高中數(shù)學(xué)三角函數(shù)教學(xué)設(shè)計(jì)(匯總19篇)

格式:DOC 上傳日期:2023-11-27 16:51:08
高中數(shù)學(xué)三角函數(shù)教學(xué)設(shè)計(jì)(匯總19篇)
時(shí)間:2023-11-27 16:51:08     小編:紫衣夢(mèng)

總結(jié)是對(duì)過(guò)去經(jīng)歷的回顧,也是未來(lái)規(guī)劃的基礎(chǔ)。如何寫(xiě)一篇思維敏捷的總結(jié)呢?小編搜集了一些經(jīng)典的總結(jié)案例,希望可以幫助大家更好地理解總結(jié)的寫(xiě)作要點(diǎn)。

高中數(shù)學(xué)三角函數(shù)教學(xué)設(shè)計(jì)篇一

《考試說(shuō)明》和《考綱》是每位考生必須熟悉的最權(quán)威最準(zhǔn)確的高考信息,通過(guò)研究應(yīng)明確“考什么”、“考多難”、“怎樣考”這三個(gè)問(wèn)題。

命題通常注意試題背景,強(qiáng)調(diào)數(shù)學(xué)思想,注重?cái)?shù)學(xué)應(yīng)用;試題強(qiáng)調(diào)問(wèn)題性、啟發(fā)性,突出基礎(chǔ)性;重視通性通法,淡化特殊技巧,凸顯數(shù)學(xué)的問(wèn)題思考;強(qiáng)化主干知識(shí);關(guān)注知識(shí)點(diǎn)的銜接,考察創(chuàng)新意識(shí)。

《考綱》明確指出“創(chuàng)新意識(shí)是理性思維的高層次表現(xiàn)”。因此試題都比較新穎活潑。所以復(fù)習(xí)中你就要加強(qiáng)對(duì)新題型的練習(xí),揭示問(wèn)題的本質(zhì),創(chuàng)造性地解決問(wèn)題。

2.多維審視知識(shí)結(jié)構(gòu)。

高考數(shù)學(xué)試題一直注重對(duì)思維方法的考查,數(shù)學(xué)思維和方法是數(shù)學(xué)知識(shí)在更高層次上的抽象和概括。知識(shí)是思維能力的載體,因此通過(guò)對(duì)知識(shí)的考察達(dá)到考察數(shù)學(xué)思維的目的。你需要建立各部分內(nèi)容的知識(shí)網(wǎng)絡(luò);全面、準(zhǔn)確地把握概念,在理解的基礎(chǔ)上加強(qiáng)記憶;加強(qiáng)對(duì)易錯(cuò)、易混知識(shí)的梳理;要多角度、多方位地去理解問(wèn)題的實(shí)質(zhì);體會(huì)數(shù)學(xué)思想和解題的方法。

3.把答案蓋住看例題。

參考書(shū)上例題不能看一下就過(guò)去了,因?yàn)榭磿r(shí)往往覺(jué)得什么都懂,其實(shí)自己并沒(méi)有理解透徹。所以,在看例題時(shí),把解答蓋住,自己去做,做完或做不出時(shí)再去看,這時(shí)要想一想,自己做的與解答哪里不同,哪里沒(méi)想到,該注意什么,哪一種方法更好,還有沒(méi)有另外的解法。經(jīng)過(guò)上面的`訓(xùn)練,自己的思維空間擴(kuò)展了,看問(wèn)題也全面了。如果把題目的來(lái)源搞清了,在題后加上幾個(gè)批注,說(shuō)明此題的“題眼”及巧妙之處,收益將更大。

4.研究每題都考什么。

數(shù)學(xué)能力的提高離不開(kāi)做題,“熟能生巧”這個(gè)簡(jiǎn)單的道理大家都懂。但做題不是搞題海戰(zhàn)術(shù),要通過(guò)一題聯(lián)想到多題。你需要著重研究解題的思維過(guò)程,弄清基本數(shù)學(xué)知識(shí)和基本數(shù)學(xué)思想在解題中的意義和作用,研究運(yùn)用不同的思維方法解決同一數(shù)學(xué)問(wèn)題的多條途徑,在分析解決問(wèn)題的過(guò)程中既構(gòu)建知識(shí)的橫向聯(lián)系又養(yǎng)成多角度思考問(wèn)題的習(xí)慣。

與其一節(jié)課抓緊時(shí)間大汗淋淋地做二、三十道考查思路重復(fù)的題,不如深入透徹地掌握一道典型題。例如深入理解一個(gè)概念的多種內(nèi)涵,對(duì)一個(gè)典型題,盡力做到從多條思路用多種方法處理,即一題多解;對(duì)具有共性的問(wèn)題要努力摸索規(guī)律,即多題一解;不斷改變題目的條件,從各個(gè)側(cè)面去檢驗(yàn)自己的知識(shí),即一題多變。習(xí)題的價(jià)值不在于做對(duì)、做會(huì),而在于你明白了這道題想考你什么。

5.答題少費(fèi)時(shí)多辦事。

解題上要抓好三個(gè)字:數(shù),式,形;閱讀、審題和表述上要實(shí)現(xiàn)數(shù)學(xué)的三種語(yǔ)言自如轉(zhuǎn)化(文字語(yǔ)言、符號(hào)語(yǔ)言、圖形語(yǔ)言)。要重視和加強(qiáng)選擇題的訓(xùn)練和研究。不能僅僅滿足于答案正確,還要學(xué)會(huì)優(yōu)化解題過(guò)程,追求解題質(zhì)量,少費(fèi)時(shí),多辦事,以贏得足夠的時(shí)間思考解答高檔題。要不斷積累解選擇題的經(jīng)驗(yàn),盡可能小題小做,除直接法外,還要靈活運(yùn)用特殊值法、排除法、檢驗(yàn)法、數(shù)形結(jié)合法、估計(jì)法來(lái)解題。在做解答題時(shí),書(shū)寫(xiě)要簡(jiǎn)明、扼要、規(guī)范,不要“小題大做”,只要寫(xiě)出“得分點(diǎn)”即可。

6.錯(cuò)一次反思一次。

每次考試或多或少會(huì)發(fā)生一些錯(cuò)誤,這并不可怕,要緊的是避免類(lèi)似的錯(cuò)誤在今后的考試中重現(xiàn)。

因此平時(shí)要注意把錯(cuò)題記下來(lái),做錯(cuò)題筆記包括三個(gè)方面:

(1)記下錯(cuò)誤是什么,最好用紅筆劃出。

(2)錯(cuò)誤原因是什么,從審題、題目歸類(lèi)、重現(xiàn)知識(shí)和找出答案四個(gè)環(huán)節(jié)來(lái)分析。

(3)錯(cuò)誤糾正方法及注意事項(xiàng)。根據(jù)錯(cuò)誤原因的分析提出糾正方法并提醒自己下次碰到類(lèi)似的情況應(yīng)注意些什么。你若能將每次考試或練習(xí)中出現(xiàn)的錯(cuò)誤記錄下來(lái)分析,并盡力保證在下次考試時(shí)不發(fā)生同樣錯(cuò)誤,那么在高考時(shí)發(fā)生錯(cuò)誤的概率就會(huì)大大減少。

7.分析試卷總結(jié)經(jīng)驗(yàn)。

每次考試結(jié)束試卷發(fā)下來(lái),要認(rèn)真分析得失,總結(jié)經(jīng)驗(yàn)教訓(xùn)。特別是將試卷中出現(xiàn)的錯(cuò)誤進(jìn)行分類(lèi)。

(1)遺憾之錯(cuò)。就是分明會(huì)做,反而做錯(cuò)了的題。

(2)似非之錯(cuò)。記憶不準(zhǔn)確,理解不夠透徹,應(yīng)用不夠自如;回答不嚴(yán)密不完整等等。

(3)無(wú)為之錯(cuò)。由于不會(huì)答錯(cuò)了或猜錯(cuò)了,或者根本沒(méi)有作答,這是無(wú)思路、不理解,更談不上應(yīng)用的問(wèn)題。原因找到后就盡早消除遺憾、弄懂似非、力爭(zhēng)有為。切實(shí)解決“會(huì)而不對(duì)、對(duì)而不全”的老大難問(wèn)題。

8.優(yōu)秀是一種習(xí)慣。

柏拉圖說(shuō):“優(yōu)秀是一種習(xí)慣”。好的習(xí)慣終生受益,不好的習(xí)慣終生后悔、吃虧。如“審題之錯(cuò)”是否出在急于求成?可采取“一慢一快”戰(zhàn)術(shù),即審題要慢,要看清楚,步驟要到位,動(dòng)作要快,步步為營(yíng),穩(wěn)中求快,立足于一次成功,不要養(yǎng)成唯恐做不完,匆匆忙忙搶著做,寄希望于檢查的壞習(xí)慣。

高中數(shù)學(xué)三角函數(shù)教學(xué)設(shè)計(jì)篇二

新學(xué)期已經(jīng)開(kāi)始,在學(xué)校工作總體思路的.指導(dǎo)下,現(xiàn)將本學(xué)期數(shù)學(xué)組工作進(jìn)行規(guī)劃、設(shè)想,力爭(zhēng)使本學(xué)期的工作扎實(shí)有效,為學(xué)校的發(fā)展做出新的貢獻(xiàn)。

以學(xué)校工作總體思路為指導(dǎo),深入學(xué)習(xí)和貫徹新課程理念,以教育教學(xué)工作為重點(diǎn),優(yōu)化教學(xué)過(guò)程,提高課堂教學(xué)質(zhì)量。結(jié)合數(shù)學(xué)組工作實(shí)際,用心開(kāi)展教育教學(xué)研究活動(dòng),促進(jìn)教師的專(zhuān)業(yè)發(fā)展,學(xué)生各項(xiàng)素質(zhì)的提高,提高數(shù)學(xué)組教研工作水平。

1、加強(qiáng)常規(guī)教學(xué)工作,優(yōu)化教學(xué)過(guò)程,切實(shí)提高課堂教學(xué)質(zhì)量。

2、加強(qiáng)校本教研,用心開(kāi)展教學(xué)研究活動(dòng),鼓勵(lì)教師根據(jù)教學(xué)實(shí)際開(kāi)展教學(xué)研究,透過(guò)撰寫(xiě)教學(xué)反思類(lèi)文章等促進(jìn)教師的專(zhuān)業(yè)化發(fā)展。

