教案應注重培養(yǎng)學生的綜合素質(zhì)和創(chuàng)新思維能力。教案的編寫應該合理安排教學時間和使用教學資源。接下來分享一些優(yōu)秀的教案案例,供大家借鑒和參考。
高中數(shù)學教案集錦篇一
1.教師首先提出問題:(1)介紹自己的家庭、原來就讀的學校、現(xiàn)在的班級。
(2)問題:像“家庭”、“學校”、“班級”等,有什么共同特征?
引導學生互相交流.與此同時,教師對學生的活動給予評價.
2.活動:(1)列舉生活中的集合的例子;(2)分析、概括各實例的共同特征。
由此引出這節(jié)要學的內(nèi)容。
設計意圖:既激發(fā)了學生濃厚的學習興趣,又為新知作好鋪墊。
(二)研探新知,建構(gòu)概念。
1.教師利用多媒體設備向?qū)W生投影出下面7個實例:
(1)1―20以內(nèi)的所有質(zhì)數(shù);(2)我國古代的四大發(fā)明;。
(3)所有的安理會常任理事國;(4)所有的正方形;。
(5)海南省在20xx年9月之前建成的所有立交橋;。
(6)到一個角的兩邊距離相等的所有的點;。
(7)國興中學20xx年9月入學的高一學生的全體.
2.教師組織學生分組討論:這7個實例的共同特征是什么?
3.每個小組選出――位同學發(fā)表本組的討論結(jié)果,在此基礎(chǔ)上,師生共同概括出7個實例的特征,并給出集合的含義.一般地,指定的某些對象的全體稱為集合(簡稱為集).集合中的每個對象叫作這個集合的元素.
4.教師指出:集合常用大寫字母a,b,c,d,?表示,元素常用小寫字母a,b,c,d?表示.
設計意圖:通過實例讓學生感受集合的概念,激發(fā)學習的興趣,培養(yǎng)學生樂于求索的精神。
(三)質(zhì)疑答辯,發(fā)展思維。
1.教師引導學生閱讀教材中的相關(guān)內(nèi)容,思考:集合中元素有什么特點?并注意個別輔導,解答學生疑難.使學生明確集合元素的三大特性,即:確定性.互異性和無序性.只要構(gòu)成兩個集合的元素是一樣的,我們就稱這兩個集合相等.
2.教師組織引導學生思考以下問題:
判斷以下元素的全體是否組成集合,并說明理由:
(1)大于3小于11的偶數(shù);(2)我國的小河流.讓學生充分發(fā)表自己的建解.
3.讓學生自己舉出一些能夠構(gòu)成集合的例子以及不能構(gòu)成集合的例子,并說明理由.教師對學生的學習活動給予及時的評價.
4.教師提出問題,讓學生思考。
高一(4)班的一位同學,那么a,b與集合a分別有什么關(guān)系?由此引導學生得出元素與集合的關(guān)系有兩種:屬于和不屬于.
如果a是集合a的元素,就說a屬于集合a,記作a?a.
如果a不是集合a的元素,就說a不屬于集合a,記作a?a.
(2)如果用a表示“所有的安理會常任理事國”組成的集合,則中國.日本與集合a的關(guān)系分別是什么?請用數(shù)學符號分別表示.
(3)讓學生完成教材第6頁練習第1題.
5.教師引導學生回憶數(shù)集擴充過程,然后閱讀教材中的相交內(nèi)容,寫出常用數(shù)集的記號.并讓學生完成習題1.1a組第1題.
6.教師引導學生閱讀教材中的相關(guān)內(nèi)容,并思考.討論下列問題:
(1)要表示一個集合共有幾種方式?
(2)試比較自然語言.列舉法和描述法在表示集合時,各自的特點?適用的對象是什么?
(3)如何根據(jù)問題選擇適當?shù)募媳硎痉?
使學生弄清楚三種表示方式的優(yōu)缺點和體會它們存在的必要性和適用對象。
設計意圖:明確集合元素的三大特性,使學生弄清楚三種表示方式的優(yōu)缺點,從而突破難點。
(四)鞏固深化,反饋矯正。
教師投影學習:
(3)試選擇適當?shù)姆椒ū硎鞠铝屑希航滩牡?頁練習第2題.
