初步體驗不管怎么坐,總有一把椅子上至少坐兩個同學(xué),使學(xué)生明確這是現(xiàn)實生活中存在著的一種現(xiàn)象。

引入:不管怎么坐,總有一把椅子上至少坐兩個同學(xué)?你知道這是什么道理嗎?這其中蘊含著一個有趣的數(shù)學(xué)原理,這節(jié)課我們就一起來研究這個原理。

二、探究新知。

(一)教學(xué)例1。

師:請同學(xué)們實際放放看,誰來展示一下你擺放的情況?(指名擺)根據(jù)學(xué)生擺的情況,師出示各種情況。

板書:(4,0,0)(3,1,0)(2,2,0)(2,1,1),

引導(dǎo)學(xué)生得出:不管怎么放,總有一個盒子里至少有2枝筆。

問題:

(1)“總有”是什么意思?(一定有)。

(2)“至少”有2枝什么意思?(不少于兩只,可能是2枝,也可能是多于2枝?)。

學(xué)生思考并進(jìn)行組內(nèi)交流,教師選代表進(jìn)行總結(jié):如果每個盒子里放1枝鉛筆,最多放3枝,剩下的1枝不管放進(jìn)哪一個盒子里,總有一個盒子里至少有2枝鉛筆。首先通過平均分,余下1枝,不管放在那個盒子里,一定會出現(xiàn)“總有一個盒子里一定至少有2枝”。

問題:把6枝筆放進(jìn)5個盒子里呢?還用擺嗎?把7枝筆放進(jìn)6個盒子里呢?把8枝筆放進(jìn)7個盒子里呢?把9枝筆放進(jìn)8個盒子里呢?……你發(fā)現(xiàn)什么?(筆的枝數(shù)比盒子數(shù)多1,不管怎么放,總有一個盒子里至少有2枝鉛筆。)。

總結(jié):只要放的鉛筆數(shù)盒數(shù)多1,總有一個盒里至少放進(jìn)2支。

2.完成課下“做一做”,學(xué)習(xí)解決問題。

問題:6只鴿子飛回5個鴿籠,至少有2只鴿子要飛進(jìn)同一個鴿籠里,為什么?

(1)學(xué)生活動—獨立思考自主探究。

(2)交流、說理活動。

引導(dǎo)學(xué)生分析:如果一個鴿籠里飛進(jìn)一只鴿子,最多飛進(jìn)4只鴿子,還剩一只,要飛進(jìn)其中的一個鴿籠里。不管怎么飛,至少有2只鴿子要飛進(jìn)同一個鴿籠里。所以,“至少有2只鴿子飛進(jìn)同一個籠里”的結(jié)論是正確的。

總結(jié):用平均分的`方法,就能說明存在“總有一個鴿籠至少有2只鴿子飛進(jìn)一個個籠里”。

(二)教學(xué)例2。

(留給學(xué)生思考的空間,師巡視了解各種情況)。

2.學(xué)生匯報,教師給予表揚后并總結(jié):

總結(jié)1:把5本書放進(jìn)2個抽屜里,如果每個抽屜里先放2本,還剩1本,這本書不管放到哪個抽屜里,總有一個抽屜里至少有3本書。

總結(jié)2:“總有一個抽屜里的至少有2本”只要用“商+1”就可以得到。

問題:如果把5本書放進(jìn)3個抽屜里,不管怎么放,總有一個抽屜里至少有幾本書?用“商+2”可以嗎?(學(xué)生討論)。

引導(dǎo)學(xué)生思考:到底是“商+1”還是“商+余數(shù)”呢?誰的結(jié)論對呢?(學(xué)生小組里進(jìn)行研究、討論。)。

總結(jié):用書的本數(shù)除以抽屜數(shù),再用所得的商加1,就會發(fā)現(xiàn)“總有一個抽屜里至少有商加1本書”了。

師:同學(xué)們的這一發(fā)現(xiàn),稱為“抽屜原理”,“抽屜原理”又稱“鴿籠原理”,最先是由19世紀(jì)的德國數(shù)學(xué)家狄利克雷提出來的,所以又稱“狄里克雷原理”,也稱為“鴿巢原理”。這一原理在解決實際問題中有著廣泛的應(yīng)用。“抽屜原理”的應(yīng)用是千變?nèi)f化的,用它可以解決許多有趣的問題,并且常常能得到一些令人驚異的結(jié)果。下面我們應(yīng)用這一原理解決問題。

(三)學(xué)生自學(xué)例題3并進(jìn)行自主交流,試著用手中的用具模擬演示場景。

三、解決問題。

四、全課小結(jié)。

抽屜原理教學(xué)設(shè)計篇四

本節(jié)課我根據(jù)“教師是組織者、引導(dǎo)者和合作者”這一理念,以學(xué)生參與活動為主線,創(chuàng)建新型的教學(xué)結(jié)構(gòu)。通過幾個直觀的例子,用假設(shè)法向?qū)W生介紹“抽屜原理”,學(xué)生難以理解,感覺抽象。在教學(xué)時,我結(jié)合本班實際,用學(xué)生熟悉的吸管和杯子貫穿整個課堂,讓學(xué)生通過動手操作,在活動中真正去認(rèn)識、理解“抽屜原理”學(xué)生學(xué)得輕松也容易接受。

1、經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”,會用“抽屜原理”解決簡單的實際問題。

2、通過操作發(fā)展的類推能力,形成抽象的數(shù)學(xué)思維。

3、通過“抽屜原理”的靈活應(yīng)用,感受數(shù)學(xué)的魅力。

【教學(xué)重點】。

經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”。

理解“抽屜原理”,并對一些簡單實際問題加以“模型化”。

抽屜原理教學(xué)設(shè)計篇五

1.理解最簡單的抽屜原理及抽屜原理的一般形式。

2.引導(dǎo)學(xué)生采用操作的方法進(jìn)行枚舉及假設(shè)法探究。

【過程方法】。

經(jīng)歷抽屜原理的探究過程,初步了解抽屜原理。

【情感態(tài)度價值觀】。

體會數(shù)學(xué)知識在日常生活中的廣泛應(yīng)用,培養(yǎng)學(xué)生的探究意識和能力。

【教學(xué)重、難點】經(jīng)歷“抽屜原理”的探究過程,理解“抽屜原理”,并對一些簡單實際問題加以“模型化”。

【教學(xué)過程】。

一、問題引入。

1.游戲要求:開始以后,請你們5個都坐在椅子上,每個人必須都坐下。

2.討論:“不管怎么坐,總有一把椅子上至少坐兩個同學(xué)”這句話說得對嗎?