3、掌握現(xiàn)代教育技術(shù),用心開(kāi)展網(wǎng)絡(luò)教研,拓展教研的深度與廣度。

4、組織好學(xué)生的數(shù)學(xué)實(shí)踐活動(dòng),以調(diào)動(dòng)學(xué)生學(xué)習(xí)用心性,豐富學(xué)生課余生活,促進(jìn)其全面發(fā)展。

1、備課做好教學(xué)準(zhǔn)備是上好課的前提,本學(xué)期要求每位教師做好教案、教學(xué)用具、作業(yè)本等準(zhǔn)備,以良好的精神狀態(tài)進(jìn)入課堂。

備課是上好課的基礎(chǔ),本學(xué)期數(shù)學(xué)組仍采用年級(jí)組群眾備課形式,要求教案盡量做到環(huán)節(jié)齊全,反思具體,有價(jià)值。群眾備課時(shí),所有教師務(wù)必做好準(zhǔn)備,每個(gè)單元負(fù)責(zé)教師要提前安排好資料及備課方式,對(duì)于教案中修改或補(bǔ)充的資料要及時(shí)地在旁邊批注,電子教案的可在旁邊用紅色批注(發(fā)布校園網(wǎng)數(shù)學(xué)組板塊內(nèi)),使群眾備課不流于形式,每節(jié)課前都要做到課前的“復(fù)備”。每一位教師在個(gè)人研究和群眾備課的基礎(chǔ)上構(gòu)成適合自己、實(shí)用有效的教案,更好的為課堂教學(xué)服務(wù)。各年級(jí)組每月帶給單元備課活動(dòng)記錄,在規(guī)定的群眾備課時(shí)間,教師無(wú)特殊原因不得缺席。

提高課后反思的質(zhì)量,提倡教學(xué)以后將課堂上精彩的地方進(jìn)行實(shí)錄,以案例形式進(jìn)行剖析。對(duì)于原教案中不合理的及時(shí)記錄,結(jié)合課堂重新修改和設(shè)計(jì),同年級(jí)教師能夠共同反思、共同提高,為以后的教學(xué)帶給借鑒價(jià)值。數(shù)學(xué)教師每周反思不少于2次,每學(xué)期要有1-2篇較高水平的反思或教學(xué)案例,及時(shí)發(fā)布在向校園網(wǎng)上,學(xué)校將及時(shí)進(jìn)行評(píng)審。

教案檢查分平時(shí)抽查和定期檢查兩種形式,“推門(mén)課”后教師要及時(shí)帶給本節(jié)課的教案,每月26號(hào)為組內(nèi)統(tǒng)一檢查教案時(shí)間,每月檢查結(jié)果將公布在校園網(wǎng)數(shù)學(xué)組板塊中的留言板中。

2、課堂教學(xué)課堂是教學(xué)的主陣地。教師不但要上好公開(kāi)課,更要上好每一天的“常規(guī)課”。遵守學(xué)校教學(xué)常規(guī)中對(duì)課堂教學(xué)的要求。課堂上要用心的創(chuàng)設(shè)有效的教學(xué)情境,要重視學(xué)習(xí)方法、思考方法的滲透與指導(dǎo),重視數(shù)學(xué)知識(shí)的應(yīng)用性。學(xué)校將繼續(xù)透過(guò)聽(tīng)“推門(mén)課”促進(jìn)課堂教學(xué)水平的提高,發(fā)現(xiàn)教學(xué)新秀。公開(kāi)課力求有特點(diǎn),能側(cè)重一個(gè)教學(xué)問(wèn)題,促進(jìn)組內(nèi)教師的研討。一學(xué)期做到每人一節(jié),年輕教師上兩節(jié)。課堂對(duì)于比較成熟的公開(kāi)課或研討課鼓勵(lì)大家錄像,保存資料,及時(shí)地向校園網(wǎng)推薦。

高中數(shù)學(xué)三角函數(shù)教學(xué)設(shè)計(jì)篇三

教學(xué)目標(biāo):

(1)掌握直線方程的一般形式,掌握直線方程幾種形式之間的互化。

(2)理解直線與二元一次方程的關(guān)系及其證明。

教學(xué)用具:計(jì)算機(jī)。

教學(xué)方法:?jiǎn)l(fā)引導(dǎo)法,討論法。

教學(xué)過(guò)程:

下面給出教學(xué)實(shí)施過(guò)程設(shè)計(jì)的簡(jiǎn)要思路:

(一)引入的設(shè)計(jì)。

前邊學(xué)習(xí)了如何根據(jù)所給條件求出直線方程的方法,看下面問(wèn)題:

問(wèn):說(shuō)出過(guò)點(diǎn)(2,1),斜率為2的直線的方程,并觀察方程屬于哪一類(lèi),為什么?

答:直線方程是,屬于二元一次方程,因?yàn)槲粗獢?shù)有兩個(gè),它們的最高次數(shù)為一次。

肯定學(xué)生回答,并糾正學(xué)生中不規(guī)范的表述.再看一個(gè)問(wèn)題:

問(wèn):求出過(guò)點(diǎn),的直線的方程,并觀察方程屬于哪一類(lèi),為什么?

答:直線方程是(或其它形式),也屬于二元一次方程,因?yàn)槲粗獢?shù)有兩個(gè),它們的最高次數(shù)為一次。

肯定學(xué)生回答后強(qiáng)調(diào)“也是二元一次方程,都是因?yàn)槲粗獢?shù)有兩個(gè),它們的最高次數(shù)為一次”。

啟發(fā):你在想什么(或你想到了什么)?誰(shuí)來(lái)談?wù)?各小組可以討論討論。

學(xué)生紛紛談出自己的想法,教師邊評(píng)價(jià)邊啟發(fā)引導(dǎo),使學(xué)生的認(rèn)識(shí)統(tǒng)一到如下問(wèn)題:

【問(wèn)題1】“任意直線的方程都是二元一次方程嗎?”

這是本節(jié)課要解決的第一個(gè)問(wèn)題,如何解決?自己先研究研究,也可以小組研究,確定解決問(wèn)題的思路。

學(xué)生或獨(dú)立研究,或合作研究,教師巡視指導(dǎo).

經(jīng)過(guò)一定時(shí)間的研究,教師組織開(kāi)展集體討論.首先讓學(xué)生陳述解決思路或解決方案:

思路一:…。

思路二:…。

教師組織評(píng)價(jià),確定最優(yōu)方案(其它待課下研究)如下:

按斜率是否存在,任意直線的位置有兩種可能,即斜率存在或不存在。

當(dāng)存在時(shí),直線的截距也一定存在,直線的方程可表示為,它是二元一次方程。

當(dāng)不存在時(shí),直線的方程可表示為形式的方程,它是二元一次方程嗎?

學(xué)生有的認(rèn)為是有的認(rèn)為不是,此時(shí)教師引導(dǎo)學(xué)生,逐步認(rèn)識(shí)到把它看成二元一次方程的合理性:

平面直角坐標(biāo)系中直線上點(diǎn)的坐標(biāo)形式,與其它直線上點(diǎn)的坐標(biāo)形式?jīng)]有任何區(qū)別,根據(jù)直線方程的概念,方程解的形式也是二元方程的解的形式,因此把它看成形如的二元一次方程是合理的。

綜合兩種情況,我們得出如下結(jié)論:

在平面直角坐標(biāo)系中,對(duì)于任何一條直線,都有一條表示這條直線的關(guān)于、的二元一次方程。

至此,我們的問(wèn)題1就解決了.簡(jiǎn)單點(diǎn)說(shuō)就是:直線方程都是二元一次方程.而且這個(gè)方程一定可以表示成或的形式,準(zhǔn)確地說(shuō)應(yīng)該是“要么形如這樣,要么形如這樣的方程”。

同學(xué)們注意:這樣表達(dá)起來(lái)是不是很啰嗦,能不能有一個(gè)更好的表達(dá)?

學(xué)生們不難得出:二者可以概括為統(tǒng)一的形式。

這樣上邊的結(jié)論可以表述如下:

在平面直角坐標(biāo)系中,對(duì)于任何一條直線,都有一條表示這條直線的形如(其中、不同時(shí)為0)的二元一次方程。

啟發(fā):任何一條直線都有這種形式的方程.你是否覺(jué)得還有什么與之相關(guān)的問(wèn)題呢?

【問(wèn)題2】任何形如(其中、不同時(shí)為0)的二元一次方程都表示一條直線嗎?

師生共同討論,評(píng)價(jià)不同思路,達(dá)成共識(shí):

(1)當(dāng)時(shí),方程可化為。

這是表示斜率為、在軸上的截距為的直線。

(2)當(dāng)時(shí),由于、不同時(shí)為0,必有,方程可化為。

這表示一條與軸垂直的直線。

因此,得到結(jié)論:

在平面直角坐標(biāo)系中,任何形如(其中不同時(shí)為0)的二元一次方程都表示一條直線。

為方便,我們把(其中不同時(shí)為0)稱(chēng)作直線方程的一般式是合理。

【動(dòng)畫(huà)演示】。

演示“直線各參數(shù)”文件,體會(huì)任何二元一次方程都表示一條直線。

至此,我們的第二個(gè)問(wèn)題也圓滿解決,而且我們還發(fā)現(xiàn)上述兩個(gè)問(wèn)題其實(shí)是一個(gè)大問(wèn)題的兩個(gè)方面,這個(gè)大問(wèn)題揭示了直線與二元一次方程的對(duì)應(yīng)關(guān)系,同時(shí),直線方程的一般形式是對(duì)直線特殊形式的抽象和概括,而且抽象的層次越高越簡(jiǎn)潔,我們還體會(huì)到了特殊與一般的轉(zhuǎn)化關(guān)系.

(三)練習(xí)鞏固、總結(jié)提高、板書(shū)和作業(yè)等環(huán)節(jié)的設(shè)計(jì)。

高中數(shù)學(xué)三角函數(shù)教學(xué)設(shè)計(jì)篇四

解三角形及應(yīng)用舉例。

解三角形及應(yīng)用舉例。

一.基礎(chǔ)知識(shí)精講。

掌握三角形有關(guān)的定理。

利用正弦定理,可以解決以下兩類(lèi)問(wèn)題:

(1)已知兩角和任一邊,求其他兩邊和一角;。

(2)已知兩邊和其中一邊的對(duì)角,求另一邊的對(duì)角(從而進(jìn)一步求出其他的邊和角);利用余弦定理,可以解決以下兩類(lèi)問(wèn)題:

(1)已知三邊,求三角;。

(2)已知兩邊和它們的夾角,求第三邊和其他兩角。

掌握正弦定理、余弦定理及其變形形式,利用三角公式解一些有關(guān)三角形中的三角函數(shù)問(wèn)題.

