直線的位置關系教案(通用20篇)

格式:DOC 上傳日期:2023-11-30 12:27:06
直線的位置關系教案(通用20篇)
時間:2023-11-30 12:27:06     小編:翰墨

教案的編寫是教師備課中的重要環(huán)節(jié),它直接關系到教學效果的好壞。教案應當關注學生的學習差異,采用差異化教學策略。以下是小編為大家整理的教案模板,希望對大家編寫教案時有所幫助。

直線的位置關系教案篇一

1、圓的定義:

到定點的距離等于定長的點的集合。

在圓內、在圓上、在圓外(由點和圓心的距離與圓的半徑大小來確定)。

3、弦、直徑、孤、弓形、半圓、同心圓、等圓、等孤等概念。

等弧一定要強調要在同圓或等圓中;半圓不包括直徑。

4、過三點的圓(三角形的外心)。

經過三角形三個頂點的圓叫三角形外接圓;外接圓的圓心叫三角形的外心;三角形的外心是三條邊中垂線的交點,到三個頂點距離相等;直角三角形外心在斜邊上、銳角三角心外心在三角形內、鈍角三角形外心在三角形外。

5、垂徑定理及其推論:

定理及推論1:直線過圓心、垂直弦、平分弦、平分弦所對的優(yōu)弧、平分弦所對的劣弧這五要素中用其中兩個要素做條件就能推導出其它三個要素都成立。若用過圓心、平分弦做條件時要強調被平分的弦不是直徑。

推論2:平行弦所夾的弧相等。

6、圓心角、弦、弦心距、弧的關系:

圓心角、弧、弦、弦心距之間的相等關系必須要在同圓或等圓中才能成立;

弧的度數就等于它所對圓心角的度數。

7、圓周角定理及推論:

圓周角的定義:頂點在圓上,角的兩邊都與圓相交。

圓周角的定理:圓周角等于同弧所對圓心角的一半。

推論1、在同圓或等圓中,同弧或等弧所對的圓周角相等,圓周角相等,它所對的弧也相等。

推論2:直徑和半圓所對的'圓周角等于90度,90度的圓周角所對的弦是直徑,所對的弧是半圓。

推論3、三角形一邊的中線等于這一邊的一半時,這個三角形是直角三角形。

8、圓內接四邊形:

定義:四個頂點都在圓上的四邊形。

定理:圓內接四邊形對角互補。

推論:圓內接四邊形的外角等于它的內對角。

相交、相切、相離(由公共點個數或圓心到直線距離和圓的半徑大小來確定)。

10、切線的判定和性質:

定義:與圓只有一個公共點的直線。

判定定理:經過半徑的外端且垂直于半徑的直線是圓的切線。

性質定理:經過切點的半徑必垂直于切線。

推論1:經過切點且垂直于切線的直線必經過圓心。

推論2:經過圓心且垂直于切線的直線必經過切點。

11、三角形內切圓:

定義:與三角形三邊都相切的圓叫三角形內切圓、內切圓的圓心叫三角形內心。內心是三角形三條角平分線的交點,到三角形三邊距離相等。

12、切線長定理:

定理:圓外一點到圓的兩條切線的長相等,這個點與圓心的連線要平分兩條切線的夾角。

(圓內切四邊形對邊相加相等)。

13、弦切角:

定義:一條邊是圓的切線,頂點是切點,另一條邊與圓相交的角;

定理:弦切角等于它所夾弧對的圓周角。

推論:兩個弦切角所夾的弧相等,這兩個弦切角相等。

14、和圓有關的比例線段:

相交弦定理及推論、切割線定理及推論。

直線的位置關系教案篇二

教學目標:

1)知識目標:

a、知道直線和圓相交、相切、相離的定義。

b、根據定義來判斷直線和圓的位置關系,會根據直線和圓相切的定義畫出已知圓的切線。

c、根據圓心到直線的距離與圓的半徑之間的數量關系揭示直線和圓的位置。

2)能力目標:

讓學生通過觀察、看圖、填表、分析、對比,能找出圓心到直線的距離和圓的半徑之間的數量關系,揭示直線和圓的關系。此外,通過直線與圓的相對運動,培養(yǎng)學生運動變化的辨證唯物主義觀點,通過對研究過程的反思,進一步強化對分類和歸納的思想的認識。

直線的位置關系教案篇三

這節(jié)課,我由生活中的情景——日落引入,讓學生發(fā)現地平線和太陽位置關系的變化,從而引出課題:直線和圓的位置關系。然后由學生平移直尺,自主探索發(fā)現直線和圓的三種位置關系,給出定義,聯系實際,由學生發(fā)現日常生活中存在的直線和圓相交、相切、相離的現象,緊接著引導學生探索三種位置關系下圓心到直線的距離與圓半徑的大小關系,由“做一做”進行應用,最后去解決實際問題。通過本節(jié)課的教學,我認為成功之處有以下幾點:

1。由日落引入,學生比較感興趣,充分感受生活中反映直線與圓位置關系的現象,體驗到數學來源于實踐。對生活中的數學問題發(fā)生好奇,這是學生最容易接受的學習數學的好方法。新課標下的數學教學的基本特點之一就是密切關注數學與現實生活的聯系,從生活中“找”數學,“想”數學,讓學生真正感受到數學無處不在,無時不有。

2。在探索直線和圓位置關系所對應的數量關系時,讓學生回顧點和圓的位置關系所對應的數量關系,啟發(fā)學生運用類比的思想來思考問題,解決問題,學生很輕松的就能夠得出結論,從而突破本節(jié)課的難點,使學生充分理解位置關系與數量關系的相互轉化,這種等價關系是研究切線的理論基礎,從而為下節(jié)課探索切線的性質打好基礎。

3。新課標下的數學強調人人學有價值的數學,人人學有用的數學,為此,在做一做之后我安排了一道實際問題:“經過兩村莊的筆直公路會不會穿越一個圓形的森林公園?”培養(yǎng)學生解決實際問題的能力。由于此題要學生回到生活中去運用數學,學生的積極性高漲,都急著討論解決方案,是乏味的數學學習變得有滋有味,使學生體會到學數學的重要性,體驗“生活中處處用數學”。

“國培計劃”初中數學——陳曉峰(江西省寧都五中)。

節(jié)課的教學,我認為成功之處有以下幾點:

1.由日落的三張照片(太陽與地平線相離、相切、相交)引入,學生比較感興趣,充分感受生活中反映直線與圓位置關系的現象,體驗到數學來源于實踐。對生活中的數學問題發(fā)生好奇,這是學生最容易接受的學習數學的好方法。新課標下的數學教學的基本特點之一就是密切關注數學與現實生活的聯系,從生活中“找”數學,“想”數學,讓學生真正感受到生活之中處處有數學。

2.在探索直線和圓位置關系所對應的數量關系時,我先引導學生回顧點和圓的位置關系所對應的數量關系,啟發(fā)學生運用類比的思想來思考問題,解決問題,學生很輕松的就能夠得出結論,從而突破本節(jié)課的難點,使學生充分理解位置關系與數量關系的相互轉化,這種等價關系是研究切線的理論基礎,從而為下節(jié)課探索切線的性質打好基礎。

3.新課標下的數學強調人人學有價值的數學,人人學有用的數學,為此,在做一做之后我安排了一道實際問題:“經過兩村莊的筆直公路會不會穿越一個圓形的森林公園?”培養(yǎng)學生解決實際問題的能力。由于此題要學生回到生活中去運用數學,學生的積極性高漲,都急著討論解決方案,是乏味的數學學習變得有滋有味,使學生體會到學數學的重要性,體驗“生活中處處用數學”。

同時,我也感覺到本節(jié)課的設計有不妥之處,主要有以下三點:

1.學生觀察得到直線和圓的三種位置關系后,是由我講解的三個概念:相交、相切、相離。學生被動的接受,對概念的理解不是很深刻,可以改為讓學生下定義,師生共同討論的形式給學生以思維想象的空間,充分調動學生的積極性,使學生實現自主探究。