游戲開始,讓學(xué)生初步體驗不管怎么坐,總有一把椅子上至少坐兩個同學(xué),使學(xué)生明確這是現(xiàn)實生活中存在著的一種現(xiàn)象。

引入:不管怎么坐,總有一把椅子上至少坐兩個同學(xué)?你知道這是什么道理嗎?這其中蘊含著一個有趣的數(shù)學(xué)原理,這節(jié)課我們就一起來研究這個原理。

二、探究新知。

(一)教學(xué)例1。

師:請同學(xué)們實際放放看,誰來展示一下你擺放的情況?(指名擺)根據(jù)學(xué)生擺的情況,師出示各種情況。

板書:(4,0,0)(3,1,0)(2,2,0)(2,1,1),

引導(dǎo)學(xué)生得出:不管怎么放,總有一個盒子里至少有2枝筆。

問題:

(1)“總有”是什么意思?(一定有)。

(2)“至少”有2枝什么意思?(不少于兩只,可能是2枝,也可能是多于2枝?)。

學(xué)生思考并進(jìn)行組內(nèi)交流,教師選代表進(jìn)行總結(jié):如果每個盒子里放1枝鉛筆,最多放3枝,剩下的1枝不管放進(jìn)哪一個盒子里,總有一個盒子里至少有2枝鉛筆。首先通過平均分,余下1枝,不管放在那個盒子里,一定會出現(xiàn)“總有一個盒子里一定至少有2枝”。

問題:把6枝筆放進(jìn)5個盒子里呢?還用擺嗎?把7枝筆放進(jìn)6個盒子里呢?把8枝筆放進(jìn)7個盒子里呢?把9枝筆放進(jìn)8個盒子里呢?……你發(fā)現(xiàn)什么?(筆的枝數(shù)比盒子數(shù)多1,不管怎么放,總有一個盒子里至少有2枝鉛筆。)。

抽屜原理教學(xué)設(shè)計篇六

《抽屜原理》是義務(wù)教育課程標(biāo)準(zhǔn)實驗教科書數(shù)學(xué)六年級下冊第五單元數(shù)學(xué)廣角的教學(xué)內(nèi)容。這部分教材通過幾個直觀例子,借助實際操作,向?qū)W生介紹“抽屜原理”,使學(xué)生在理解“抽屜原理”這一數(shù)學(xué)方法的基礎(chǔ)上,對一些簡單的實際問題加以“模型化”,會用“抽屜原理”加以解決。

2.學(xué)情分析。

“抽屜原理”在生活中運用廣泛,學(xué)生在生活中常常能遇到實例,但并不能有意識地從數(shù)學(xué)的角度來理解和運用“抽屜原理”。教學(xué)中應(yīng)有意識地讓學(xué)生理解“抽屜原理”的“一般化模型”。六年級學(xué)生的邏輯思維能力、小組合作能力和動手操作能力都有了較大的提高,加上已有的生活經(jīng)驗,很容易感受到用“抽屜原理”解決問題帶來的樂趣。

3.教學(xué)理念。

激趣是新課導(dǎo)入的抓手,喜歡和好奇心比什么都重要,以“搶椅子”,讓學(xué)生置身游戲中開始學(xué)習(xí),為理解抽屜原理埋下伏筆。通過小組合作,動手操作的探究性學(xué)習(xí)把抽屜原理較為抽象難懂的內(nèi)容變?yōu)閷W(xué)生感興趣又易于理解的內(nèi)容。特別是對教材中的結(jié)論“總有、至少”等字詞作了充分的闡釋,幫助學(xué)生進(jìn)行較好的“建模”,使復(fù)雜問題簡單化,簡單問題模型化,充分體現(xiàn)了新課標(biāo)要求。

4.教學(xué)目標(biāo)。

1.經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”,會用“抽屜原理”解決簡單的實際問題。

2.通過操作發(fā)展學(xué)生的類推能力,形成比較抽象的數(shù)學(xué)思維。

3.通過“抽屜原理”的靈活應(yīng)用感受數(shù)學(xué)的魅力。

5.教學(xué)重難點。

重點:經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”。

難點:理解“抽屜原理”,并對一些簡單實際問題加以“模型化”。

6.教學(xué)過程。

一、課前游戲引入。

上課前,我們先來熱身一下,一起來玩搶椅子的游戲。

游戲規(guī)則是:在老師說開始時,3位同學(xué)繞著椅子走,當(dāng)老師說停的,三位同學(xué)都要坐在椅子上。

為什么總有一張椅子至少坐兩個同學(xué)?

在這個游戲中蘊含著一個有趣的數(shù)學(xué)原理叫做抽屜理原,這節(jié)課我們就一起來研究抽屜理原。(板書課題)。

二、通過操作,探究新知。

(一)探究例1。

抽屜原理教學(xué)設(shè)計篇七

桌上有十個蘋果,要把這十個蘋果放到九個抽屜里,無論怎樣放,我們會發(fā)現(xiàn)至少會有一個抽屜里面至少放兩個蘋果。這一現(xiàn)象就是我們所說的“抽屜原理”。

激趣是新課導(dǎo)入的抓手,喜歡和好奇心比什么都重要,以“搶椅子”,讓學(xué)生置身游戲中開始學(xué)習(xí),為理解抽屜原理埋下伏筆。通過小組合作,動手操作的探究性學(xué)習(xí)把抽屜原理較為抽象難懂的內(nèi)容變?yōu)閷W(xué)生感興趣又易于理解的內(nèi)容。特別是對教材中的結(jié)論“總有、至少”等字詞作了充分的闡釋,幫助學(xué)生進(jìn)行較好的“建?!?,使復(fù)雜問題簡單化,簡單問題模型化,充分體現(xiàn)了新課標(biāo)要求。

1、經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”,會用“抽屜原理”解決簡單的實際問題。

2、通過操作發(fā)展學(xué)生的類推能力,形成比較抽象的數(shù)學(xué)思維。

3、通過“抽屜原理”的靈活應(yīng)用感受數(shù)學(xué)的魅力。

重點:經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”。

難點:理解“抽屜原理”,并對一些簡單實際問題加以“模型化”。

師:同學(xué)們在我們上課之前,先做個小游戲:老師這里準(zhǔn)備了4把椅子,請5個同學(xué)上來,誰愿來?(學(xué)生上來后)。

師:聽清要求,老師說開始以后,請你們5個都坐在椅子上,每個人必須都坐下,好嗎?(好)。這時教師面向全體,背對那5個人。

師:開始。

師:都坐下了嗎?

生:坐下了。

生:對!