二.問(wèn)題討論。

思維點(diǎn)撥:已知兩邊和其中一邊的對(duì)角解三角形問(wèn)題,用正弦定理解,但需注意解的情況的討論.

思維點(diǎn)撥::三角形中的三角變換,應(yīng)靈活運(yùn)用正、余弦定理.在求值時(shí),要利用三角函數(shù)的有關(guān)性質(zhì).

例6:在某海濱城市附近海面有一臺(tái)風(fēng),據(jù)檢測(cè),當(dāng)前臺(tái)風(fēng)中心位于城市o(如圖)的東偏南方向300km的海面p處,并以20km/h的速度向西偏北的方向移動(dòng),臺(tái)風(fēng)侵襲的范圍為圓形區(qū)域,當(dāng)前半徑為60km,并以10km/h的速度不斷增加,問(wèn)幾小時(shí)后該城市開(kāi)始受到臺(tái)風(fēng)的侵襲。

一.小結(jié):

1.利用正弦定理,可以解決以下兩類(lèi)問(wèn)題:

(1)已知兩角和任一邊,求其他兩邊和一角;。

(2)已知兩邊和其中一邊的對(duì)角,求另一邊的對(duì)角(從而進(jìn)一步求出其他的邊和角);。

2.利用余弦定理,可以解決以下兩類(lèi)問(wèn)題:

(1)已知三邊,求三角;。

(2)已知兩邊和它們的夾角,求第三邊和其他兩角。

3.邊角互化是解三角形問(wèn)題常用的手段.

三.作業(yè):p80闖關(guān)訓(xùn)練。

高中數(shù)學(xué)三角函數(shù)教學(xué)設(shè)計(jì)篇五

掌握三角函數(shù)模型應(yīng)用基本步驟:

(1)根據(jù)圖象建立解析式;

(2)根據(jù)解析式作出圖象;

(3)將實(shí)際問(wèn)題抽象為與三角函數(shù)有關(guān)的簡(jiǎn)單函數(shù)模型。

利用收集到的數(shù)據(jù)作出散點(diǎn)圖,并根據(jù)散點(diǎn)圖進(jìn)行函數(shù)擬合,從而得到函數(shù)模型。

(精確到0.001)。

米的速度減少,那么該船在什么時(shí)間必須停止卸貨,將船駛向較深的水域?

本題的解答中,給出貨船的進(jìn)、出港時(shí)間,一方面要注意利用周期性以及問(wèn)題的條件,另一方面還要注意考慮實(shí)際意義。關(guān)于課本第64頁(yè)的“思考”問(wèn)題,實(shí)際上,在貨船的安全水深正好與港口水深相等時(shí)停止卸貨將船駛向較深的水域是不行的,因?yàn)檫@樣不能保證船有足夠的時(shí)間發(fā)動(dòng)螺旋槳。

練習(xí):教材p65面3題。

(1)根據(jù)圖象建立解析式;

(2)根據(jù)解析式作出圖象;

(3)將實(shí)際問(wèn)題抽象為與三角函數(shù)有關(guān)的簡(jiǎn)單函數(shù)模型。

2、利用收集到的數(shù)據(jù)作出散點(diǎn)圖,并根據(jù)散點(diǎn)圖進(jìn)行函數(shù)擬合,從而得到函數(shù)模型。

高中數(shù)學(xué)三角函數(shù)教學(xué)設(shè)計(jì)篇六

首先,可以聯(lián)系實(shí)際生活。數(shù)學(xué)知識(shí)在生活中有著廣泛的應(yīng)用,與實(shí)際生活有著廣泛的聯(lián)系,在進(jìn)行課堂導(dǎo)入設(shè)計(jì)時(shí),教師可以聯(lián)系學(xué)生的實(shí)際生活,激發(fā)學(xué)生的好奇心。例如在學(xué)習(xí)拋物線的知識(shí)時(shí),可以這樣導(dǎo)入:讓學(xué)生回想一下打籃球的情景,由于場(chǎng)地限制,在課堂上可以用乒乓球代替籃球,做投籃動(dòng)作,讓學(xué)生仔細(xì)觀察籃球(乒乓球)落地時(shí)的軌跡,在學(xué)生積極參討論時(shí),引入拋物線的知識(shí)。在導(dǎo)入中聯(lián)系實(shí)際生活,不僅能夠激發(fā)學(xué)生的興趣,并且能夠拉近學(xué)生與數(shù)學(xué)之間的距離。

其次,教師可以利用數(shù)學(xué)史進(jìn)行導(dǎo)入。數(shù)學(xué)教材中很多知識(shí)都與數(shù)學(xué)史相關(guān),學(xué)生對(duì)這部分知識(shí)充滿興趣,因此在教學(xué)過(guò)程中,教師設(shè)計(jì)課堂導(dǎo)入時(shí)可以從這一點(diǎn)入手,先通過(guò)提問(wèn)或者介紹的方式,讓學(xué)生了解數(shù)學(xué)史上的重大事件和重要人物等,引起學(xué)生的敬佩和仰慕之情,然后引入相關(guān)的數(shù)學(xué)知識(shí)。興趣是最好的老師,在學(xué)生的期待下展開(kāi)數(shù)學(xué)教學(xué),無(wú)疑會(huì)提高課堂教學(xué)效率。課堂導(dǎo)入的方式有很多種,在具體的操作環(huán)節(jié),教師要注意導(dǎo)入方式的多樣性,才能更好地激發(fā)學(xué)生的興趣,在高中數(shù)學(xué)教學(xué)中教師要根據(jù)實(shí)際情況進(jìn)行合理選擇使用。

做好課堂提問(wèn)設(shè)計(jì)。

首先,教師要精心設(shè)計(jì)問(wèn)題。提問(wèn)的目的是為了激發(fā)學(xué)生的興趣和思維,因此,教師提問(wèn)的問(wèn)題不能是單調(diào)、重復(fù)的,而應(yīng)該是具有啟發(fā)性和針對(duì)性,能夠激發(fā)學(xué)生的思考,引導(dǎo)學(xué)生進(jìn)行步步深入。最重要的是,教師提出的問(wèn)題要符合學(xué)生的知識(shí)水平和認(rèn)知能力,教師不僅應(yīng)該了解教材,并且要全面了解學(xué)生,這樣才能使提出的問(wèn)題符合學(xué)生的需要。學(xué)生的數(shù)學(xué)水平是不同的,接受能力也有差異,因此教師要注意提出問(wèn)題的層次性,并針對(duì)不同水平的學(xué)生設(shè)計(jì)不同難度的問(wèn)題,促進(jìn)每個(gè)學(xué)生獲得進(jìn)步和發(fā)展。

其次,課堂提問(wèn)的方式要多樣化。如同教學(xué)方式需要多樣化一樣,提問(wèn)的方式也要具有多樣化的特點(diǎn),這樣才能更好地激發(fā)學(xué)生興趣,達(dá)到教學(xué)目的,否則,無(wú)論教師設(shè)計(jì)的問(wèn)題多么巧妙,學(xué)生也會(huì)感到厭煩。根據(jù)問(wèn)題的內(nèi)容和學(xué)生實(shí)際情況,提問(wèn)可以是直接問(wèn)答;可以是導(dǎo)思式;可以教師提問(wèn)、學(xué)生回答;也可以是學(xué)生提問(wèn)、教師回答。在教學(xué)過(guò)程中教師要注意培養(yǎng)學(xué)生的問(wèn)題意識(shí),鼓勵(lì)學(xué)生自己提出問(wèn)題,問(wèn)題是思考的開(kāi)端,對(duì)于學(xué)生來(lái)說(shuō)提出問(wèn)題比解決問(wèn)題更重要,因此,教師要為學(xué)生創(chuàng)造機(jī)會(huì),讓學(xué)生在認(rèn)真閱讀教材的基礎(chǔ)上,根據(jù)自己的理解提出不懂的問(wèn)題。提出的問(wèn)題教師可以進(jìn)行點(diǎn)撥,讓學(xué)生思考,也可以組織學(xué)生進(jìn)行討論,培養(yǎng)學(xué)生分析問(wèn)題和解決問(wèn)題的能力。

高中數(shù)學(xué)三角函數(shù)教學(xué)設(shè)計(jì)篇七

合理制定三維目標(biāo),明確重點(diǎn)與難點(diǎn)。

《普通高中數(shù)學(xué)課程標(biāo)準(zhǔn)》提出的三維教學(xué)目標(biāo)是:知識(shí)與技能,過(guò)程與方法,情感態(tài)度與價(jià)值觀。知識(shí)與技能目標(biāo)包括學(xué)生要知道、了解、理解的基礎(chǔ)知識(shí)、基本原理目標(biāo)和學(xué)生必須達(dá)到的基本技能目標(biāo);過(guò)程與方法目標(biāo)包括實(shí)現(xiàn)數(shù)學(xué)科學(xué)中的探究過(guò)程和探究方法、優(yōu)化學(xué)生的學(xué)習(xí)過(guò)程,強(qiáng)調(diào)學(xué)生探索新知識(shí)的經(jīng)歷和獲得新知識(shí)的體驗(yàn);情感態(tài)度與價(jià)值觀目標(biāo)中包括學(xué)生的學(xué)習(xí)興趣與熱情、戰(zhàn)勝困難的精神、認(rèn)識(shí)數(shù)學(xué)之美感和塑造學(xué)生的人格。三維目標(biāo)之間的關(guān)系是“在實(shí)現(xiàn)知識(shí)與技能的過(guò)程中有機(jī)地融合、滲透過(guò)程與方法目標(biāo)、情感態(tài)度與價(jià)值觀目標(biāo)的達(dá)成?!比S目標(biāo)是課堂教學(xué)活動(dòng)的出發(fā)點(diǎn)與歸宿。