2.雖然我在設計本節(jié)課時是體現讓學生自主操作探究的原則,但在讓學生探索直線和圓三種位置關系所對應的數量關系時,沒有給予學生足夠的探索、交流的時間,限制了學生的思維。此處應充分發(fā)揮小組的特點,讓學生相互啟發(fā)討論,形成思維互補,集思廣益,從而使概念更清楚,結論更準確。

直線的位置關系教案篇四

尊敬的各位評委,親愛的各位同行,大家好!今天我的說課內容是人教版九年級上冊第二十四章第二節(jié)第二課時的直線與圓的位置關系。下面我將以教什么、怎么樣教、為什么這樣教為思路從教材分析、學情分析、教學目標、學法教法、教學過程和板書設計六個方面對本課進行說明。

一、教材分析。

教材的地位和作用。

圓在平面幾何中占有重要地位,它被安排在初中數學第二十四章,屬于一個提高階段。而直線和圓的位置關系又是本章的一個中心內容。從知識體系上看:它有著承上啟下的作用,既是對點與圓的位置關系的延續(xù)與提高,又是后面學習切線的性質和判定、圓和圓的位置關系及高中繼續(xù)學習幾何知識的基礎。從數學思想方法層面上看:它運用運動變化的觀點揭示了知識的發(fā)生過程以及相關知識間的內在聯系,滲透了數形結合、分類討論、類比等數學思想方法,有助于提高學生的數學思維品質。

二、學情分析。

在此之前學生已經學習了點和圓的位置關系,對圓有了一定的感性和理性認識,但在某種程度上特別是平面幾何問題上,學生還是依靠事物的具體直觀形象。加之九年級學生好奇心強,活潑好動,注意力易分散,認知水平大都停留在表面現象,對親身體驗的事物容易激發(fā)求知的渴望,因此要想方設法,引導學生深入思考、主動探究、主動獲取新知識。

三、教學目標:

根據學生已有的認知基礎及本課的教材的地位、作用,結合數學課程標準我將確定如下的教學目標:

(2)通過觀察、實驗、合作交流等數學活動使學生了解探索問題的一般方法;

陪養(yǎng)學生觀察、分析和概括的能力;

(4)體會事物間的相互滲透,感受數學思維的嚴謹性,并在合作學習中體驗成功的喜悅。

教學的重難點:

直線的位置關系教案篇五

教學要求:能夠從日常生活實例中抽象出數學中所說的平面理解平面的無限延展性;正確地用圖形和符號表示點、直線、平面以及它們之間的關系;初步掌握文字語言、圖形語言與符號語言三種語言之間的`轉化;理解可以作為推理依據的三條公理.

教學重點:理解三條公理,能用三種語言分別表示.

教學難點:理解三條公理。

教學重點:掌握平行公理與等角定理.

教學難點:理解異面直線的定義與所成角。

教學要求:了解直線與平面的三種位置關系,理解直線在平面外的概念,了解平面與平面的兩種位置關系.

教學重點:掌握線面、面面位置關系的圖形語言與符號語言.

教學難點:理解各種位置關系的概念.

直線的位置關系教案篇六

本節(jié)課,我先讓學生在課前自行完成教學案中“課前預習與導學”這一部分,情況良好。上課后先信息反饋進行評講,然后引導學生回憶了點與圓的位置關系及如何用數量關系來判斷點與圓的位置關系。接著以《海上日出》圖創(chuàng)設情景,從而引出課題:直線和圓的位置關系。然后由學生平移直尺,自主探索發(fā)現直線和圓的三種位置關系,給出定義,聯系實際,由學生發(fā)現日常生活中存在的直線和圓相交、相切、相離的現象,緊接著引導學生探索三種位置關系下圓心到直線的距離與圓半徑的大小關系,由小“練習”進行應用,最后通過“例題”“課堂檢測”去解決實際問題。通過本節(jié)課的教學,我認為成功之處有以下幾點:

1、在探索直線和圓位置關系所對應的數量關系時,我先引導學生回顧點和圓的位置關系所對應的數量關系,啟發(fā)學生運用類比的思想來思考問題,解決問題,學生很輕松的就能夠得出結論,從而突破本節(jié)課的難點,使學生充分理解位置關系與數量關系的相互轉化,這種等價關系是研究切線的理論基礎,從而為下節(jié)課探索切線的性質打好基礎。

2、新課標下的數學強調人人學有價值的數學,人人學有用的數學,為此,在小練習之后我及時地進行總結歸納方法,讓學生在以后解決實際問題過程中能一下子找到切入點,培養(yǎng)學生解決實際問題的能力。

同時,我也感覺到本節(jié)課的教學有不妥之處,主要有以下三點:

1、學生觀察得到直線和圓的三種位置關系后,是由我講解的三個概念:相交、相切、相離。講得過多,學生被動的接受,思考得不夠,對概念的理解不是很深刻??梢愿臑樽寣W生類比點與圓的位置關系下定義,師生共同討論的形式給學生以思維想象的空間,充分調動學生的積極性,使學生實現自主探究。

2、對于我們學生的情況,初三的教學始終沒有擺脫灌輸式教學,盡管課上也讓學生自主操作、思考,但老師講的太多,沒有給予學生足夠的探索、交流的時間,勢必會影響到部分學生的思維,限制了學生的發(fā)展。所以,我們也要學會該“放手時就放手”,大膽地讓學生去思考,也許會有意外的收獲。

3、對教材的把握,對學生的實情,在備課時都要考慮。在選題時不僅要照顧到基礎薄弱的同學,也要照顧到基礎好些的同學,適時選做。對于有些題可以適當地進行變式訓練,拓展靈活運用,活躍學生的思維。

總之,在今后的數學教學中還有很多需要我學習和掌握的東西,希望能和學生們一起共同進步,真正成為一名合格的數學教師。

直線的位置關系教案篇七

20xx.11.17早上第二節(jié)授課班級:初三、1班授課教師:

過程與方法目標:

2.通過例題教學,培養(yǎng)學生靈活運用知識的解決能力。

情感與態(tài)度目標:讓學生從運動的觀點來觀察直線和圓相交、相切、相離的關系、關注知識的生成,發(fā)展與變化的過程,主動探索,勇于發(fā)現。從而領悟世界上的一切物體都是運動變化著的,并且在一定的條件下可以轉化的辯證唯物主義觀點。

利用多媒體放映落日的動畫,初中數學教案《數學教案-直線和圓的位置關系(公開課)》。引導學生從公共點個數和圓心到直線的.距離兩方面體會直線和圓的不同位置關系。

學生看投影并思考問題。

調動學生積極主動參與數學活動中.。

探究新知。

1、通過觀察直線和圓的公共點個數得出直線和圓相離、相交、相切的定義。

布置作業(yè)。

1、課本第101頁7.3a組第2、3題。

2、課余時間,留心觀察周圍事物,找出直線和圓相交,相切,相離的實例,說給大家聽。

直線的位置關系教案篇八

新課程指出:學生是學習的主體,是發(fā)展的主體。在課堂教學中,教師要將課堂的主動權讓給學生,作為教師應以“探究過程,探究方法,探究結果,運用結果”為主線安排教學進程,應高度重視學生的主動參與、親自研究、動手操作,讓學生從中去體驗學習知識的過程,引導學生在發(fā)現問題、分析問題、解決問題的同時,培養(yǎng)學生的自主學習能力和創(chuàng)新意識。

在《直線和圓的位置關系》這節(jié)課中,我首先由生活中的情景——日落引入,讓學生發(fā)現地平線和太陽位置關系的變化,從而引出課題:直線和圓的位置關系。然后由學生平移直尺,自主探索發(fā)現直線和圓的三種位置關系,給出定義,聯系實際,由學生發(fā)現日常生活中存在的直線和圓相交、相切、相離的現象,緊接著引導學生探索三種位置關系下圓心到直線的距離與圓半徑的大小關系,由“做一做”進行應用,最后去解決實際問題。