師:老師為什么能做出準(zhǔn)確的判斷呢?道理是什么?這其中蘊含著一個有趣的數(shù)學(xué)原理,這節(jié)課我們就一起來研究這個原理。(抽屜原理)。

1、研究3枝鉛筆放進(jìn)2個文具盒。

(1)要把3枝鉛筆放進(jìn)2個文具盒,有幾種放法?請同學(xué)們想一想,擺一擺,寫一寫,再把你的想法在小組內(nèi)交流。

(2)反饋:兩種放法:(3,0)和(2,1)。

(3)從兩種放法,同學(xué)們會有什么發(fā)現(xiàn)呢?(總有一個文具盒至少放進(jìn)2枝鉛筆)你是怎么發(fā)現(xiàn)的?(說得真有道理)。

(4)“總有”什么意思?(一定有)。

(5)“至少”有2枝什么意思?(不少于2枝)。

小結(jié):在研究3枝鉛筆放進(jìn)2個文具盒時,同學(xué)們表現(xiàn)得很積極,發(fā)現(xiàn)了“不管怎么放,總有一個文具盒放進(jìn)2枝鉛筆)。

2、研究4枝鉛筆放進(jìn)3個文具盒。

(1)要把4枝鉛筆放進(jìn)3個文具盒里,有幾種放法?請同學(xué)們動手?jǐn)[一擺,再把你的想法在小組內(nèi)交流。

(2)反饋:四種放法:(4,0,0)、(3,1,0)、(2,2,0)、(2,1,1)。

(3)從四種放法,同學(xué)們會有什么發(fā)現(xiàn)呢?(總有一個筆盒至少有2枝鉛筆)。

(4)你是怎么發(fā)現(xiàn)的?

(5)大家通過枚舉出四種放法,能清楚地發(fā)現(xiàn)“總有一個文具盒放進(jìn)2枝鉛筆”。如果要讓每個文具盒里放的筆盡可能的少,你覺得應(yīng)該要怎樣放?(每個文具盒都先放進(jìn)一枝,還剩一枝不管放進(jìn)哪個文具盒,總會有一個文具盒至少有2枝筆)(你真是一個善于思想的孩子。)。

(6)這位同學(xué)運用了假設(shè)法來說明問題,你是假設(shè)先在每個文具盒里放1枝鉛筆,這種放法其實也就是怎樣分?(平均分)那剩下的1枝怎么處理?(放入任意一個文具盒,那么這個文具盒就有2枝鉛筆了)。

3、類推:把5枝鉛筆放進(jìn)4個文具盒,是不是總有一個筆盒至少有2枝鉛筆?為什么?

把6枝鉛筆放進(jìn)5個文具盒,是不是總有一個筆盒至少有2枝鉛筆?為什么?

把7枝鉛筆放進(jìn)6個文具盒,是不是總有一個筆盒至少有2枝鉛筆?為什么?

把100枝鉛筆放進(jìn)99個文具盒,是不是總有一個筆盒至少有2枝鉛筆?為什么?

4、從剛才我們的探究活動中,你有什么發(fā)現(xiàn)?(只要放的鉛筆比文具盒的數(shù)量多1,總有一個文具盒里至少放進(jìn)2枝鉛筆。)。

5、如果鉛筆數(shù)比文具盒數(shù)多2呢?多3呢?是不是也能得到結(jié)論:“總有一個筆盒至少有2枝鉛筆?!?/p>

6、小結(jié):剛才我們分析了把鉛筆放進(jìn)文具盒的情況,只要鉛筆數(shù)量多于文具盒數(shù)量時,總有一個文具盒至少放進(jìn)2枝鉛筆。

這就是今天我們要學(xué)習(xí)的抽屜原理。既然叫“抽屜原理”是不是應(yīng)該和抽屜有聯(lián)系吧?鉛筆相當(dāng)于我們要準(zhǔn)備放進(jìn)抽屜的物體,那么文具盒就相當(dāng)于抽屜了。如果物體數(shù)多于抽屜數(shù),我們就能得出結(jié)論“總有一個抽屜里放進(jìn)了2個物體?!?/p>

過渡:同學(xué)們非常了不起,善于運用觀察、分析、思考、推理、證明的方法研究問題,得出結(jié)論。同學(xué)們的思維也在不知不覺中提升了許多,那么讓我們再來研究這樣一組問題。

1、研究把5本書放進(jìn)2個抽屜。

(1)把5本書放進(jìn)2個抽屜會有幾種情況?(5,0)、(4,1)和(3,2)。

(2)從三種情況中,我們可以得到怎樣的結(jié)論呢?(總有一個抽屜至少放進(jìn)了3本書)。

(3)還可以怎樣理解這個結(jié)論?先在每個抽屜里放進(jìn)2本,剩下的1本放進(jìn)任何一個抽屜,這個抽屜就有3本書了。

2、類推:如果把7本書放進(jìn)2個抽屜中,至少有一個抽屜放進(jìn)4本書。

如果把9本書放進(jìn)2個抽屜中。至少有一個抽屜放進(jìn)5本書。

3、小結(jié):從以上的學(xué)習(xí)中,你有什么發(fā)現(xiàn)?(在解決抽屜原理時,我們可以運用假設(shè)法,把物體盡可量多地“平均分”給各個抽屜,總有一個抽屜比平均分得的物體數(shù)多1。)。

4、經(jīng)過剛才的探索研究,我們經(jīng)歷了一個很不簡單的思維過程,個個都是了不起的數(shù)學(xué)家?!俺閷显怼弊钕仁怯?9世紀(jì)的德國數(shù)學(xué)家狄利克雷提出來的,所以又稱“狄里克雷原理”,也稱為“鴿巢原理”。這一原理在解決實際問題中有著廣泛的應(yīng)用?!俺閷显怼钡膽?yīng)用是千變?nèi)f化的,用它可以解決許多有趣的問題,并且常常能得到一些令人驚異的結(jié)果。

5、做一做:

7只鴿子飛回5個鴿舍,至少有2只鴿子要飛進(jìn)同一個佶舍里。為什么?

8只鴿子飛回3個鴿舍,至少有3只鴿子要飛時同一個鴿舍里。為什么?

(先讓學(xué)生獨立思考,在小組里討論,再全班反饋)。

下面我們一起來放松一下,做個小游戲。

這節(jié)課,你有什么收獲?

抽屜原理教學(xué)設(shè)計篇八

本課通過創(chuàng)設(shè)情境、直觀和實際操作,使學(xué)生進(jìn)一步經(jīng)歷“抽屜原理”的探究過程,并對一些簡單的實際問題“模型化”,從而在用“抽屜原理”加以解決的過程中,促進(jìn)邏輯推理能力的發(fā)展,培養(yǎng)分析、推理、解決問題的能力以及探索數(shù)學(xué)問題的興趣,同時也使學(xué)生感受到數(shù)學(xué)思想方法的奇妙與作用,在數(shù)學(xué)思維的訓(xùn)練中,逐步形成有序地、嚴(yán)密地思考問題的意識。

《義務(wù)教育課程標(biāo)準(zhǔn)實驗教科書數(shù)學(xué)》六年級下冊第70--71頁的內(nèi)容。

1.經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”,會用“抽屜原理”解決簡單的實際問題。

2.通過操作發(fā)展學(xué)生的類推能力,形成比較抽象的數(shù)學(xué)思維。

【教學(xué)重點】經(jīng)歷“抽屜原理”的探究過程,了解掌握“抽屜原理”。

【教學(xué)難點】理解“抽屜原理”,并對一些簡單實際問題加以“模型化”。

【教學(xué)準(zhǔn)備】多媒體課件、每組準(zhǔn)備13枚“金幣”和5個杯子。

【教學(xué)課時】一課時。

在研究新課之前得先請同學(xué)們見見自己的老朋友,看看誰還認(rèn)識他?