教學(xué)設(shè)計(jì)時(shí)教師要依據(jù)教材的具體內(nèi)容,結(jié)合學(xué)生的學(xué)習(xí)實(shí)際,以促進(jìn)每一個(gè)學(xué)生的發(fā)展為本,合理地制訂三維目標(biāo),注意體現(xiàn)三維目標(biāo)的整體性,相輔相成。所謂重點(diǎn),指一節(jié)課中最重要的新知識(shí),即聯(lián)動(dòng)全局,帶動(dòng)全面的重要之點(diǎn),是學(xué)生認(rèn)知發(fā)生轉(zhuǎn)折與質(zhì)變的地方,是教學(xué)的重心所在,是課堂教學(xué)中需要解決的主要矛盾。所謂難點(diǎn)是一節(jié)課中學(xué)習(xí)起來(lái)最困難的地方,是學(xué)生的認(rèn)知能力與知識(shí)要求之間存在較大矛盾、知識(shí)跨越最大的地方,是學(xué)生難于理解和掌握的內(nèi)容。例如“等差數(shù)列前n項(xiàng)和”這節(jié)課中的重點(diǎn)是“等差數(shù)列前n項(xiàng)和公式”,難點(diǎn)是“等差數(shù)列前n項(xiàng)和公式的推導(dǎo)——倒序相加法”。只有合理制訂三維目標(biāo)和確定好重點(diǎn)與難點(diǎn),才能?chē)@三維目標(biāo)和重點(diǎn)與難點(diǎn)的突破,制定出出色的教學(xué)設(shè)計(jì)。

創(chuàng)設(shè)生活情景,使數(shù)學(xué)生活化。

為學(xué)生提供充分從事數(shù)學(xué)活動(dòng)和交流的機(jī)會(huì),促使他們?cè)谧灾魈剿鞯倪^(guò)程中真正理解和掌握基本的數(shù)學(xué)知識(shí)和技能、數(shù)學(xué)思想和方法,獲得廣泛的數(shù)學(xué)體驗(yàn),將數(shù)學(xué)應(yīng)用于生活,提高自主探究數(shù)學(xué)知識(shí)的能力和學(xué)生學(xué)習(xí)數(shù)學(xué)能力。

認(rèn)知最牢靠和最根深蒂固的部分就是生活中經(jīng)常接觸和經(jīng)常使用的知識(shí),有些已經(jīng)進(jìn)入了他們的潛意識(shí)。如果能把新知識(shí)巧妙地溶于生活情境中,那將會(huì)是學(xué)生非常歡迎的,一旦接受也會(huì)被牢固掌握。而現(xiàn)代教學(xué)手段比以往更容易讓現(xiàn)實(shí)生活中的現(xiàn)象再現(xiàn)或模擬于課堂。因此,從學(xué)生的生活經(jīng)驗(yàn)和知識(shí)背景出發(fā),提供學(xué)生充分進(jìn)行數(shù)學(xué)實(shí)踐活動(dòng)和交流的機(jī)會(huì)課堂效果一定會(huì)很好。用與學(xué)生年齡特征相適應(yīng)的大眾化、生活化的方式呈現(xiàn)數(shù)學(xué)內(nèi)容,也是數(shù)學(xué)課程改革的一個(gè)基本思路。教師要敢于走出教材,走出課堂,走進(jìn)豐富多彩的生活。比如在引入兩個(gè)平面垂直的判定定理時(shí),教師提出:建造一座大樓,怎樣才能使墻面與地面垂直呢?學(xué)生很快會(huì)聯(lián)想到建筑工人常常用一端系著鉛錘的細(xì)繩讓其垂直地面,并以這根繩子為參照,看看所砌的墻是否經(jīng)過(guò)這條細(xì)繩。然后問(wèn):為什么若墻面經(jīng)過(guò)這條繩子,所砌的墻就與地面垂直呢?還可以引導(dǎo)學(xué)生觀察教室門(mén)板與地面的位置關(guān)系,它們是否垂直?轉(zhuǎn)動(dòng)門(mén)扇是否還與地面保持垂直,奇怪嗎?為什么?到底隱藏著數(shù)學(xué)上的什么奧秘?由這些親切真實(shí)情景,導(dǎo)出兩個(gè)平面垂直的判定定理就水到渠成了。

高中數(shù)學(xué)三角函數(shù)教學(xué)設(shè)計(jì)篇八

1、先做簡(jiǎn)單題,后做難題。

2、遇到較難的大題,把所有跟該題有關(guān)的知識(shí)點(diǎn)都寫(xiě)出來(lái),要知道數(shù)學(xué)講究步驟分。

3、若是證明題,萬(wàn)一不會(huì),可以先寫(xiě)出已知條件,再寫(xiě)出要證明的最后一步,再一步一步往上推,中間步驟隨便寫(xiě)點(diǎn)。(使用于粗心的教師,但我們不提倡,重點(diǎn)是要平時(shí)學(xué)好)。

一、整體把握、抓大放小。

拿到試卷后可以先快速瀏覽一下所有題目,根據(jù)積累的考試經(jīng)驗(yàn),大致估計(jì)一下每部分應(yīng)該分配的時(shí)間。對(duì)于能夠很快做出來(lái)的.題目,一定要拿到應(yīng)得的分?jǐn)?shù)。

二、確定每部分的答題時(shí)間。

1、考試時(shí)占用了很多時(shí)間卻一點(diǎn)也沒(méi)有做出來(lái)的題目。對(duì)于這類(lèi)題目,你以后考試時(shí)就應(yīng)該盡量減少時(shí)間,或者放棄,等以后學(xué)習(xí)進(jìn)階了再?lài)L試著做。

2、考試時(shí)花了過(guò)多的時(shí)間才做出來(lái)的題目。對(duì)于這類(lèi)題目,你以后平時(shí)做題時(shí)要盡量加快速度,或者通過(guò)“反復(fù)訓(xùn)練”等提高反應(yīng)速度,這樣,你下次考試時(shí)能用較少的時(shí)間做出來(lái)。

三、碰到難題時(shí)。

1、你可以先用“直覺(jué)”最快的找到解題思路;。

2、如果“直覺(jué)”不管用,你可以聯(lián)想以前做過(guò)的類(lèi)似的題目,從而找到解題思路;。

3、如果這樣也不行,你可以猜測(cè)一下這道題目可能涉及到的知識(shí)點(diǎn)和解題技巧。

4、對(duì)于花了一定時(shí)間仍然不能做出來(lái)的題目,要勇于放棄。

四、卷面整潔、字跡清楚、注意小節(jié)。

做到卷面整潔、字跡清楚,把標(biāo)點(diǎn)、符號(hào)、解題步驟等小的地方盡量做好,不要丟掉應(yīng)得的每一分。

高中數(shù)學(xué)三角函數(shù)教學(xué)設(shè)計(jì)篇九

本專(zhuān)業(yè)培養(yǎng)和造就適應(yīng)現(xiàn)代化建設(shè)需要。德智體全面發(fā)展、基礎(chǔ)扎實(shí)、知識(shí)面寬、能力強(qiáng)、素質(zhì)高具有創(chuàng)新精神,系統(tǒng)掌握計(jì)算機(jī)硬件、軟件的基本理論與應(yīng)用基本技能,具有較強(qiáng)的實(shí)踐能力,能在企事業(yè)單位、政府機(jī)關(guān)、行政管理部門(mén)從事計(jì)算機(jī)技術(shù)研究和應(yīng)用,硬件、軟件和網(wǎng)絡(luò)技術(shù)的開(kāi)發(fā),計(jì)算機(jī)管理和維護(hù)的應(yīng)用型專(zhuān)門(mén)技術(shù)人才。

網(wǎng)絡(luò)工程方向就業(yè)方向廣闊,學(xué)生畢業(yè)后可以到國(guó)內(nèi)外大型電信服務(wù)商、大型通信設(shè)備制造企業(yè)進(jìn)行技術(shù)開(kāi)發(fā)工作,也可以到其他企事業(yè)單位從事網(wǎng)絡(luò)工程領(lǐng)域的設(shè)計(jì)、維護(hù)、教育培訓(xùn)等工作。

2,通信方向?qū)W生畢業(yè)后可到信息產(chǎn)業(yè)、財(cái)政、金融、郵電、交通、國(guó)防、大專(zhuān)院校和科研機(jī)構(gòu)從事通信技術(shù)和電子技術(shù)的科研、教學(xué)和工程技術(shù)工作。

3,網(wǎng)絡(luò)與信息安全方向,寬口徑專(zhuān)業(yè),主干學(xué)科為信息安全和網(wǎng)絡(luò)工程。學(xué)生畢業(yè)后可為政府、國(guó)防、軍隊(duì)、電信、電力、金融、鐵路等部門(mén)的計(jì)算機(jī)網(wǎng)絡(luò)系統(tǒng)和信息安全領(lǐng)域進(jìn)行管理和服務(wù)的高級(jí)專(zhuān)業(yè)工程技術(shù)人才。并可繼續(xù)攻讀信息安全、通信、信息處理、計(jì)算機(jī)軟件和其他相關(guān)學(xué)科的碩士學(xué)位。

現(xiàn)在正是信息時(shí)代很有前途,市場(chǎng)需求量也很大,盡管現(xiàn)在開(kāi)設(shè)這科的學(xué)校很多,畢業(yè)的學(xué)生也很多,但真正學(xué)得精的人太少,所以很多人說(shuō)就不了業(yè),實(shí)際上市場(chǎng)需要真正有本事的人。如果學(xué),一定學(xué)精,才能找到更有好的工作,這科就業(yè)面寬,各行各業(yè)都需要計(jì)算機(jī),所以一定要學(xué)精,畢業(yè)搞搞編程,軟件開(kāi)發(fā)等,幾年后,有了工作經(jīng)驗(yàn),有可能做個(gè)技術(shù)部主管,如果你有管理能力,還可以搞管理工作。而所謂的高薪也是從編程開(kāi)始的,所以想賺大錢(qián)的就業(yè)面并不寬,有用的東西在大學(xué)、社會(huì)。

高中數(shù)學(xué)三角函數(shù)教學(xué)設(shè)計(jì)篇十

將三角函數(shù)的圖形和坐標(biāo)的定義聯(lián)系起來(lái),進(jìn)而將數(shù)學(xué)中的代數(shù)問(wèn)題轉(zhuǎn)化為坐標(biāo)軸上的幾何問(wèn)題,繼而在坐標(biāo)系中進(jìn)行數(shù)字和圖形的結(jié)合,進(jìn)行數(shù)形結(jié)合的解題,通常而言在三角函數(shù)的數(shù)形結(jié)合解題方法之中,較為常用的代數(shù)轉(zhuǎn)幾何的解題模型主要有距離模型和斜率模型兩者。如下題:

求解三件函數(shù)y=sinx/(2+cosx)的最值。在解答時(shí)就可以可以應(yīng)用圖形結(jié)合的解題方式,建立一個(gè)坐標(biāo)系,設(shè)p(cosx,sinx),可以清楚的得知p是在一個(gè)單位圓上的一點(diǎn),進(jìn)而通過(guò)在坐標(biāo)軸上的畫(huà)出圖形可知,函數(shù)y所表達(dá)的幾何意義就是定點(diǎn)q(-2,0)與p之間連線的斜率,同時(shí)可知連線pq和單位圓相切時(shí)其斜率處于最值,并且有兩個(gè)最值,最大值而后最小值,通過(guò)簡(jiǎn)單的計(jì)算可知最大值為/3,最小值為-/3。

投機(jī)取巧,掌握一些特殊的三角函數(shù)。

在三角函數(shù)之中,雖然很多的知識(shí)點(diǎn)是具有一定難度的,但是在題目的解答時(shí),仍舊有很多的技巧可以使用,尤其是在選擇題中,更是可以使用一些”投機(jī)取巧”的方式來(lái)進(jìn)行題目的解答,進(jìn)而減少解題的時(shí)間。在教學(xué)之中教師需要呈列出一些特殊的三角函數(shù)的值以及一些圖形,并且要求學(xué)生掌握,對(duì)于一些理解能力強(qiáng)的學(xué)生可以進(jìn)行理解記憶,對(duì)于記憶力好的學(xué)生可以選擇死記硬背的方式。

在掌握一些特殊值之后再進(jìn)行題目的解答,尤其是一些較為復(fù)雜的選擇題,都可以選擇帶入一些特殊值或者直接帶入選項(xiàng)來(lái)進(jìn)行“試答案”。在答題之中雖然需要詳細(xì)的將解題步驟寫(xiě)出來(lái),但是掌握了一些特殊函數(shù)的值,在解題之中也可以更快的找出最佳的解題方式,而最后解答出的答案一般不會(huì)出錯(cuò)。對(duì)于高中階段的三角函數(shù)而言,特殊值法的求解方式是一種在緊湊考試時(shí)間中較為用,且正確率有很高的一種解題技巧,值得學(xué)生在三角函數(shù)學(xué)習(xí)中熟練的掌握。

高中數(shù)學(xué)三角函數(shù)教學(xué)設(shè)計(jì)篇十一

1.教師要解放思想,與時(shí)俱進(jìn)。在傳統(tǒng)的高中數(shù)學(xué)教學(xué)中,大多數(shù)教師教學(xué)觀念陳舊,把教科書(shū)當(dāng)成學(xué)生學(xué)習(xí)的惟一對(duì)象,照本宣科,不加分析的滿堂灌,學(xué)生則聽(tīng)得很乏味,感覺(jué)有點(diǎn)看電影。改變教與學(xué)的方式,是高中新課程標(biāo)準(zhǔn)的基本理念,在高中數(shù)學(xué)教學(xué)中,教師應(yīng)把學(xué)生當(dāng)成學(xué)習(xí)的主人,充分挖掘?qū)W生的潛能,處處激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。教師不要大包大攬,把結(jié)論或推理直接展現(xiàn)給學(xué)生,要讓學(xué)生獨(dú)立思考,在此基礎(chǔ)上,讓師生、生生進(jìn)行充分的合作與交流,努力實(shí)現(xiàn)多邊互動(dòng)。積極倡導(dǎo)“自主、合作、探究”的教學(xué)模式。同時(shí)由于學(xué)生認(rèn)知方式、水平、思維策略和學(xué)習(xí)能力的不同,一定會(huì)有個(gè)體差異,所以教師要實(shí)施“差異教學(xué)”使人人參與,人人獲得必需的數(shù)學(xué),這樣也體現(xiàn)了教學(xué)中的民主、平等關(guān)系,采用這樣的教學(xué)方式,學(xué)生的學(xué)習(xí)熱情自然高漲,個(gè)性思維積極活躍,人格發(fā)展自然和諧。

2.學(xué)生要轉(zhuǎn)變學(xué)法,主動(dòng)出擊。鑒于目前的教學(xué)實(shí)際,必須創(chuàng)造條件讓學(xué)生能夠探究他們自己感興趣的問(wèn)題并自主解決問(wèn)題。新的課堂教學(xué)模式的特點(diǎn)關(guān)注學(xué)生的情感體驗(yàn),激發(fā)學(xué)生的愛(ài)國(guó)熱情,創(chuàng)設(shè)良好的教學(xué)情景。滲透了民主平等、自然和諧的教學(xué)思想,注重自主合作與探究生成,重視對(duì)學(xué)生的評(píng)價(jià),把課堂還給學(xué)生,學(xué)生參與的時(shí)間明顯增多,老師們能注重以學(xué)生為主體,師生互動(dòng)形式多樣。讓學(xué)生主動(dòng)站起回答教師提出的問(wèn)題,讓學(xué)生主動(dòng)上臺(tái)演排,讓學(xué)生間相互交流,分組討論,把課堂還給學(xué)生,讓學(xué)生在參與中實(shí)現(xiàn)知識(shí)的生成。

3.課堂要形式多樣,追求高效。新的數(shù)學(xué)課程理念倡導(dǎo)數(shù)學(xué)教學(xué)應(yīng)該根據(jù)不同教學(xué)內(nèi)容的要求,采用不同教學(xué)方式。數(shù)學(xué)課程要講推理,更要講道理。通過(guò)典型例子的分析和學(xué)生自主探索活動(dòng),使學(xué)生理解數(shù)學(xué)概念、結(jié)論的形成過(guò)程,體會(huì)蘊(yùn)涵在其中的思想方法,追尋數(shù)學(xué)發(fā)展的歷史足跡。在內(nèi)容上,新課程注意把算法的內(nèi)容和思想融入到數(shù)學(xué)課程的各個(gè)相關(guān)部分。

將本文的word文檔下載到電腦,方便收藏和打印。

高中數(shù)學(xué)三角函數(shù)教學(xué)設(shè)計(jì)篇十二

學(xué)生在三角函數(shù)的學(xué)習(xí)中,面對(duì)有差異的問(wèn)題,實(shí)施有差異的學(xué)習(xí),實(shí)現(xiàn)有差異的發(fā)展。獲得必要的數(shù)學(xué)知識(shí),逐步養(yǎng)成一個(gè)科學(xué)的數(shù)學(xué)思維,為每一個(gè)人都提供了平等的學(xué)習(xí)機(jī)會(huì)。在高中數(shù)學(xué)三角函數(shù)的教學(xué)過(guò)程中要遵循由簡(jiǎn)入難的原則,幫助學(xué)生循序漸進(jìn)的掌握三角函數(shù)的相關(guān)知識(shí)。由于三角函數(shù)這一部分的內(nèi)容,過(guò)于抽象,大多數(shù)高中生很難完全掌握,這就要求數(shù)學(xué)教師在教學(xué)過(guò)程中,要從基礎(chǔ)知識(shí)入手,切莫好高騖遠(yuǎn),細(xì)致耐心的幫助學(xué)生打好基礎(chǔ)知識(shí),逐漸引導(dǎo)學(xué)生更加深入的思考,漸漸地掌握繁瑣的三角函數(shù)知識(shí)體系,更加全面的掌握三角函數(shù)的知識(shí),從而培養(yǎng)其數(shù)學(xué)思維。

數(shù)學(xué)教學(xué)作為一種雙向活動(dòng),必須要重視學(xué)生們反饋,并根據(jù)反饋不斷進(jìn)行調(diào)節(jié)。教師與學(xué)生作為課堂教學(xué)活動(dòng)的參與者,潛移默化的的進(jìn)行著信息交換,教師將知識(shí)不斷的傳授給學(xué)生,學(xué)生們?cè)趯W(xué)習(xí)的過(guò)程中,也不斷地將自身不明白的疑難問(wèn)題反饋給老師,在高中三角函數(shù)的教學(xué)過(guò)程中,我們必須要重視這一反饋原則,根據(jù)學(xué)生們的課堂反應(yīng)、測(cè)試成績(jī)及時(shí)進(jìn)行總結(jié)分析,掌握學(xué)生們困惑的主要部分,并有針對(duì)性的對(duì)這一部分進(jìn)行教學(xué)深化,深化學(xué)生對(duì)這一部分的了解,幫助學(xué)生更加全面的學(xué)習(xí)。

選擇題算得上是高中數(shù)學(xué)中常見(jiàn)的題型,對(duì)于函數(shù)知識(shí)的應(yīng)用非常多見(jiàn)。這類(lèi)題目的題型具備著一定的相同點(diǎn),但是在實(shí)際的解題過(guò)程中,所運(yùn)用到的解題方法卻多樣化。學(xué)生面對(duì)選擇題所要運(yùn)用三角函數(shù)的題目時(shí),首先要熟練的掌握三角函數(shù)的基礎(chǔ)知識(shí),并且已經(jīng)對(duì)多種題目經(jīng)過(guò)了多層次的練習(xí),使得三角函數(shù)可以有效的應(yīng)用到選擇題的解題過(guò)程中。學(xué)生通過(guò)不斷的練習(xí),基本已經(jīng)掌握了一定的解題思路,能夠在自身對(duì)知識(shí)的認(rèn)知水平內(nèi),有效的總結(jié)以及歸納出三角函數(shù)與選擇題的關(guān)系。

學(xué)生通過(guò)對(duì)三角函數(shù)的掌握和利用,不斷的對(duì)我們自身的邏輯思維進(jìn)行拓展,培養(yǎng)解題能力以及學(xué)習(xí)能力。其次要對(duì)三角函數(shù)的含義概念進(jìn)行掌握,使得解題的過(guò)程中,可以充分的利用三角函數(shù),通過(guò)對(duì)三角函數(shù)概念的利用,求出題目中隱含的三角函數(shù)公式,增加了解答選擇題的解題思路與解題方法。這個(gè)方法的利用,首先要對(duì)自身掌握多少解題思路進(jìn)行了解,從而將這些有用的解題方法進(jìn)行細(xì)致的分析整合,從中找出最優(yōu)解題技巧。

高中數(shù)學(xué)三角函數(shù)教學(xué)設(shè)計(jì)篇十三

(1)知識(shí)與技能:了解集合的含義,理解并掌握元素與集合的“屬于”關(guān)系、集合中元素的三個(gè)特性,識(shí)記數(shù)學(xué)中一些常用的的數(shù)集及其記法,能選擇自然語(yǔ)言、列舉法和描述法表示集合。