1.由日落的三張照片(太陽與地平線相離、相切、相交)引入,學生比較感興趣,充分感受生活中反映直線與圓位置關系的現象,體驗到數學來源于實踐。對生活中的數學問題發(fā)生好奇,這是學生最容易接受的學習數學的好方法。新課標下的數學教學的基本特點之一就是密切關注數學與現實生活的聯系,從生活中“找”數學,“想”數學,讓學生真正感受到生活之中處處有數學。

2.在探索直線和圓位置關系所對應的數量關系時,我先引導學生回顧點和圓的位置關系所對應的數量關系,啟發(fā)學生運用類比的思想來思考問題,解決問題,學生很輕松的就能夠得出結論,從而突破本節(jié)課的難點,使學生充分理解位置關系與數量關系的相互轉化,這種等價關系是研究切線的理論基礎,從而為下節(jié)課探索切線的性質打好基礎。

3.新課標下的數學強調人人學有價值的數學,人人學有用的數學,為此,在做一做之后我安排了一道實際問題:“經過兩村莊的筆直公路會不會穿越一個圓形的森林公園?”培養(yǎng)學生解決實際問題的能力。由于此題要學生回到生活中去運用數學,學生的積極性高漲,都急著討論解決方案,是乏味的數學學習變得有滋有味,使學生體會到學數學的重要性,體驗“生活中處處用數學”。

1.學生觀察得到直線和圓的三種位置關系后,是由我講解的三個概念:相交、相切、相離。學生被動的接受,對概念的理解不是很深刻,可以改為讓學生下定義,師生共同討論的形式給學生以思維想象的空間,充分調動學生的積極性,使學生實現自主探究。

2.雖然我在設計本節(jié)課時是體現讓學生自主操作探究的原則,但在讓學生探索直線和圓三種位置關系所對應的數量關系時,沒有給予學生足夠的探索、交流的時間,限制了學生的思維。此處應充分發(fā)揮小組的特點,讓學生相互啟發(fā)討論,形成思維互補,集思廣益,從而使概念更清楚,結論更準確。

3.對“做一做”的處理不夠,這一環(huán)節(jié)是對探究的成績與效果的探索與檢驗,重在幫助學生掌握方法,我在講解“做一做”時,沒有充分展示解題思路,沒有及時進行方法上的總結,致使部分學生在解決實際問題時思路不明確。教師要根據情況,簡要歸納、概括應掌握的方法,使學生能夠舉一反三,鞏固和擴大知識,吸收、內化知識。

總之,新課程的課堂教學要讓學生作為課堂教學的主體參與到課堂教學過程中來,充分展現自己的個性,施展自己的才華,使學生在參與和體驗的過程中真正成為學習的主人,養(yǎng)成勇于探索、敢于實踐的個性品質。與此同時,教師還要為學生的學習創(chuàng)造探究的環(huán)境,營造探究的氛圍,促進探究的`開展,把握探究的深度,評價探究的效果。

直線的位置關系教案篇九

重點:的性質和判定.因為它是本單元的基礎(如:“切線的判斷和性質定理”是在它的基礎上研究的),也是高中解析幾何中研究的基礎.

難點:在對性質和判定的研究中,既要有歸納概括能力,又要有轉換思想和能力,所以是本節(jié)的難點;另外對“相切”要分清直線與圓有唯一公共點是指有一個并且只有一個公共點,與有一個公共點含義不同(這一點到直線和曲線相切時很重要),學生較難理解.

3.教法建議。

本節(jié)內容需要一個課時.

(2)在中,以“形”歸納“數”,以“數”判斷“形”為主線,開展在組織下,以學生為主體,活動式.