出示圖片——魯濱遜畫像。

一).探索比抽屜數(shù)多1的至少數(shù)。

話說魯賓遜完全不顧父愿,甚至違抗父命,也全然不聽母親的懇求和朋友們的勸阻,一意孤行開始了他的冒險之旅。一天拂曉,當(dāng)他所乘坐的正駛向加那利群島時,被一艘土耳其海盜船襲擊,所有船員全部被俘。魯賓遜被海盜船長作為自己的戰(zhàn)利品留了下來,成了船長的奴隸。這一日,海盜們沒有出海,懶洋洋的在岸上休息,船長命令魯賓遜給海盜們傳授些文明人的知識,讓海盜們變得像魯賓遜一樣富有智慧??粗雷由祥W閃發(fā)光的金幣,魯賓遜想到了一個辦法,他找來兩個盒子:

出示例一:

1.把3枚金幣放入2個盒子里,有幾種放法?

學(xué)生拿起自己手中的學(xué)具做實驗,小組討論后發(fā)言,其他同學(xué)可以補充。

2.師:把4枚金幣都放進(jìn)3個盒子里,有幾種不同的放法?請同學(xué)們實際放放看。(師巡視,了解情況,個別指導(dǎo))。

師:誰來展示一下你擺放的情況?這種分法,實際就是先怎么分的?為什么要先平均分?(組織學(xué)生討論)。

小結(jié):用最不利原則設(shè)想,如果我們先讓每個筆筒里放1枚金幣,最多放3枚。剩下的1枚還要放進(jìn)其中的一個筆筒。所以不管怎么放,總有一個筆筒里至少放進(jìn)2枚金幣。

二).探索比抽屜數(shù)多幾的至少數(shù)。

師:那么把13枚金幣放進(jìn)3個盒子里呢?

(可以結(jié)合操作說一說)。

師:把13枚金幣放進(jìn)5個盒子里呢?

(留給學(xué)生思考的空間,師巡視了解各種情況)。

師:這是我們通過實際操作現(xiàn)了這個結(jié)論。那么,我們能不能找到一種更為直接的方法,得到這個結(jié)論呢?請同學(xué)們觀察板書,小組研究、討論。找一找其中的規(guī)律。

小結(jié):至少數(shù)等于數(shù)的本數(shù)除以抽屜數(shù),再用所得的商加1。

(板書:至少數(shù)=商+1)。

三).解析原理,加深認(rèn)識。

師:同學(xué)們的這一發(fā)現(xiàn),稱為“抽屜原理”。抽屜原理”又稱“鴿籠原理”,最先是由19世紀(jì)的德國數(shù)學(xué)家狄利克雷提出來的,所以又稱“狄里克雷原理”,也稱作“鴿巢原理”。

出示:7只鴿子飛回5個鴿舍,至少有兩只鴿子飛進(jìn)同一個鴿舍?學(xué)生回答后觀看演示。

一).鞏固應(yīng)用一——撲克牌游戲。

16世紀(jì)的海盜們哪能摸得清什么抽屜原理呢?一聽原理二字便昏頭漲腦,不知什么時候早在下面玩起了撲克牌。這時,魯賓遜靈機一動,將大家正玩的撲克牌中的大小王拿掉,說:每人抽五張牌,不管怎么抽取,至少有兩張是同一花色的牌,你們相信嗎?說著,給坐在旁邊的海盜甲海盜乙每人任意抽取了5張牌。“如果有一個人手里的牌都不是同一花色,任由船長處置;如果每個人手里最少有2張花色相同的牌,請船長允許我回故鄉(xiāng)赫爾去吧?!贝L眼珠一轉(zhuǎn),同意了魯賓遜的要求。

那么,事實是不是這樣呢?同學(xué)們相信魯賓遜的話嗎?

教師發(fā)撲克牌,學(xué)生回答。

二).鞏固應(yīng)用二——分寶1。

魯賓遜雖然證實了自己是正確的,可是狡猾的船長并沒有答應(yīng)他的要求,放他回家。魯賓遜只好跟著海盜首領(lǐng)到處掠奪殺戮。

有一次,他們獲得了很多寶貝,海盜首領(lǐng)非常高興,對手下8個小海盜說,這些寶貝都給你們了,你們自己處理吧,沒想到小海盜平時都搶慣了,一擁而上,有人拿得很多,有人很少,甚至有人一件寶貝也沒拿到,看到小海盜們亂哄哄的樣子,海盜首領(lǐng)非常生氣,就想懲罰一下那些貪婪的海盜,機會終于來了!有一次:海盜們又獲得了73件寶貝,海盜首領(lǐng)又叫8個小海盜自己分。且規(guī)定:1、必須分完。2、若某人拿10件或10件以上的寶貝,說明他是個過分貪婪的人,就把他扔進(jìn)大海喂鯊魚。

海盜們是否都能逃過這一劫呢?小組討論后派代表說說想法,其他同學(xué)可以補充。無論怎樣分,總有一個海盜至少會拿到10件,這個海盜怎么辦呢?學(xué)生自由談看法。

師:正在海盜們擔(dān)心的時候,事情有了轉(zhuǎn)機,聰明的魯賓遜趁著天黑偷偷地把一件寶貝扔進(jìn)大海,現(xiàn)在只剩下72件寶貝,大家都平安無事。

三).鞏固應(yīng)用三——分寶2。

師:海盜們終于逃過一劫,海盜首領(lǐng)回到自己屋里,悶悶不樂,夫人問他為什么不開心,海盜首領(lǐng)如實相告,夫人說是不是有人把一件寶貝扔到海里去了,海盜首領(lǐng)如夢方醒,決心下一次不再上當(dāng),又是在一個風(fēng)急天黑的夜晚:海盜們獲得了79件寶貝,首領(lǐng)還是要8個小海盜自己分,規(guī)則不變,還警告,79件寶貝已數(shù)得清清楚楚,誰要是作弊,也要受到懲罰。