(2)過(guò)程與方法:從圓、線段的垂直平分線的定義引出“集合”一詞,通過(guò)探討一系列的例子形成集合的概念,舉例剖析集合中元素的三個(gè)特性,探討元素與集合的關(guān)系,比較用自然語(yǔ)言、列舉法和描述法表示集合。

(3)情感態(tài)度與價(jià)值觀:感受集合語(yǔ)言的意義和作用,培養(yǎng)合作交流、勤于思考、積極探討的精神,發(fā)展用嚴(yán)密謹(jǐn)慎的集合語(yǔ)言描述問(wèn)題的習(xí)慣。

(1)重點(diǎn):了解集合的含義與表示、集合中元素的特性。

(2)難點(diǎn):區(qū)別集合與元素的概念及其相應(yīng)的符號(hào),理解集合與元素的關(guān)系,表示具體的集合時(shí),如何從列舉法與描述法中做出選擇。

[設(shè)計(jì)意圖]引出“集合”一詞。

【問(wèn)題2】同學(xué)們知道什么是集合嗎?請(qǐng)大家思考討論課本第2頁(yè)的思考題。

[設(shè)計(jì)意圖]探討并形成集合的含義。

【問(wèn)題3】請(qǐng)同學(xué)們舉出認(rèn)為是集合的例子。

[設(shè)計(jì)意圖]點(diǎn)評(píng)學(xué)生舉出的例子,剖析并強(qiáng)調(diào)集合中元素的三大特性:確定性、互異性、無(wú)序性。

[設(shè)計(jì)意圖]區(qū)別表示集合與元素的的符號(hào),介紹集合中一些常用的的數(shù)集及其記法。理解集合與元素的關(guān)系。

[設(shè)計(jì)意圖]引出并介紹列舉法。

【問(wèn)題6】例1的講解。同學(xué)們能用列舉法表示不等式x-73的解集嗎?

【問(wèn)題7】例2的講解。請(qǐng)同學(xué)們思考課本第6頁(yè)的思考題。

[設(shè)計(jì)意圖]幫助學(xué)生在表示具體的集合時(shí),如何從列舉法與描述法中做出選擇。

【問(wèn)題8】請(qǐng)同學(xué)們總結(jié)這節(jié)課我們主要學(xué)習(xí)了那些內(nèi)容?有什么學(xué)習(xí)體會(huì)?

[設(shè)計(jì)意圖]學(xué)習(xí)小結(jié)。對(duì)本節(jié)課所學(xué)知識(shí)進(jìn)行回顧。布置作業(yè)。

高中數(shù)學(xué)三角函數(shù)教學(xué)設(shè)計(jì)篇十四

三角函數(shù)是函數(shù),象限符號(hào)坐標(biāo)注。函數(shù)圖象單位圓,周期奇偶增減現(xiàn)。

同角關(guān)系很重要,化簡(jiǎn)證明都需要。正六邊形頂點(diǎn)處,從上到下弦切割;

中心記上數(shù)字1,連結(jié)頂點(diǎn)三角形;向下三角平方和,倒數(shù)關(guān)系是對(duì)角,頂點(diǎn)任意一函數(shù),等于后面兩根除。誘導(dǎo)公式就是好,負(fù)化正后大化小,變成稅角好查表,化簡(jiǎn)證明少不了。二的一半整數(shù)倍,奇數(shù)化余偶不變,將其后者視銳角,符號(hào)原來(lái)函數(shù)判。兩角和的余弦值,化為單角好求值,余弦積減正弦積,換角變形眾公式。和差化積須同名,互余角度變名稱(chēng)。

計(jì)算證明角先行,注意結(jié)構(gòu)函數(shù)名,保持基本量不變,繁難向著簡(jiǎn)易變。

逆反原則作指導(dǎo),升冪降次和差積。條件等式的證明,方程思想指路明。

萬(wàn)能公式不一般,化為有理式居先。公式順用和逆用,變形運(yùn)用加巧用;

1加余弦想余弦,1減余弦想正弦,冪升一次角減半,升冪降次它為范;

三角函數(shù)反函數(shù),實(shí)質(zhì)就是求角度,先求三角函數(shù)值,再判角取值范圍;

利用直角三角形,形象直觀好換名,簡(jiǎn)單三角的方程,化為最簡(jiǎn)求解集。

山西鐵路工程建設(shè)監(jiān)理有限公司。

劉榮申。

高中數(shù)學(xué)三角函數(shù)教學(xué)設(shè)計(jì)篇十五

掌握等差數(shù)列與等比數(shù)列的概念,通項(xiàng)公式與前n項(xiàng)和公式,等差中項(xiàng)與等比中項(xiàng)的概念,并能運(yùn)用這些知識(shí)解決一些基本問(wèn)題.

掌握等差數(shù)列與等比數(shù)列的概念,通項(xiàng)公式與前n項(xiàng)和公式,等差中項(xiàng)與等比中項(xiàng)的概念,并能運(yùn)用這些知識(shí)解決一些基本問(wèn)題.

等比數(shù)列性質(zhì)請(qǐng)同學(xué)們類(lèi)比得出.

【方法規(guī)律】。

1、通項(xiàng)公式與前n項(xiàng)和公式聯(lián)系著五個(gè)基本量,“知三求二”是一類(lèi)最基本的運(yùn)算題.方程觀點(diǎn)是解決這類(lèi)問(wèn)題的基本數(shù)學(xué)思想和方法.

2、判斷一個(gè)數(shù)列是等差數(shù)列或等比數(shù)列,常用的方法使用定義.特別地,在判斷三個(gè)實(shí)數(shù)。

a,b,c成等差(比)數(shù)列時(shí),常用(注:若為等比數(shù)列,則a,b,c均不為0)。

3、在求等差數(shù)列前n項(xiàng)和的最大(小)值時(shí),常用函數(shù)的思想和方法加以解決.

【示范舉例】。

例1:(1)設(shè)等差數(shù)列的`前n項(xiàng)和為30,前2n項(xiàng)和為100,則前3n項(xiàng)和為.

(2)一個(gè)等比數(shù)列的前三項(xiàng)之和為26,前六項(xiàng)之和為728,則a1=,q=.

例2:四數(shù)中前三個(gè)數(shù)成等比數(shù)列,后三個(gè)數(shù)成等差數(shù)列,首末兩項(xiàng)之和為21,中間兩項(xiàng)之和為18,求此四個(gè)數(shù).

例3:項(xiàng)數(shù)為奇數(shù)的等差數(shù)列,奇數(shù)項(xiàng)之和為44,偶數(shù)項(xiàng)之和為33,求該數(shù)列的中間項(xiàng).

高中數(shù)學(xué)三角函數(shù)教學(xué)設(shè)計(jì)篇十六

1、數(shù)學(xué)知識(shí):掌握等比數(shù)列的概念,通項(xiàng)公式,及其有關(guān)性質(zhì);。

2、數(shù)學(xué)能力:通過(guò)等差數(shù)列和等比數(shù)列的類(lèi)比學(xué)習(xí),培養(yǎng)學(xué)生類(lèi)比歸納的'能力;。

歸納——猜想——證明的數(shù)學(xué)研究方法;。

3、數(shù)學(xué)思想:培養(yǎng)學(xué)生分類(lèi)討論,函數(shù)的數(shù)學(xué)思想。

重點(diǎn):等比數(shù)列的概念及其通項(xiàng)公式,如何通過(guò)類(lèi)比利用等差數(shù)列學(xué)習(xí)等比數(shù)列;。

難點(diǎn):等比數(shù)列的性質(zhì)的探索過(guò)程。

教學(xué)過(guò)程:

1、問(wèn)題引入:

前面我們已經(jīng)研究了一類(lèi)特殊的數(shù)列——等差數(shù)列。

問(wèn)題1:滿足什么條件的數(shù)列是等差數(shù)列?如何確定一個(gè)等差數(shù)列?

(學(xué)生口述,并投影):如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差等于同一個(gè)常數(shù),那么這個(gè)數(shù)列就叫做等差數(shù)列。

要想確定一個(gè)等差數(shù)列,只要知道它的首項(xiàng)a1和公差d。

已知等差數(shù)列的首項(xiàng)a1和d,那么等差數(shù)列的通項(xiàng)公式為:(板書(shū))an=a1+(n-1)d。

師:事實(shí)上,等差數(shù)列的關(guān)鍵是一個(gè)“差”字,即如果一個(gè)數(shù)列,從第2項(xiàng)起,每一項(xiàng)與它前一項(xiàng)的差等于同一個(gè)常數(shù),那么這個(gè)數(shù)列就叫做等差數(shù)列。

(第一次類(lèi)比)類(lèi)似的,我們提出這樣一個(gè)問(wèn)題。

問(wèn)題2:如果一個(gè)數(shù)列,從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的……等于同一個(gè)常數(shù),那么這個(gè)數(shù)列叫做……數(shù)列。

(這里以填空的形式引導(dǎo)學(xué)生發(fā)揮自己的想法,對(duì)于“和”與“積”的情況,可以利用具體的例子予以說(shuō)明:如果一個(gè)數(shù)列,從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的“和”(或“積”)等于同一個(gè)常數(shù)的話,這個(gè)數(shù)列是一個(gè)各項(xiàng)重復(fù)出現(xiàn)的“周期數(shù)列”,而與等差數(shù)列最相似的是“比”為同一個(gè)常數(shù)的情況。而這個(gè)數(shù)列就是我們今天要研究的等比數(shù)列了。)。

2、新課:

1)等比數(shù)列的定義:如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的比等于同一個(gè)常數(shù),那么這個(gè)數(shù)列就叫做等比數(shù)列。這個(gè)常數(shù)叫做公比。

師生共同簡(jiǎn)要回顧等差數(shù)列的通項(xiàng)公式推導(dǎo)的方法:累加法和迭代法。

公式的推導(dǎo):(師生共同完成)。

若設(shè)等比數(shù)列的公比為q和首項(xiàng)為a1,則有:

方法一:(累乘法)。

3)等比數(shù)列的性質(zhì):

下面我們一起來(lái)研究一下等比數(shù)列的性質(zhì)。

通過(guò)上面的研究,我們發(fā)現(xiàn)等比數(shù)列和等差數(shù)列之間似乎有著相似的地方,這為我們研究等比數(shù)列的性質(zhì)提供了一條思路:我們可以利用等差數(shù)列的性質(zhì),通過(guò)類(lèi)比得到等比數(shù)列的性質(zhì)。

問(wèn)題4:如果{an}是一個(gè)等差數(shù)列,它有哪些性質(zhì)?