設計意圖:使學生及時鞏固所學新知,體會三種表示方式存在的必要性和適用對象。
(五)歸納小結(jié),布置作業(yè)。
小結(jié):在師生互動中,讓學生了解或體會下例問題:
1.本節(jié)課我們學習了哪些知識內(nèi)容?2.你認為學習集合有什么意義?
3.選擇集合的表示法時應注意些什么?
設計意圖:通過回顧,對概念的發(fā)生與發(fā)展過程有清晰的認識,回顧集合元素的三大特性及集合的三種表示方式。
作業(yè):1.課后書面作業(yè):第13頁習題1.1a組第4題.
2.元素與集合的關(guān)系有多少種?如何表示?類似地集合與集合間的關(guān)系又有多少種。
呢?如何表示?請同學們通過預習教材.
高中數(shù)學教案集錦篇二
設計意圖:利用公式解決問題。
練習:
(1)。
(2)(學生板演,師生點評)。
設計意圖:觀察公式特點,選擇公式解決問題。
四.課堂小結(jié):將任意角三角函數(shù)轉(zhuǎn)化為銳角三角函數(shù),體現(xiàn)轉(zhuǎn)化化歸,數(shù)形結(jié)合思想的應用,培養(yǎng)了學生分析問題、解決問題的能力,熟練應用解決問題。
高中數(shù)學教案集錦篇三
1、教材地位和作用:二面角是我們?nèi)粘I钪薪?jīng)常見到的、很普通的一個空間圖形?!岸娼恰笔侨私贪妗稊?shù)學》第二冊(下b)中9.7的內(nèi)容。它是在學生學過兩條異面直線所成的角、直線和平面所成角、又要重點研究的一種空間的角,它是為了研究兩個平面的垂直而提出的一個概念,也是學生進一步研究多面體的基礎(chǔ)。因此,它起著承上啟下的作用。通過本節(jié)課的學習還對學生系統(tǒng)地掌握直線和平面的知識乃至于創(chuàng)新能力的培養(yǎng)都具有十分重要的意義。
2、教學目標:。
知識目標:(1)正確理解二面角及其平面角的概念,并能初步運用它們解決實際問題。
(2)進一步培養(yǎng)學生把空間問題轉(zhuǎn)化為平面問題的化歸思想。
能力目標:(1)突出對類比、直覺、發(fā)散等探索性思維的培養(yǎng),從而提高學生的創(chuàng)新能力。(2)通過對圖形的觀察、分析、比較和操作來強化學生的動手操作能力。
德育目標:(1)使學生認識到數(shù)學知識來自實踐,并服務于實踐,增強學生應用數(shù)學的意識(2)通過揭示線線、線面、面面之間的內(nèi)在聯(lián)系,進一步培養(yǎng)學生聯(lián)系的辯證唯物主義觀點。
情感目標:在平等的教學氛圍中,通過學生之間、師生之間的交流、合作和評價,拉近學生之間、師生之間的情感距離。
3、重點、難點:
重點:“二面角”和“二面角的平面角”的概念。
難點:“二面角的平面角”概念的形成過程。
高中數(shù)學教案集錦篇四
重點:集合的含義與表示方法.
難點:表示法的恰當選擇.
教學目標。
l.知識與技能。
(1)通過實例,了解集合的含義,體會元素與集合的屬于關(guān)系;。
(2)知道常用數(shù)集及其專用記號;(3)了解集合中元素的確定性.互異性.無序性;。
(4)會用集合語言表示有關(guān)數(shù)學對象;。
2.過程與方法。
(1)讓學生經(jīng)歷從集合實例中抽象概括出集合共同特征的過程,感知集合的含義.
(2)讓學生歸納整理本節(jié)所學知識.
3.情感.態(tài)度與價值觀。
使學生感受到學習集合的必要性,增強學習的積極性.