師:小海盜們大驚失色,心想這下可能真的逃不過去了,只有聰明的魯賓遜鎮(zhèn)定自若,站出來對海盜首領(lǐng)說,既然寶貝比上次增加了6件,能不能把限定的10件提高1件?海盜首領(lǐng)心想,寶貝增加這么多,而限定只提高1件,還是肯定有人會受到懲罰,就同意了小海盜的請求。你認(rèn)為首領(lǐng)的想法對嗎?說說你是怎樣想的。

學(xué)生先小組討論,然后再叫幾個學(xué)生來說說是怎樣想的。老師再對學(xué)生的思路進(jìn)行梳理。

師:靠著魯賓遜的聰明才智,事情終于風(fēng)平浪靜,在以后的日子里魯賓遜自己的智慧贏得了海盜首領(lǐng)的信任,有了獨自駕駛小艇的權(quán)利,借著海盜首領(lǐng)拜訪朋友的機會,魯賓遜駕著小艇逃到了一個無人的荒島,并搭救了一個野蠻人,起名“星期五”,有一天,他們倆無所事事,玩起了游戲。

讓學(xué)生講講思路,老師再對學(xué)生的思路進(jìn)行梳理。

四.拓展延伸。

魯賓遜的故事今天先講到這里,通過今天的學(xué)習(xí)你有什么收獲?

五.布置作業(yè)。

每人編2道抽屜類問題作為今天的作業(yè),讓自己的同桌來證明或解答。

抽屜原理教學(xué)設(shè)計篇九

《義務(wù)教育課程標(biāo)準(zhǔn)實驗教科書·數(shù)學(xué)》六年級下冊第68頁。

1.經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”,會用“抽屜原理”解決簡單的實際問題。

2. 通過操作發(fā)展學(xué)生的類推能力,形成比較抽象的數(shù)學(xué)思維。

3. 通過“抽屜原理”的靈活應(yīng)用感受數(shù)學(xué)的魅力。

經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”。

理解“抽屜原理”,并對一些簡單實際問題加以“模型化”。

每組都有相應(yīng)數(shù)量的盒子、鉛筆、書。

抽屜原理教學(xué)設(shè)計篇十

《義務(wù)教育課程標(biāo)準(zhǔn)實驗教科書數(shù)學(xué)》六年級下冊第68頁。

1.經(jīng)歷抽屜原理的探究過程,初步了解抽屜原理,會用抽屜原理解決簡單的實際問題。

2.通過操作發(fā)展學(xué)生的類推能力,形成比較抽象的數(shù)學(xué)思維。

【教學(xué)重點】。

經(jīng)歷抽屜原理的探究過程,初步了解抽屜原理。

理解抽屜原理,并對一些簡單實際問題加以模型化。

【教具、學(xué)具準(zhǔn)備】。

每組都有相應(yīng)數(shù)量的盒子、鉛筆、書。

一、課前游戲引入。

師:同學(xué)們在我們上課之前,先做個小游戲:老師這里準(zhǔn)備了4把椅子,請5個同學(xué)上來,誰愿來?(學(xué)生上來后)。

師:聽清要求,老師說開始以后,請你們5個都坐在椅子上,每個人必須都坐下,好嗎?(好)。這時教師面向全體,背對那5個人。

師:開始。

師:都坐下了嗎?

生:坐下了。

生:對!

【點評】教師從學(xué)生熟悉的搶椅子游戲開始,讓學(xué)生初步體驗不管怎么坐,總有一把椅子上至少坐兩個同學(xué),使學(xué)生明確這是現(xiàn)實生活中存在著的一種現(xiàn)象,激發(fā)了學(xué)生的學(xué)習(xí)興趣,為后面開展教與學(xué)的活動做了鋪墊。

二、通過操作,探究新知。

(一)教學(xué)例1。

師:請同學(xué)們實際放放看,誰來展示一下你擺放的情況?(指名擺)根據(jù)學(xué)生擺的情況,師板書各種情況(3,0)(2,1)。

【點評】此處設(shè)計教師注意了從最簡單的數(shù)據(jù)開始擺放,有利于學(xué)生觀察、理解,有利于調(diào)動所有的學(xué)生積極參與進(jìn)來。

生:不管怎么放,總有一個盒子里至少有2枝筆?

是:是這樣嗎?誰還有這樣的.發(fā)現(xiàn),再說一說。

師:那么,把4枝鉛筆放進(jìn)3個盒子里,怎么放?有幾種不同的放法?請同學(xué)們實際放放看。(師巡視,了解情況,個別指導(dǎo))。

師:誰來展示一下你擺放的情況?(指名擺)根據(jù)學(xué)生擺的情況,師板書各種情況。

(4,0,0)。

(3,1,0)。

(2,2,0)。

(2,1,1),

師:還有不同的放法嗎?

生:沒有了。

師:你能發(fā)現(xiàn)什么?

生:不管怎么放,總有一個盒子里至少有2枝鉛筆。

師:總有是什么意思?

生:一定有。

師:至少有2枝什么意思?

生:不少于兩只,可能是2枝,也可能是多于2枝?

師:就是不能少于2枝。(通過操作讓學(xué)生充分體驗感受)。

學(xué)生思考組內(nèi)交流匯報。

師:哪一組同學(xué)能把你們的想法匯報一下?

組1生:我們發(fā)現(xiàn)如果每個盒子里放1枝鉛筆,最多放3枝,剩下的1枝不管放進(jìn)哪一個盒子里,總有一個盒子里至少有2枝鉛筆。

師:你能結(jié)合操作給大家演示一遍嗎?(學(xué)生操作演示)。

師:同學(xué)們自己說說看,同位之間邊演示邊說一說好嗎?

師:這種分法,實際就是先怎么分的?

生眾:平均分。

師:為什么要先平均分?(組織學(xué)生討論)。

生1:要想發(fā)現(xiàn)存在著總有一個盒子里一定至少有2枝,先平均分,余下1枝,不管放在那個盒子里,一定會出現(xiàn)總有一個盒子里一定至少有2枝。

生2:這樣分,只分一次就能確定總有一個盒子至少有幾枝筆了?

師:同意嗎?那么把5枝筆放進(jìn)4個盒子里呢?(可以結(jié)合操作,說一說)。

師:哪位同學(xué)能把你的想法匯報一下,

生:(一邊演示一邊說)5枝鉛筆放在4個盒子里,不管怎么放,總有一個盒子里至少有2枝鉛筆。

師:把6枝筆放進(jìn)5個盒子里呢?還用擺嗎?

生:6枝鉛筆放在5個盒子里,不管怎么放,總有一個盒子里至少有2枝鉛筆。

師:把7枝筆放進(jìn)6個盒子里呢?

把8枝筆放進(jìn)7個盒子里呢?

把9枝筆放進(jìn)8個盒子里呢?

你發(fā)現(xiàn)什么?