(根據(jù)學(xué)生實(shí)際情況,可引導(dǎo)學(xué)生通過(guò)具體例子,尋找規(guī)律,如:

3、例題鞏固:

例1、一個(gè)等比數(shù)列的第二項(xiàng)是2,第三項(xiàng)與第四項(xiàng)的和是12,求它的第八項(xiàng)的值。

答案:1458或128。

例2、正項(xiàng)等比數(shù)列{an}中,a6·a15+a9·a12=30,則log15a1a2a3…a20=_10____.

(本題為開(kāi)放題,沒(méi)有唯一的答案,如對(duì)于{cn}:2,4,8,16,……,2n,……,則ck=2k=2×2k-1,所以{cn}中的第k項(xiàng)是等差數(shù)列中的第2k-1項(xiàng)。關(guān)鍵是對(duì)通項(xiàng)公式的理解)。

1、小結(jié):

今天我們主要學(xué)習(xí)了有關(guān)等比數(shù)列的概念、通項(xiàng)公式、以及它的性質(zhì),通過(guò)今天的學(xué)習(xí)。

我們不僅學(xué)到了關(guān)于等比數(shù)列的有關(guān)知識(shí),更重要的是我們學(xué)會(huì)了由類(lèi)比——猜想——證明的科學(xué)思維的過(guò)程。

2、作業(yè):

p129:1,2,3。

1、教學(xué)目標(biāo)和重難點(diǎn):首先作為等比數(shù)列的第一節(jié)課,對(duì)于等比數(shù)列的概念、通項(xiàng)公式及其性質(zhì)是學(xué)生接下來(lái)學(xué)習(xí)等比數(shù)列的基礎(chǔ),是必須要落實(shí)的;其次,數(shù)學(xué)教學(xué)除了要傳授知識(shí),更重要的是傳授科學(xué)的研究方法,等比數(shù)列是在等差數(shù)列之后學(xué)習(xí)的因此對(duì)等比數(shù)列的學(xué)習(xí)必然要和等差數(shù)列結(jié)合起來(lái),通過(guò)等比數(shù)列和等差數(shù)列的類(lèi)比學(xué)習(xí),對(duì)培養(yǎng)學(xué)生類(lèi)比——猜想——證明的科學(xué)研究方法是有利的。這也就成了本節(jié)課的重點(diǎn)。

2、教學(xué)設(shè)計(jì)過(guò)程:本節(jié)課主要從以下幾個(gè)方面展開(kāi):

1)通過(guò)復(fù)習(xí)等差數(shù)列的定義,類(lèi)比得出等比數(shù)列的定義;。

2)等比數(shù)列的通項(xiàng)公式的推導(dǎo);。

3)等比數(shù)列的性質(zhì);。

有意識(shí)的引導(dǎo)學(xué)生復(fù)習(xí)等差數(shù)列的定義及其通項(xiàng)公式的探求思路,一方面使學(xué)生回顧舊。

知識(shí),另一方面使學(xué)生通過(guò)聯(lián)想,為類(lèi)比地探索等比數(shù)列的定義、通項(xiàng)公式奠定基礎(chǔ)。

在類(lèi)比得到等比數(shù)列的定義之后,再對(duì)幾個(gè)具體的數(shù)列進(jìn)行鑒別,旨在遵循“特殊——一般——特殊”的認(rèn)識(shí)規(guī)律,使學(xué)生體會(huì)觀察、類(lèi)比、歸納等合情推理方法的應(yīng)用。培養(yǎng)學(xué)生應(yīng)用知識(shí)的能力。

在得到等比數(shù)列的定義之后,探索等比數(shù)列的通項(xiàng)公式又是一個(gè)重點(diǎn)。這里通過(guò)問(wèn)題3的設(shè)計(jì),使學(xué)生產(chǎn)生不得不考慮通項(xiàng)公式的心理傾向,造成學(xué)生認(rèn)知上的沖突,從而使學(xué)生主動(dòng)完成對(duì)知識(shí)的接受。

通過(guò)等差數(shù)列和等比數(shù)列的通項(xiàng)公式的比較使學(xué)生初步體會(huì)到等差和等比的相似性,為下面類(lèi)比學(xué)習(xí)等比數(shù)列的性質(zhì),做好鋪墊。

等比性質(zhì)的研究是本節(jié)課的高潮,通過(guò)類(lèi)比。

關(guān)于例題設(shè)計(jì):重知識(shí)的應(yīng)用,具有開(kāi)放性,為使學(xué)生更好的掌握本節(jié)課的內(nèi)容。

高中數(shù)學(xué)三角函數(shù)教學(xué)設(shè)計(jì)篇十七

教學(xué)設(shè)計(jì)的優(yōu)劣對(duì)于提高教學(xué)質(zhì)量,培養(yǎng)學(xué)生思維,調(diào)動(dòng)學(xué)生的積極性有著十分重要的意義。在實(shí)施高中數(shù)學(xué)新課改的今天,怎樣完成一個(gè)優(yōu)秀的教學(xué)設(shè)計(jì)呢?我們認(rèn)為應(yīng)該從以下幾個(gè)方面著手:

一、教學(xué)設(shè)計(jì)應(yīng)有利于讓學(xué)生學(xué)會(huì)學(xué)習(xí),發(fā)揮學(xué)生的主體作用。

傳統(tǒng)的課堂設(shè)計(jì),常常是“教師問(wèn),學(xué)生答,教師寫(xiě),學(xué)生記,教師考,學(xué)生背。”在這樣教學(xué)下,學(xué)生機(jī)械被動(dòng)地學(xué)習(xí),不能主動(dòng)對(duì)話、溝通、交流。久而久之,他們學(xué)習(xí)數(shù)學(xué)的興趣會(huì)逐漸褪去。新課程標(biāo)準(zhǔn)要求教師必需轉(zhuǎn)變角色,尊重學(xué)生的主體性,以新的理念指導(dǎo)設(shè)計(jì)教學(xué)。在教學(xué)過(guò)程中,要根據(jù)不同學(xué)習(xí)內(nèi)容,使學(xué)習(xí)成為在教師指導(dǎo)下自動(dòng)的、建構(gòu)過(guò)程。教師是教學(xué)過(guò)程的組織者和引導(dǎo)者,教師在設(shè)計(jì)教學(xué)目標(biāo),組織教學(xué)活動(dòng)等方面,應(yīng)面向全體學(xué)生,突出學(xué)生的主體性,充分發(fā)揮學(xué)生的主觀能動(dòng)性,讓學(xué)生自主參與探究問(wèn)題。

二、教學(xué)設(shè)計(jì)應(yīng)注重初高中知識(shí)的銜接問(wèn)題。

總結(jié)。

提高學(xué)生的自學(xué)能力善于思考、勇于鉆研的意識(shí)。

三、

教學(xué)設(shè)計(jì)應(yīng)考慮到學(xué)生當(dāng)前的知識(shí)水平。

我校學(xué)生,大部分是居于中等及以下的學(xué)生,基礎(chǔ)知識(shí)、基本技能、基本數(shù)學(xué)思想方法差,思維能力、運(yùn)算能力較低,空間想象能力以及實(shí)踐和創(chuàng)新意識(shí)能力更無(wú)須談?wù)f。因此數(shù)學(xué)學(xué)習(xí)還處在比較被動(dòng)的狀態(tài),存在問(wèn)題較多,主要表現(xiàn)在:

1、學(xué)習(xí)懶散,不肯動(dòng)腦;

2、不訂計(jì)劃,慣性運(yùn)轉(zhuǎn);

5、死記硬背,機(jī)械模仿,教師講的聽(tīng)得懂,例題看得懂,就是書(shū)上的作業(yè)做不起;

6、不懂不問(wèn),一知半解;

8、不重總結(jié),輕視復(fù)習(xí)。因此教師需多花時(shí)間了解學(xué)生具體情況、學(xué)習(xí)狀態(tài),對(duì)學(xué)生數(shù)學(xué)學(xué)習(xí)方法進(jìn)行指導(dǎo),力求做到轉(zhuǎn)變思想與傳授方法結(jié)合,課上與課下結(jié)合,學(xué)法與教法結(jié)合,統(tǒng)一指導(dǎo)與個(gè)別指導(dǎo)結(jié)合,促進(jìn)學(xué)生掌握正確的學(xué)習(xí)方法。只有憑借著良好的學(xué)習(xí)方法,才能達(dá)到“事半功倍”的學(xué)習(xí)效果。

四、教學(xué)設(shè)計(jì)中教師應(yīng)以科學(xué)的眼光審視教材。

高中數(shù)學(xué)新課程是具有厚實(shí)的數(shù)學(xué)專(zhuān)業(yè)和教育教學(xué)理論與實(shí)踐水平的專(zhuān)家群體,經(jīng)過(guò)深思熟慮、系統(tǒng)地分析教學(xué)的情況和學(xué)生的實(shí)際來(lái)編寫(xiě)的。很多內(nèi)容編排很好,我們應(yīng)該尊重教材,但我們不應(yīng)迷信教材,認(rèn)請(qǐng)教材的思路與意圖,理解教材中所蘊(yùn)藏的知識(shí)、技能、情感與價(jià)值等層面上的內(nèi)涵,同時(shí)也應(yīng)該用批判的眼光去審視它,不迷信教材,在此基礎(chǔ)上,要挖掘和超越教材,做到既忠實(shí)教材,又不拘泥于教材,結(jié)合本校、本班學(xué)生的實(shí)際情況,創(chuàng)新出最適合自己所教學(xué)生的題目,啟發(fā)、誘導(dǎo)學(xué)生進(jìn)行深入的體驗(yàn)和感悟,真正做到“走進(jìn)教材,又走出教材?!?/p>

五、教學(xué)設(shè)計(jì)應(yīng)注重新課的導(dǎo)入與新知識(shí)的形成過(guò)程。

教師在授課過(guò)程中,應(yīng)適時(shí)、適度地引出新課題,創(chuàng)設(shè)出最佳的教學(xué)氣氛,引起學(xué)生對(duì)本課題的興趣。