高中數(shù)學教案集錦篇五
在掌握圓的標準方程的基礎(chǔ)上,理解記憶圓的一般方程的代數(shù)特征,由圓的一般方程確定圓的圓心半徑,掌握方程x+y+dx+ey+f=0表示圓的條件。
【過程與方法】。
通過對方程x+y+dx+ey+f=0表示圓的的條件的探究,學生探索發(fā)現(xiàn)及分析解決問題的實際能力得到提高。
【情感態(tài)度與價值觀】。
滲透數(shù)形結(jié)合、化歸與轉(zhuǎn)化等數(shù)學思想方法,提高學生的整體素質(zhì),激勵學生創(chuàng)新,勇于探索。
高中數(shù)學教案集錦篇六
一元二次不等式是高中數(shù)學中最基本的不等式之一,是解決許多數(shù)學問題的重要工具。本節(jié)課的重點確定為:一元二次不等式的解法。
要把握這個重點。關(guān)鍵在于理解并掌握利用二次函數(shù)的圖象確定一元二次不等式解集的方法――圖象法,其本質(zhì)就是要能利用數(shù)形結(jié)合的思想方法認識方程的解,不等式的解集與函數(shù)圖象上對應點的橫坐標的內(nèi)在聯(lián)系。由于初中沒有專門研究過這類問題,高一學生比較陌生,要真正掌握有一定的難度。因此,本節(jié)課的難點確定為:“三個二次”的關(guān)系。要突破這個難點,讓學生歸納“三個一次”的關(guān)系作鋪墊。
高中數(shù)學教案集錦篇七
教學過程:
1、問題引入:
前面我們已經(jīng)研究了一類特殊的數(shù)列――等差數(shù)列。
問題1:滿足什么條件的數(shù)列是等差數(shù)列?如何確定一個等差數(shù)列?
(學生口述,并投影):如果一個數(shù)列從第2項起,每一項與它的前一項的差等于同一個常數(shù),那么這個數(shù)列就叫做等差數(shù)列。
要想確定一個等差數(shù)列,只要知道它的首項a1和公差d。
已知等差數(shù)列的首項a1和d,那么等差數(shù)列的通項公式為:(板書)an=a1+(n-1)d。
師:事實上,等差數(shù)列的關(guān)鍵是一個“差”字,即如果一個數(shù)列,從第2項起,每一項與它前一項的差等于同一個常數(shù),那么這個數(shù)列就叫做等差數(shù)列。
(第一次類比)類似的,我們提出這樣一個問題。
問題2:如果一個數(shù)列,從第2項起,每一項與它的前一項的……等于同一個常數(shù),那么這個數(shù)列叫做……數(shù)列。
(這里以填空的形式引導學生發(fā)揮自己的想法,對于“和”與“積”的情況,可以利用具體的例子予以說明:如果一個數(shù)列,從第2項起,每一項與它的前一項的“和”(或“積”)等于同一個常數(shù)的話,這個數(shù)列是一個各項重復出現(xiàn)的“周期數(shù)列”,而與等差數(shù)列最相似的是“比”為同一個常數(shù)的情況。而這個數(shù)列就是我們今天要研究的等比數(shù)列了。)。
2、新課:
1)等比數(shù)列的定義:如果一個數(shù)列從第2項起,每一項與它的前一項的比等于同一個常數(shù),那么這個數(shù)列就叫做等比數(shù)列。這個常數(shù)叫做公比。
師生共同簡要回顧等差數(shù)列的通項公式推導的方法:累加法和迭代法。
公式的推導:(師生共同完成)。
若設等比數(shù)列的公比為q和首項為a1,則有:
方法一:(累乘法)。
3)等比數(shù)列的性質(zhì):
下面我們一起來研究一下等比數(shù)列的性質(zhì)。
通過上面的研究,我們發(fā)現(xiàn)等比數(shù)列和等差數(shù)列之間似乎有著相似的地方,這為我們研究等比數(shù)列的性質(zhì)提供了一條思路:我們可以利用等差數(shù)列的性質(zhì),通過類比得到等比數(shù)列的性質(zhì)。
問題4:如果{an}是一個等差數(shù)列,它有哪些性質(zhì)?
(根據(jù)學生實際情況,可引導學生通過具體例子,尋找規(guī)律,如:
3、例題鞏固:
例1、一個等比數(shù)列的第二項是2,第三項與第四項的和是12,求它的第八項的值。
答案:1458或128。
例2、正項等比數(shù)列{an}中,a6?a15+a9?a12=30,則log15a1a2a3…a20=_10____.