生1:筆的枝數(shù)比盒子數(shù)多1,不管怎么放,總有一個盒子里至少有2枝鉛筆。

師:你的發(fā)現(xiàn)和他一樣嗎?(一樣)你們太了不起了!同桌互相說一遍。

【點評】教師關(guān)注了抽屜原理的最基本原理,物體個數(shù)必須要多于抽屜個數(shù),化繁為簡,此處確實有必要提領(lǐng)出來進(jìn)行教學(xué)。在學(xué)生自主探索的基礎(chǔ)上,教師注意引導(dǎo)學(xué)生得出一般性的結(jié)論:只要放的鉛筆數(shù)盒數(shù)多1,總有一個盒里至少放進(jìn)2支。通過教師組織開展的扎實有效的教學(xué)活動,學(xué)生學(xué)的有興趣,發(fā)展了學(xué)生的類推能力,形成比較抽象的數(shù)學(xué)思維。

2.解決問題。

(1)課件出示:5只鴿子飛回4個鴿籠,至少有2只鴿子要飛進(jìn)同一個鴿籠里,為什么?

(學(xué)生活動獨立思考自主探究)。

(2)交流、說理活動。

師:誰能說說為什么?

生1:如果一個鴿籠里飛進(jìn)一只鴿子,最多飛進(jìn)4只鴿子,還剩一只,要飛進(jìn)其中的一個鴿籠里。不管怎么飛,至少有2只鴿子要飛進(jìn)同一個鴿籠里。

生2:我們也是這樣想的。

生3:把5只鴿子平均分到4個籠子里,每個籠子1只,剩下1只,放到任何一個籠子里,就能保證至少有2只鴿子飛進(jìn)同一個籠里。

生4:可以用54=11,余下的1只,飛到任何一個鴿籠里都能保證至少有2只鴿子飛進(jìn)一個個籠里,所以,至少有2只鴿子飛進(jìn)同一個籠里的結(jié)論是正確的。

師:許多同學(xué)沒有再擺學(xué)具,證明這個結(jié)論是正確的,用的什么方法?

生:用平均分的方法,就能說明存在總有一個鴿籠至少有2只鴿子飛進(jìn)一個個籠里。

師:同意嗎?(生:同意)老師把這位同學(xué)說的算式寫下來,(板書:54=11)。

師:同位之間再說一說,對這種方法的理解。

師:現(xiàn)在誰能說說你對總有一個鴿籠里至少飛進(jìn)2只鴿子的理解。

生:我們發(fā)現(xiàn)這是必然存在的一個現(xiàn)象,不管鴿子怎樣飛回鴿籠,一定會有一個鴿籠里至少有2只鴿子。

師:同學(xué)們都有這個發(fā)現(xiàn)嗎?

生眾:發(fā)現(xiàn)了。

師:同學(xué)們非常了不起,善于運用觀察、分析、思考、推理、證明的方法研究問題,得出結(jié)論。同學(xué)們的思維也在不知不覺中提升了許多,那么讓我們再來看這樣一組問題。

(二)教學(xué)例2。

1.出示題目:把5本書放進(jìn)2個抽屜里,不管怎么放,總有一個抽屜里至少有幾本書?

把7本書放進(jìn)2個抽屜里,不管怎么放,總有一個抽屜里至少有幾本書?

把9本書放進(jìn)2個抽屜里,不管怎么放,總有一個抽屜里至少有幾本書?

(留給學(xué)生思考的空間,師巡視了解各種情況)。

2.學(xué)生匯報。

生1:把5本書放進(jìn)2個抽屜里,如果每個抽屜里先放2本,還剩1本,這本書不管放到哪個抽屜里,總有一個抽屜里至少有3本書。

板書:5本2個2本余1本(總有一個抽屜里至有3本書)。

7本2個3本余1本(總有一個抽屜里至有4本書)。

9本2個4本余1本(總有一個抽屜里至有5本書)。

師:2本、3本、4本是怎么得到的?生答完成除法算式。

52=2本1本(商加1)。

72=3本1本(商加1)。

92=4本1本(商加1)。

師:觀察板書你能發(fā)現(xiàn)什么?

生1:總有一個抽屜里的至少有2本只要用商+1就可以得到。

師:如果把5本書放進(jìn)3個抽屜里,不管怎么放,總有一個抽屜里至少有幾本書?

生:總有一個抽屜里的至少有3本只要用53=1本2本,用商+2就可以了。

生:不同意!先把5本書平均分放到3個抽屜里,每個抽屜里先放1本,還剩2本,這2本書再平均分,不管分到哪兩個抽屜里,總有一個抽屜里至少有2本書,不是3本書。

師:到底是商+1還是商+余數(shù)呢?誰的結(jié)論對呢?在小組里進(jìn)行研究、討論。

交流、說理活動:

生1:我們組通過討論并且實際分了分,結(jié)論是總有一個抽屜里至少有2本書,不是3本書。

生2:把5本書平均分放到3個抽屜里,每個抽屜里先放1本,余下的2本可以在2個抽屜里再各放1本,結(jié)論是總有一個抽屜里至少有2本書。

生3∶我們組的結(jié)論是5本書平均分放到3個抽屜里,總有一個抽屜里至少有2本書用商加1就可以了,不是商加2。

師:現(xiàn)在大家都明白了吧?那么怎樣才能夠確定總有一個抽屜里至少有幾個物體呢?

生4:如果書的本數(shù)是奇數(shù),用書的本數(shù)除以抽屜數(shù),再用所得的商加1,就會發(fā)現(xiàn)總有一個抽屜里至少有商加1本書了。

師:同學(xué)們同意吧?

師:同學(xué)們的這一發(fā)現(xiàn),稱為抽屜原理,抽屜原理又稱鴿籠原理,最先是由19世紀(jì)的德國數(shù)學(xué)家狄利克雷提出來的,所以又稱狄里克雷原理,也稱為鴿巢原理。這一原理在解決實際問題中有著廣泛的應(yīng)用。抽屜原理的應(yīng)用是千變?nèi)f化的,用它可以解決許多有趣的問題,并且常常能得到一些令人驚異的結(jié)果。下面我們應(yīng)用這一原理解決問題。

3.解決問題。71頁第3題。(獨立完成,交流反饋)。

小結(jié):經(jīng)過剛才的探索研究,我們經(jīng)歷了一個很不簡單的思維過程,我們獲得了解決這類問題的好辦法,下面讓我們輕松一下做個小游戲。

【點評】在這一環(huán)節(jié)的教學(xué)中教師抓住了假設(shè)法最核心的思路就是用有余數(shù)除法形式表示出來,使學(xué)生學(xué)生借助直觀,很好的理解了如果把書盡量多地平均分給各個抽屜里,看每個抽屜里能分到多少本書,余下的書不管放到哪個抽屜里,總有一個抽屜里比平均分得的書的本數(shù)多1本。特別是對某個抽屜至少有書的本數(shù)是除法算式中的商加1,而不是商加余數(shù),教師適時挑出針對性問題進(jìn)行交流、討論,使學(xué)生從本質(zhì)上理解了抽屜原理。

三、應(yīng)用原理解決問題。

生:2張/因為54=11。

師:先驗證一下你們的猜測:舉牌驗證。

師:如有3張同花色的,符合你們的猜測嗎?