常用的課題導(dǎo)入的幾種類(lèi)型有1.創(chuàng)設(shè)生產(chǎn)生活化情境導(dǎo)入課題2.講故事引入課題。

3.設(shè)置懸念,以疑激趣引入課題。

六、教學(xué)設(shè)計(jì)應(yīng)注重從學(xué)生的角度進(jìn)行教學(xué)反思。

教學(xué)行為的本質(zhì)在于使學(xué)生受益,教得好是為了促進(jìn)學(xué)得好。在講習(xí)題時(shí),當(dāng)我們向?qū)W生介紹一些精巧奇妙的解法時(shí),特別是一些奇思妙解時(shí),學(xué)生表面上聽(tīng)懂了,但當(dāng)他自己解題時(shí)卻茫然失措。我們教師在備課時(shí)把要講的問(wèn)題設(shè)計(jì)的十分精巧,連板書(shū)都設(shè)計(jì)好了,表面上看天衣無(wú)縫,其實(shí),任何人都會(huì)遭遇失敗,教師把自己思維過(guò)程中失敗的部分隱瞞了,最有意義,最有啟發(fā)的東西抽掉了,學(xué)生除了贊嘆我們教師的高超的解題能力以外,又有什么收獲呢?所以貝爾納說(shuō)“構(gòu)成我們學(xué)習(xí)上最大障礙的是已知的東西,而不是未知的東西”大數(shù)學(xué)家希爾伯特的老師富士在講課時(shí)就常把自己置于困境中,并再現(xiàn)自己從中走出來(lái)的過(guò)程,讓學(xué)生看到老師的真實(shí)思維過(guò)程是怎樣的。人的能力只有在逆境中才能得到最好的鍛煉。經(jīng)常去問(wèn)問(wèn)學(xué)生,對(duì)數(shù)學(xué)學(xué)習(xí)的感受,借助學(xué)生的眼睛看一看自己的教學(xué)行為,是促進(jìn)教學(xué)的必要手段。

高中數(shù)學(xué)三角函數(shù)教學(xué)設(shè)計(jì)篇十八

圓錐曲線的定義反映了圓錐曲線的本質(zhì)屬性,它是無(wú)數(shù)次實(shí)踐后的高度抽象.恰當(dāng)?shù)乩枚x解題,許多時(shí)候能以簡(jiǎn)馭繁.因此,在學(xué)習(xí)了橢圓、雙曲線、拋物線的定義及標(biāo)準(zhǔn)方程、幾何性質(zhì)后,再一次強(qiáng)調(diào)定義,學(xué)會(huì)利用圓錐曲線定義來(lái)熟練的解題”。

二、學(xué)生學(xué)習(xí)情況分析。

我所任教班級(jí)的學(xué)生參與課堂教學(xué)活動(dòng)的積極性強(qiáng),思維活躍,但計(jì)算能力較差,推理能力較弱,使用數(shù)學(xué)語(yǔ)言的表達(dá)能力也略顯不足。

三、設(shè)計(jì)思想。

由于這部分知識(shí)較為抽象,如果離開(kāi)感性認(rèn)識(shí),容易使學(xué)生陷入困境,降低學(xué)習(xí)熱情.在教學(xué)時(shí),借助多媒體動(dòng)畫(huà),引導(dǎo)學(xué)生主動(dòng)發(fā)現(xiàn)問(wèn)題、解決問(wèn)題,主動(dòng)參與教學(xué),在輕松愉快的環(huán)境中發(fā)現(xiàn)、獲取新知,提高教學(xué)效率.

四、教學(xué)目標(biāo)。

1.深刻理解并熟練掌握?qǐng)A錐曲線的定義,能靈活應(yīng)用定義解決問(wèn)題;熟練掌握焦點(diǎn)坐標(biāo)、頂點(diǎn)坐標(biāo)、焦距、離心率、準(zhǔn)線方程、漸近線、焦半徑等概念和求法;能結(jié)合平面幾何的基本知識(shí)求解圓錐曲線的方程。

2.通過(guò)對(duì)練習(xí),強(qiáng)化對(duì)圓錐曲線定義的理解,提高分析、解決問(wèn)題的能力;通過(guò)對(duì)問(wèn)題的不斷引申,精心設(shè)問(wèn),引導(dǎo)學(xué)生學(xué)習(xí)解題的一般方法。

3.借助多媒體輔助教學(xué),激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣.

五、教學(xué)重點(diǎn)與難點(diǎn):。

教學(xué)重點(diǎn)。

1.對(duì)圓錐曲線定義的理解。

2.利用圓錐曲線的定義求“最值”

3.“定義法”求軌跡方程。

教學(xué)難點(diǎn):。

巧用圓錐曲線定義解題。

【設(shè)計(jì)思路】。

(一)開(kāi)門(mén)見(jiàn)山,提出問(wèn)題。

一上課,我就直截了當(dāng)?shù)亟o出——。

例題1:(1)已知a(-2,0),b(2,0)動(dòng)點(diǎn)m滿足|ma|+|mb|=2,則點(diǎn)m的軌跡是()。

(a)橢圓(b)雙曲線(c)線段(d)不存在。

(2)已知?jiǎng)狱c(diǎn)m(x,y)滿足(x1)2(y2)2|3x4y|,則點(diǎn)m的軌跡是()。

(a)橢圓(b)雙曲線(c)拋物線(d)兩條相交直線。

【設(shè)計(jì)意圖】。

定義是揭示概念內(nèi)涵的邏輯方法,熟悉不同概念的不同定義方式,是學(xué)習(xí)和研究數(shù)學(xué)的一個(gè)必備條件,而通過(guò)一個(gè)階段的學(xué)習(xí)之后,學(xué)生們對(duì)圓錐曲線的定義已有了一定的認(rèn)識(shí),他們是否能真正掌握它們的本質(zhì),是我本節(jié)課首先要弄清楚的問(wèn)題。

為了加深學(xué)生對(duì)圓錐曲線定義理解,我以圓錐曲線的定義的運(yùn)用為主線,精心準(zhǔn)備了兩道練習(xí)題。

高中數(shù)學(xué)三角函數(shù)教學(xué)設(shè)計(jì)篇十九

三角函數(shù)的相關(guān)知識(shí)內(nèi)容,其實(shí)與我們的生活都有著密切而廣泛的關(guān)聯(lián),因此高中數(shù)學(xué)教師在進(jìn)行三角函數(shù)的教學(xué)時(shí),可以充分應(yīng)用三角函數(shù)生活性特點(diǎn),在符合其知識(shí)內(nèi)容的基礎(chǔ)上,創(chuàng)設(shè)與實(shí)際生活密切關(guān)聯(lián)的情境,引導(dǎo)學(xué)生主動(dòng)參與課堂教學(xué)與學(xué)習(xí)之中,良好進(jìn)行感知,產(chǎn)生強(qiáng)烈的探究與求職的欲望。例如:為將三角函數(shù)的圖像性質(zhì)更好的傳授于學(xué)生,引導(dǎo)學(xué)生主動(dòng)參與學(xué)習(xí)過(guò)程,提升其探究能動(dòng)性,教師就可以在新知識(shí)的教學(xué)之前,良好的將本節(jié)課的知識(shí)點(diǎn)內(nèi)容和實(shí)際生活中的問(wèn)題結(jié)合,創(chuàng)設(shè)一定的教學(xué)情境,設(shè)置如下問(wèn)題:

假設(shè)其為半徑2米的風(fēng)車(chē),每隔12秒旋轉(zhuǎn)一周,其最低點(diǎn)o距離地面0.5米,風(fēng)車(chē)圓周上的一點(diǎn)a從o開(kāi)始,其運(yùn)動(dòng)t(s)后,與地面的距離設(shè)為h(m)。那么(1)函數(shù)h=f(t)關(guān)系式如何?(2)你能畫(huà)出函數(shù)h=f(t)的圖像么?在這樣的問(wèn)題性教學(xué)情境的創(chuàng)設(shè)之下,加之教師的鼓勵(lì)性語(yǔ)言,以及生活情境的感觸,就會(huì)很容易激發(fā)學(xué)生的學(xué)習(xí)興趣,充分發(fā)揮其內(nèi)心想要學(xué)習(xí)的情感,探究欲望也得到了明顯的加強(qiáng)。在充分調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性、主動(dòng)性及探究性的情況下,其內(nèi)在能動(dòng)性會(huì)促使學(xué)生積極參與進(jìn)教師的整體教學(xué)活動(dòng)之中,有利于其分析、解決問(wèn)題能力的提高。

教師應(yīng)引導(dǎo)學(xué)生全面實(shí)現(xiàn)對(duì)三角函數(shù)知識(shí)的掌握。

數(shù)學(xué)知識(shí)之間是彼此相聯(lián)系的,因此三角函數(shù)的教學(xué)中,教師必須持有整體觀念,將三角函數(shù)置于更寬闊的知識(shí)框架之中,靈活運(yùn)用多樣化的教學(xué)方法,結(jié)合新課標(biāo)的要求和學(xué)生的學(xué)習(xí)特點(diǎn)進(jìn)行創(chuàng)新教學(xué)方案的制定,引導(dǎo)學(xué)生充分認(rèn)識(shí)三角函數(shù)與非三角函數(shù)的聯(lián)系,以便更加全面、具體的對(duì)三角函數(shù)的概念與知識(shí)等形成良好的理解與掌握。

高中數(shù)學(xué)教師應(yīng)重視通過(guò)綜合練習(xí)強(qiáng)化學(xué)生的反省抽象能力引導(dǎo)學(xué)生對(duì)三角函數(shù)充分認(rèn)識(shí),了解三角函數(shù)如sin等并不只是一個(gè)簡(jiǎn)單的運(yùn)算符號(hào),而應(yīng)將其作為一個(gè)整體的概念來(lái)掌握,也只有這樣才能真正了解三角函數(shù)的內(nèi)行,才能為三角函數(shù)之后的變形與公式推導(dǎo)奠定基礎(chǔ)。高中數(shù)學(xué)教師應(yīng)充分利用課堂教學(xué)的時(shí)間與空間,強(qiáng)化學(xué)生對(duì)三角函數(shù)概念的抽象概括及綜合運(yùn)用能力等。此外,綜合分析的方法也是解答三角函數(shù)問(wèn)題的有效方法之一。因?yàn)?,?shù)形結(jié)合思想也是常用的一種基本數(shù)學(xué)思想,因此教師可引導(dǎo)學(xué)生在解答數(shù)學(xué)題時(shí),綜合分析并運(yùn)用所學(xué)過(guò)的所有可以用到的數(shù)學(xué)知識(shí),將其有機(jī)結(jié)合,有效解答三角函數(shù)問(wèn)題。

【本文地址:http://www.aiweibaby.com/zuowen/15715616.html】

全文閱讀已結(jié)束,如果需要下載本文請(qǐng)點(diǎn)擊

下載此文檔