(本題為開放題,沒有唯一的答案,如對于{cn}:2,4,8,16,……,2n,……,則ck=2k=2×2k-1,所以{cn}中的第k項是等差數(shù)列中的第2k-1項。關(guān)鍵是對通項公式的理解)。
1、小結(jié):
今天我們主要學習了有關(guān)等比數(shù)列的概念、通項公式、以及它的性質(zhì),通過今天的學習。
我們不僅學到了關(guān)于等比數(shù)列的有關(guān)知識,更重要的是我們學會了由類比――猜想――證明的科學思維的過程。
2、作業(yè):
p129:1,2,3。
教學設計說明:
1、教學目標和重難點:首先作為等比數(shù)列的第一節(jié)課,對于等比數(shù)列的概念、通項公式及其性質(zhì)是學生接下來學習等比數(shù)列的基礎(chǔ),是必須要落實的;其次,數(shù)學教學除了要傳授知識,更重要的是傳授科學的研究方法,等比數(shù)列是在等差數(shù)列之后學習的因此對等比數(shù)列的學習必然要和等差數(shù)列結(jié)合起來,通過等比數(shù)列和等差數(shù)列的類比學習,對培養(yǎng)學生類比――猜想――證明的科學研究方法是有利的。這也就成了本節(jié)課的重點。
2、教學設計過程:本節(jié)課主要從以下幾個方面展開:
1)通過復習等差數(shù)列的定義,類比得出等比數(shù)列的定義;。
2)等比數(shù)列的通項公式的推導;。
3)等比數(shù)列的性質(zhì);。
有意識的引導學生復習等差數(shù)列的定義及其通項公式的探求思路,一方面使學生回顧舊。
知識,另一方面使學生通過聯(lián)想,為類比地探索等比數(shù)列的定義、通項公式奠定基礎(chǔ)。
在類比得到等比數(shù)列的定義之后,再對幾個具體的數(shù)列進行鑒別,旨在遵循“特殊――一般――特殊”的認識規(guī)律,使學生體會觀察、類比、歸納等合情推理方法的應用。培養(yǎng)學生應用知識的能力。
在得到等比數(shù)列的定義之后,探索等比數(shù)列的通項公式又是一個重點。這里通過問題3的設計,使學生產(chǎn)生不得不考慮通項公式的'心理傾向,造成學生認知上的沖突,從而使學生主動完成對知識的接受。
通過等差數(shù)列和等比數(shù)列的通項公式的比較使學生初步體會到等差和等比的相似性,為下面類比學習等比數(shù)列的性質(zhì),做好鋪墊。
等比性質(zhì)的研究是本節(jié)課的高潮,通過類比。
關(guān)于例題設計:重知識的應用,具有開放性,為使學生更好的掌握本節(jié)課的內(nèi)容。
高中數(shù)學教案集錦篇八
三角函數(shù)的誘導公式是普通高中課程標準實驗教科書(人教b版)數(shù)學必修四,第一章第二節(jié)內(nèi)容,其主要內(nèi)容是公式(一)至公式(四)。本節(jié)課是第二課時,教學內(nèi)容是公式(三)。教材要求通過學生在已經(jīng)掌握的任意角的三角函數(shù)定義和公式(一)(二)的基礎(chǔ)上,發(fā)現(xiàn)他們與單位圓的交點坐標之間關(guān)系,進而發(fā)現(xiàn)三角函數(shù)值的關(guān)系。同時教材滲透了轉(zhuǎn)化與化歸等數(shù)學思想方法。
高中數(shù)學教案集錦篇九
有益的學習經(jīng)驗:
準備:
1、貼絨卡片:14的點卡一套。
2、每個幼兒14的點卡和實物圖片10張。
活動與指導:
1、利用多種感官鞏固對1、2、3、4各數(shù)的認識。
(1)復習認識14,逐張出示點卡,問幼兒每張卡片上有幾個圓點,讓幼兒點數(shù)后說出總數(shù)。
(2)聽聲音舉點卡。如:老師學幾聲鳥叫,幼兒舉起相應的點卡或看點卡做動作,如老師舉起一個點卡,幼兒就拍幾下手等等。
2、幼兒操作活動。
(1)將點卡按數(shù)量從少到多地排列。