師:如果9個人每一個人抽一張呢?

生:至少有3張牌是同一花色,因為94=21。

四、全課小結(jié)。

【點評】當(dāng)學(xué)生利用有余數(shù)除法解決了具體問題后,教師引導(dǎo)學(xué)生總結(jié)歸納這一類抽屜問題的一般規(guī)律,使學(xué)生進(jìn)一步理解掌握了抽屜原理。

抽屜原理教學(xué)設(shè)計篇十一

《義務(wù)教育課程標(biāo)準(zhǔn)實驗教科書·數(shù)學(xué)》六年級下冊。

讓學(xué)生初步了解簡單“抽屜原理”,教材借助把4枝鉛筆放進(jìn)3個文具盒中的操作情景,介紹了較簡單的“抽屜原理”,通過用“抽屜原理”解決簡單的實際問題,初步感受數(shù)學(xué)的魅力。主要培養(yǎng)學(xué)生的思考和推理能力,讓學(xué)生初步經(jīng)歷“數(shù)學(xué)原理”的過程,提高學(xué)生數(shù)學(xué)應(yīng)用意識。

教材借助把4枝鉛筆放進(jìn)3個文具盒中的操作情景,介紹了較簡單的“抽屜原理”。學(xué)生在操作實物的過程中可以發(fā)現(xiàn)一個現(xiàn)象:不管怎么放,總有一個文具盒里至少放進(jìn)2枝鉛筆,從而產(chǎn)生疑問,激起尋求答案的欲望。為了解釋這一現(xiàn)象,教材呈現(xiàn)了枚舉。

1.經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”,會用“抽屜原理”解決簡單的實際問題。

2.通過操作發(fā)展學(xué)生的類推能力,形成比較抽象的數(shù)學(xué)思維。

經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”。

理解“抽屜原理”,并對一些簡單實際問題加以“模型化”。

每組都有3個文具盒和4枝鉛筆。

教師:同學(xué)們,你們在電腦上玩過“電腦算命”嗎?“電腦算命”看起來很深奧,只要報出你的出生的年、月、日和性別,一按鍵,屏幕上就會出現(xiàn)所謂性格、命運、財運等。通過今天的學(xué)習(xí),我們掌握了“抽屜原理”之后,你就不難證明這種“電腦算命”是非??尚突奶频?,是不能信的鬼把戲。

教師:通過學(xué)習(xí),你想解決那些問題?

師:請同學(xué)們實際放放看,誰來展示一下你擺放的情況?(指名擺)根據(jù)學(xué)生擺的情況,師板書各種情況(3,0)(2,1)。

生:不管怎么放,總有一個盒子里至少有2枝筆?

師:是這樣嗎?誰還有這樣的發(fā)現(xiàn),再說一說。

師:那么,把4枝鉛筆放進(jìn)3個盒子里,怎么放?有幾種不同的放法?請同學(xué)們實際放放看。(師巡視,了解情況,個別指導(dǎo))。

師:誰來展示一下你擺放的情況?(指名擺)根據(jù)學(xué)生擺的情況,師板書各種情況。

(4,0,0)(3,1,0)(2,2,0)(2,1,1),

師:還有不同的放法嗎?

生:沒有了。

師:你能發(fā)現(xiàn)什么?

生:不管怎么放,總有一個盒子里至少有2枝鉛筆。

師:“總有”是什么意思?

生:一定有。

師:“至少”有2枝什么意思?

生:不少于兩只,可能是2枝,也可能是多于2枝?

師:就是不能少于2枝。(通過操作讓學(xué)生充分體驗感受)。

學(xué)生思考——組內(nèi)交流——匯報。

師:哪一組同學(xué)能把你們的想法匯報一下?

組1生:我們發(fā)現(xiàn)如果每個盒子里放1枝鉛筆,最多放3枝,剩下的1枝不管放進(jìn)哪一個盒子里,總有一個盒子里至少有2枝鉛筆。

師:你能結(jié)合操作給大家演示一遍嗎?(學(xué)生操作演示)。

師:同學(xué)們自己說說看,同位之間邊演示邊說一說好嗎?

師:這種分法,實際就是先怎么分的?

生眾:平均分。

師:為什么要先平均分?(組織學(xué)生討論)。

生1:要想發(fā)現(xiàn)存在著“總有一個盒子里一定至少有2枝”,先平均分,余下1枝,不管放在那個盒子里,一定會出現(xiàn)“總有一個盒子里一定至少有2枝”。

生2:這樣分,只分一次就能確定總有一個盒子至少有幾枝筆了?

師:同意嗎?那么把5枝筆放進(jìn)4個盒子里呢?(可以結(jié)合操作,說一說)。

師:哪位同學(xué)能把你的想法匯報一下,

生:(一邊演示一邊說)5枝鉛筆放在4個盒子里,不管怎么放,總有一個盒子里至少有2枝鉛筆。

師:把6枝筆放進(jìn)5個盒子里呢?還用擺嗎?

生:6枝鉛筆放在5個盒子里,不管怎么放,總有一個盒子里至少有2枝鉛筆。

師:把7枝筆放進(jìn)6個盒子里呢?

把8枝筆放進(jìn)7個盒子里呢?

把9枝筆放進(jìn)8個盒子里呢?……。

你發(fā)現(xiàn)什么?

生1:筆的枝數(shù)比盒子數(shù)多1,不管怎么放,總有一個盒子里至少有2枝鉛筆。

師:你的發(fā)現(xiàn)和他一樣嗎?(一樣)你們太了不起了!同桌互相說一遍。

1.出示題目:把5本書放進(jìn)2個抽屜里,不管怎么放,總有一個抽屜里至少有幾本書?

把7本書放進(jìn)2個抽屜里,不管怎么放,總有一個抽屜里至少有幾本書?

把9本書放進(jìn)2個抽屜里,不管怎么放,總有一個抽屜里至少有幾本書?