第12頁?。

直線的位置關系教案篇十

教學目標:

1.使學生理解直線和圓的相交、相切、相離的概念。

2.掌握直線與圓的位置關系的性質與判定并能夠靈活運用來解決實際問題。

3.培養(yǎng)學生把實際問題轉化為數學問題的能力及分類和化歸的能力。

重點難點:

2.難點:運用直線與圓的位置關系的性質及判定解決相關的問題。

教學過程:

一.復習引入。

(目的:讓學生將點和圓的位置關系與直線和圓的位置關系進行類比,以便更好的掌握直線和圓的位置關系)。

二.定義、性質和判定。

1.結合關于日出的三幅圖形,通過學生討論,給出直線與圓的三種位置關系的定義。

(1)線和圓有兩個公共點時,叫做直線和圓相交。這時直線叫做圓的割線。

(2)直線和圓有唯一的公點時,叫做直線和圓相切。這時直線叫做圓的切線。唯一的公共點叫做切點。

(3)直線和圓沒有公共點時,叫做直線和圓相離。

直線的位置關系教案篇十一

“思之不慎,行而失當”,“學然后知不足,教然后知困。知不足,然后能自反也;知困,然后能自強也?!狈此家庾R人類早就有之。作為教師,在教學中也應適時反思教學過程的得與失。

開課時,借助微機展示“圓圓的落日慢慢從海平面升起”的動畫,從而展現直線與圓的位置關系。由此引入課題——直線與圓的位置關系,學生比較感興趣,充分感受生活中的數學知識,體驗數學來源于生活。然后提出問題,引導學生大膽猜想,思考,發(fā)現三種位置關系,激發(fā)學生學習興趣,營造探索問題的氛圍。同時讓學生從生活中“找”數學,“想”數學,體會到數學知識無處不在,應用數學無處不有。這也符合“數學教學應從生活經驗出發(fā)”的新課程標準要求。

在探索直線和圓位置關系所對應的數量關系時,我先引導學生回顧點和圓的位置關系所對應的數量關系,啟發(fā)學生用類比的方法來研究直線與圓的位置關系,在研究過程中,采用小組討論的方法,給予學生足夠的探索、交流的時間,培養(yǎng)學生互助、協作的精神,讓學生在相互討論中,集思廣益,形成思維互補,從而使概念更清楚,結論更準確。最后由學生小結這一知識點,我板書在黑板上,培養(yǎng)學生用數學語言歸納問題的能力,同時感受收獲知識的快樂。

在新知教授完畢,知識升華這塊,我安排了一道實際問題,一輛火車的噪首會不會影向處在與鐵路相交的另一條公路旁的學校?如果會影響,影響的時間有多長?新課標下的數學強調人人學有價值的數學,人人學有用的數學,由于此題要學生回到生活中去運用數學知識解決生活中遇到的問題,學生的積極性高漲,都急著討論解決方案,使乏味的數學學習變得有滋有味,使學生體會到學數學的重要性,體驗“生活中處處用數學”。

一堂課教學下來,也發(fā)現有諸多不妥之處,讓我認識到自己需要繼續(xù)努力。歸納主要有以下三點:。

1、教師在課堂應當以引導者的身份出現,把課堂和講臺讓位于學生,讓“教師的教”真正服務于“學生的學”,而我在這一節(jié)課中因為一方面擔心學生在自主研究知識的形成時會浪費時間,另一方面擔心會產生意想不到的或者課前備課時沒有考慮到的回答,總是把自己的思想強加給學生,比如學生觀察得到直線和圓的三種位置關系后,是由我講解的三個概念:相交、相切、相離。學生只是被動的接受,這樣就會對概念的理解不是很深刻。這里可以改為讓學生自己下定義,教師適當放手,以師生共同討論的形式給學生以思維想象的空間,充分調動學生的積極性,使學生實現自主探究。

2、有些課堂提問欠合理化、科學化,提問隨意性大,缺乏針對性和啟發(fā)性,導致課堂教學引導不力,問題缺乏精心安排這就使得課堂存在著不少“徒勞的提問”。讓課堂時間分配的不太合理。今后應該把一些提問設計再提煉,能達到精而準。