(每一張點卡比前面的點卡多1個圓點)。
(3)幼兒給點卡和實物卡片配對。讓幼兒思考:點卡上的圓點是幾,就和數(shù)量是幾的東西交朋友,應該怎樣做?指導幼兒在點卡下面擺上相應的數(shù)量的實物卡片。
高中數(shù)學教案集錦篇十
而(課件演示,學生發(fā)現(xiàn))。
所以。
于是可得:(三)。
設計意圖:結(jié)合幾何畫板的演示利用同一點的坐標變換,導出公式。
由公式(一)(三)可以看出,角角相等。即:
公式(一)(二)(三)都叫誘導公式。利用誘導公式可以求三角函數(shù)式的值或化簡三角函數(shù)式。
設計意圖:結(jié)合學過的公式(一)(二),發(fā)現(xiàn)特點,總結(jié)公式。
1.練習。
(1)。
設計意圖:利用公式解決問題,發(fā)現(xiàn)新問題,小組研究討論,得到新公式。
(學生板演,老師點評,用彩色粉筆強調(diào)重點,引導學生總結(jié)公式。)。
高中數(shù)學教案集錦篇十一
1、在游戲的情景中感知排序的規(guī)律,并嘗試按ab、abc、abb的規(guī)律排序。
2、讓幼兒數(shù)活動中學著仔細觀察和傾聽。
3、初步培養(yǎng)觀察、比較和反應能力。
4、喜歡數(shù)學活動,樂意參與各種操作游戲,培養(yǎng)思維的逆反性。
ppt、操作材料(紅、綠、藍雪花片若干)、四種不同排列的小路圖片。
1、你們聽過《小老鼠奇奇的》的故事嗎?他是誰?
2、今天小兔又要到小老鼠奇奇家做客了,他請小朋友跟他一起去,因為小兔忘了小老鼠奇奇家該走那條路了,請小朋友幫幫他。
1、小兔來到了樹林里,看見前面有好多條小路,看這里一共有幾條路?(四條)。
2、應該走那條路才能到小老鼠奇奇的家呢?每條路都有顏色的,記得小。
老鼠奇奇說:“走一條顏色有規(guī)律的路才能找到他的家,到底哪一條路有規(guī)律呢?有什么樣的規(guī)律呢?(紅色、藍色、白色)按這樣的順序,反復出現(xiàn),就形成了規(guī)律。(第二條路對的)(abcabc)。
3、蘑菇排隊——感知aab的排序規(guī)律。
小兔繼續(xù)往前走,它來到草地上看見什么?蘑菇是怎樣排隊?他們有規(guī)。
律嗎?它們排列的規(guī)律是什么呢?小兔請你們猜猜兩個蘑菇后面是什么顏色的蘑菇,接著應該是缺了那只顏色的蘑菇?(aabaab)小兔踩了一只蘑菇把它當禮物送給小老鼠奇奇。
4、走過小橋——感知abb的排序規(guī)律。
小兔子走呀走,過了橋就要到奇奇家可是這座橋能過嗎,為什么?小兔仔細一看,地上放著兩塊木板,只要把兩塊木板放到有規(guī)律的橋上就能通過啦,我們幫小兔找找這兩塊板應該放那里?(abcabc、abbabb)。
1、嘗試按ab、abc、abb的規(guī)律排序。
小老鼠奇奇家到了,奇奇說:“春天到了,我要請朋友們來我家做客,要在門前鋪一條特別的小路別人才能找到我家。今天請小兔和小四班的小朋友一起來幫忙。
小老鼠奇奇為你們準備了不同的小路的圖片,但每條小路都是有規(guī)律的,請小朋友仔細看看小路怎么鋪,有的小朋友是選兩種顏色的路面,有的是選三種顏色的路面,然后一定要按規(guī)律來排列,朋友們才能找到奇奇的家。
2、幼兒操作,教師巡回指導,觀察幼兒有規(guī)律排序的情況。
看看誰的小路最特別,它有什么規(guī)律。
幼兒園的數(shù)學活動相對于其他活動枯燥、單調(diào),容易使幼兒失去學習興趣。因為這個時期的幼兒年齡小,邏輯思維尚未發(fā)展,所以本次活動中我為幼兒創(chuàng)設了一個可操作的豐富材料的環(huán)境,為幼兒創(chuàng)設了一個可選擇性、可操作性的空間。使幼兒能獨立的操作材料,并大膽的表達自己的想法。幼兒的自主性,選擇性,獨立性得到了充分的體現(xiàn)。通過一系列的游戲活動,達到了主題總目標預設的要求。
高中數(shù)學教案集錦篇十二
等比數(shù)列性質(zhì)請同學們類比得出.