(留給學(xué)生思考的空間,師巡視了解各種情況)。

2.學(xué)生匯報。

生1:把5本書放進(jìn)2個抽屜里,如果每個抽屜里先放2本,還剩1本,這本書不管放到哪個抽屜里,總有一個抽屜里至少有3本書。

板書:5本2個2本……余1本(總有一個抽屜里至有3本書)。

7本2個3本……余1本(總有一個抽屜里至有4本書)。

9本2個4本……余1本(總有一個抽屜里至有5本書)。

師:2本、3本、4本是怎么得到的?生答完成除法算式。

5÷2=2本……1本(商加1)。

7÷2=3本……1本(商加1)。

9÷2=4本……1本(商加1)。

師:觀察板書你能發(fā)現(xiàn)什么?

生1:“總有一個抽屜里的至少有2本”只要用“商+1”就可以得到。

師:如果把5本書放進(jìn)3個抽屜里,不管怎么放,總有一個抽屜里至少有幾本書?

生:“總有一個抽屜里的至少有3本”只要用5÷3=1本……2本,用“商+2”就可以了。

生:不同意!先把5本書平均分放到3個抽屜里,每個抽屜里先放1本,還剩2本,這2本書再平均分,不管分到哪兩個抽屜里,總有一個抽屜里至少有2本書,不是3本書。

師:到底是“商+1”還是“商+余數(shù)”呢?誰的結(jié)論對呢?在小組里進(jìn)行研究、討論。

交流、說理活動:

生1:我們組通過討論并且實際分了分,結(jié)論是總有一個抽屜里至少有2本書,不是3本書。

生2:把5本書平均分放到3個抽屜里,每個抽屜里先放1本,余下的2本可以在2個抽屜里再各放1本,結(jié)論是“總有一個抽屜里至少有2本書”。

生3我們組的結(jié)論是5本書平均分放到3個抽屜里,“總有一個抽屜里至少有2本書”用“商加1”就可以了,不是“商加2”。

師:現(xiàn)在大家都明白了吧?那么怎樣才能夠確定總有一個抽屜里至少有幾個物體呢?

生4:如果書的本數(shù)是奇數(shù),用書的本數(shù)除以抽屜數(shù),再用所得的商加1,就會發(fā)現(xiàn)“總有一個抽屜里至少有商加1本書”了。

師:同學(xué)們同意吧?

師:同學(xué)們的這一發(fā)現(xiàn),稱為“抽屜原理”,“抽屜原理”又稱“鴿籠原理”,最先是由19世紀(jì)的德國數(shù)學(xué)家狄利克雷提出來的,所以又稱“狄里克雷原理”,也稱為“鴿巢原理”。這一原理在解決實際問題中有著廣泛的應(yīng)用?!俺閷显怼钡膽?yīng)用是千變?nèi)f化的,用它可以解決許多有趣的問題,并且常常能得到一些令人驚異的結(jié)果。下面我們應(yīng)用這一原理解決問題。

3.解決問題。71頁第3題。(獨立完成,交流反饋)。

小結(jié):經(jīng)過剛才的探索研究,我們經(jīng)歷了一個很不簡單的思維過程,我們獲得了解決這類問題的好辦法,下面讓我們輕松一下做個小游戲。

生:2張/因為5÷4=1…1。

師:先驗證一下你們的猜測:舉牌驗證。

師:如有3張同花色的,符合你們的猜測嗎?

師:如果9個人每一個人抽一張呢?

生:至少有3張牌是同一花色,因為9÷4=2…1。

上面我們所證明的數(shù)學(xué)原理就是最簡單的“抽屜原理”,可以概括為:把m個物體任意放到m-1個抽屜里,那么總有一個抽屜中放進(jìn)了至少2個物體。

1.從街上隨便找來13人,就可以斷定他們中至少有兩個人屬相(指鼠、牛、虎、兔……十二種生肖)相同。說明理由。

2.任意367名學(xué)生中,一定存在兩名學(xué)生,他們在同一天過生日。說明理由。

1、小組活動很容易抓住學(xué)生的注意力,讓學(xué)生覺得這節(jié)課要探究的問題即好玩又有意義。

3、部分學(xué)生很難判斷誰是物體,誰是抽屜。

抽屜原理教學(xué)設(shè)計篇十二

(留給學(xué)生思考的空間,師巡視了解各種情況)。

2.學(xué)生匯報,教師給予表揚后并總結(jié):

總結(jié)1:把5本書放進(jìn)2個抽屜里,如果每個抽屜里先放2本,還剩1本,這本書不管放到哪個抽屜里,總有一個抽屜里至少有3本書。

總結(jié)2:“總有一個抽屜里的至少有2本”只要用“商+1”就可以得到。

問題:如果把5本書放進(jìn)3個抽屜里,不管怎么放,總有一個抽屜里至少有幾本書?用“商+2”可以嗎?(學(xué)生討論)。

引導(dǎo)學(xué)生思考:到底是“商+1”還是“商+余數(shù)”呢?誰的結(jié)論對呢?(學(xué)生小組里進(jìn)行研究、討論。)。

總結(jié):用書的本數(shù)除以抽屜數(shù),再用所得的商加1,就會發(fā)現(xiàn)“總有一個抽屜里至少有商加1本書”了。

師:同學(xué)們的這一發(fā)現(xiàn),稱為“抽屜原理”,“抽屜原理”又稱“鴿籠原理”,最先是由19世紀(jì)的德國數(shù)學(xué)家狄利克雷提出來的,所以又稱“狄里克雷原理”,也稱為“鴿巢原理”。這一原理在解決實際問題中有著廣泛的`應(yīng)用?!俺閷显怼钡膽?yīng)用是千變?nèi)f化的,用它可以解決許多有趣的問題,并且常常能得到一些令人驚異的結(jié)果。下面我們應(yīng)用這一原理解決問題。

抽屜原理教學(xué)設(shè)計篇十三

1.經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”,會用“抽屜原理”解決簡單的實際問題。

2.通過操作發(fā)展學(xué)生的類推能力,形成比較抽象的數(shù)學(xué)思維。

3.通過“抽屜原理”的`靈活應(yīng)用感受數(shù)學(xué)的魅力。

經(jīng)歷“抽屜原理”的探究過程,理解“抽屜原理”,并對一些簡單實際問題加以“模型化”。

1.游戲要求:開始以后,請你們5個都坐在椅子上,每個人必須都坐下。

2.討論:“不管怎么坐,總有一把椅子上至少坐兩個同學(xué)”這句話說得對嗎?

游戲開始,讓學(xué)生初步體驗不管怎么坐,總有一把椅子上至少坐兩個同學(xué),使學(xué)生明確這是現(xiàn)實生活中存在著的一種現(xiàn)象。

引入:不管怎么坐,總有一把椅子上至少坐兩個同學(xué)?你知道這是什么道理嗎?這其中蘊含著一個有趣的數(shù)學(xué)原理,這節(jié)課我們就一起來研究這個原理。

【本文地址:http://aiweibaby.com/zuowen/15548576.html】

全文閱讀已結(jié)束,如果需要下載本文請點擊

下載此文檔