3、在處理課后練習時,做的不夠細致,這一環(huán)節(jié)是對前面探究新知識是否掌握的一個小測試,重在幫助學生掌握方法,而我在講解練習時,只展示了解題思路,并沒有及時進行方法上的總結,致使部分學生在解決實際問題時思路不明確。這里教師要根據情況,簡要歸納、概括應掌握的方法,使學生能夠舉一反三,鞏固和擴大知識,吸收、內化知識,充分體現”授人以魚不如授人以漁"。

總之,這是我對自己本節(jié)課的一些教學反思,或者說是對新課程理念的淺薄認識。

直線的位置關系教案篇十二

5、過程與方法。

理解直線和圓的三種位置關系,感受直線和圓的位置與它們的方程所組成的二元二次方程組的解的對應關系;體驗通過比較圓心到直線的距離和半徑之間的大小及通過方程組的解的個數判斷直線與圓的位置關系,能用直線和圓的方程解決一些條件下圓的切線問題;領會數形結合的數學思想方法,提高發(fā)現問題、分析問題、解決問題的能力。

6、情感態(tài)度與價值觀。

通過對本節(jié)課知識的探究活動,加深學生對解析法解決幾何問題的認識,從而領悟其中所蘊涵的數學思想,體驗探索中成功的喜悅,激發(fā)學習熱情,養(yǎng)成良好的學習習慣和品質。

教法學法為了實現上述教學目標,本節(jié)課采取以下教學方法:

(1)恰當的利用多媒體課件,通過學生熟悉的實際生活問題引入課題,拉近數學與現實的距離,激發(fā)學生的問題意識和求知欲,調動學生主體參與的積極性。

(2)采用“啟發(fā)式”問題教學法,用環(huán)環(huán)相扣的問題將探究活動層層深入,站在學生思維的最近發(fā)展區(qū)上啟發(fā)誘導。

(3)在整個數學教學過程中,既要體現學生的主體地位,更要強調教師的主導地位,在科學講授的同時教會學生清晰的思維和嚴謹的推理。

在學法上注重以下幾點:

(2)在用代數法解決直線與圓的位置關系時,要能夠明確運算方向,把握關鍵步驟,正確的處理較為復雜數據。

課堂結構設計:

整個教學過程是四步組成,自主學習,合作探究,老師輔導、課堂展示。共分為八個環(huán)節(jié),復習、獨立訓練、相互探討、老師參與、形成結論、課堂展示、評價(互評師評)、反思。

教學過程設計:

通過問題情境,激發(fā)學生的學習興趣,使學生找到要學的與以學知識之間的聯系;問題串的設置可讓學生主動參與到學習中來;在判斷方法的形成與應用的探究中,師生的相互溝通調動學生的積極性,培養(yǎng)團隊精神;知識的生成和問題的解決,培養(yǎng)學生獨立思考的能力,激發(fā)學生的創(chuàng)新思維;通過練習檢測學生對知識的掌握情況;根據學生在課堂小結中的表現和課后作業(yè)情況,查缺補漏,以便調控教學。

回顧反思,拓展延伸:

直線的位置關系教案篇十三

節(jié)課的教學,我認為成功之處有以下幾點:

1.由日落的三張照片(太陽與地平線相離、相切、相交)引入,學生比較感興趣,充分感受生活中反映直線與圓位置關系的現象,體驗到數學來源于實踐。對生活中的數學問題發(fā)生好奇,這是學生最容易接受的學習數學的好方法。新課標下的數學教學的基本特點之一就是密切關注數學與現實生活的聯系,從生活中“找”數學,“想”數學,讓學生真正感受到生活之中處處有數學。

2.在探索直線和圓位置關系所對應的數量關系時,我先引導學生回顧點和圓的位置關系所對應的數量關系,啟發(fā)學生運用類比的思想來思考問題,解決問題,學生很輕松的就能夠得出結論,從而突破本節(jié)課的難點,使學生充分理解位置關系與數量關系的相互轉化,這種等價關系是研究切線的理論基礎,從而為下節(jié)課探索切線的性質打好基礎。