【方法規(guī)律】。
1、通項公式與前n項和公式聯(lián)系著五個基本量,“知三求二”是一類最基本的運算題.方程觀點是解決這類問題的基本數(shù)學思想和方法.
2、判斷一個數(shù)列是等差數(shù)列或等比數(shù)列,常用的方法使用定義.特別地,在判斷三個實數(shù)。
a,b,c成等差(比)數(shù)列時,常用(注:若為等比數(shù)列,則a,b,c均不為0)。
3、在求等差數(shù)列前n項和的最大(小)值時,常用函數(shù)的思想和方法加以解決.
【示范舉例】。
例1:
(1)設等差數(shù)列的前n項和為30,前2n項和為100,則前3n項和為.
(2)一個等比數(shù)列的前三項之和為26,前六項之和為728,則a1=,q=.
例2:四數(shù)中前三個數(shù)成等比數(shù)列,后三個數(shù)成等差數(shù)列,首末兩項之和為21,中間兩項之和為18,求此四個數(shù).
例3:項數(shù)為奇數(shù)的等差數(shù)列,奇數(shù)項之和為44,偶數(shù)項之和為33,求該數(shù)列的中間項.
高中數(shù)學教案集錦篇十三
掌握圓的一般方程,以及用待定系數(shù)法求圓的一般方程。
【難點】。
二元二次方程與圓的一般方程及標準圓方程的關(guān)系。
三、教學過程。
(一)復習舊知,引出課題。
1、復習圓的標準方程,圓心、半徑。
2、提問1:已知圓心為(1,―2)、半徑為2的圓的方程是什么?
高中數(shù)學教案集錦篇十四
集合是中學數(shù)學的一個重要的基本概念在小學數(shù)學中,就滲透了集合的初步概念,到了初中,更進一步應用集合的語言表述一些問題例如,在代數(shù)中用到的有數(shù)集、解集等;在幾何中用到的有點集至于邏輯,可以說,從開始學習數(shù)學就離不開對邏輯知識的掌握和運用,基本的邏輯知識在日常生活、學習、工作中,也是認識問題、研究問題不可缺少的工具這些可以幫助學生認識學習本章的意義,也是本章學習的基礎(chǔ)把集合的初步知識與簡易邏輯知識安排在高中數(shù)學的最開始,是因為在高中數(shù)學中,這些知識與其他內(nèi)容有著密切聯(lián)系,它們是學習、掌握和使用數(shù)學語言的基礎(chǔ)例如,下一章講函數(shù)的概念與性質(zhì),就離不開集合與邏輯。
本節(jié)首先從初中代數(shù)與幾何涉及的集合實例入手,引出集合與集合的元素的概念,并且結(jié)合實例對集合的概念作了說明然后,介紹了集合的常用表示方法,包括列舉法、描述法,還給出了畫圖表示集合的例子。
這節(jié)課主要學習全章的引言和集合的基本概念學習引言是引發(fā)學生的學習興趣,使學生認識學習本章的意義本節(jié)課的教學重點是集合的基本概念集合是集合論中的原始的、不定義的概念在開始接觸集合的概念時,主要還是通過實例,對概念有一個初步認識教科書給出的“一般地,某些指定的對象集在一起就成為一個集合,也簡稱集”這句話,只是對集合概念的描述性說明。
【本文地址:http://www.aiweibaby.com/zuowen/16055584.html】