3.新課標下的數學強調人人學有價值的數學,人人學有用的數學,為此,在做一做之后我安排了一道實際問題:“經過兩村莊的筆直公路會不會穿越一個圓形的森林公園?”培養(yǎng)學生解決實際問題的能力。由于此題要學生回到生活中去運用數學,學生的積極性高漲,都急著討論解決方案,是乏味的數學學習變得有滋有味,使學生體會到學數學的重要性,體驗“生活中處處用數學”。

同時,我也感覺到本節(jié)課的設計有不妥之處,主要有以下三點:

1.學生觀察得到直線和圓的三種位置關系后,是由我講解的三個概念:相交、相切、相離。學生被動的接受,對概念的理解不是很深刻,可以改為讓學生下定義,師生共同討論的形式給學生以思維想象的空間,充分調動學生的積極性,使學生實現自主探究。

2.雖然我在設計本節(jié)課時是體現讓學生自主操作探究的原則,但在讓學生探索直線和圓三種位置關系所對應的數量關系時,沒有給予學生足夠的探索、交流的時間,限制了學生的思維。此處應充分發(fā)揮小組的特點,讓學生相互啟發(fā)討論,形成思維互補,集思廣益,從而使概念更清楚,結論更準確。

直線的位置關系教案篇十四

本節(jié)課的教學我采用先亮標,亮自學提示及檢測題的形式讓學生先自學。依據自學檢測題檢驗學生自學結果。然后精講了切線性質定理及分析兩種證明方法。然后結合小黑板練習鞏固提高這節(jié)知識。

講課時我改變了原來講后再練的方式,采用了講評一個知識點后配基礎練習題,鞏固此知識點的方法。避免講后再練,練習與知識的脫節(jié),練習緊跟。精講知識后,再配以比基礎題(鞏固基礎知識點)層次高的兩組練習,讓學生先做,采用舉手的方式調查學生自己運用知識解決問題的情況。講前85%的同學都舉手做完,還有個別同學做到運用靈活方法解決問題。中午三道作業(yè)學生掌握良好。其余學生在我的講解下也掌握今天的內容,會運用兩種方法判斷直線和圓的位置關系。知道有切線可連圓心和切點得垂直關系這種基本輔助線。

本節(jié)課的教學總的來說很順利,學生掌握良好,由于課程標準對于本節(jié)課要求不高,緊扣標準,走進中招。本節(jié)課若能再配合課后檢測題,及時精確把握,學生掌握情況會更完美。

重建:講課前,先亮標,亮自學提示及檢測題,以問題形式精講切線性質定理及證明。配合練習、提高練習,下課前5分鐘配簡單檢測題以便更全面把握學生掌握的情況。

教師的行為直接影響著學生的學習方式,要讓學生真正成為學習的主人,積極參與課堂學習活動,因此在教學中讓學生想象、觀察、動手實踐、發(fā)現內在的聯系并利用類比歸納的方法,探索規(guī)律,指導學生合作、研究并嘗試用學到的知識解決實際問題。

直線的位置關系教案篇十五

這節(jié)課是義務教育課程標準實驗教科書九年級上冊第二十四章第2節(jié)第2課時的內容。本人在教學過程中緊緊圍繞新課程理念展開教學,主要從以下幾方面介紹閃光點:

一、創(chuàng)設情境。

1、組織學生發(fā)現,尋找,搜集和利用學習資源。

現代課程觀認為課程是由教師、教材、學生和環(huán)境四要素構成的,教師和學生是課程的開發(fā)者和創(chuàng)造者。組織學生發(fā)現,尋找,搜集和利用學習資源是教師的一項重要職責。因此,在教學中,本人把日出這一自然現象作為課程資源引入數學教學,學生通過回想日出的景象畫出圖畫:一幅是美術圖畫;一幅是一條直線和一個圓。在學生都欣賞藝術圖畫的美時,教師引導學生欣賞一條直線和一個圓的數學美和它的價值,它的價值在于抽象和簡化,便與研究它的性質。讓學生們看見了自然現象中的數學價值,同時也反應了自然現象和數學之間的聯系。然后,我引導學生把變化著的自然現象再抽象成數學問題,引出直線和圓的相交、相切、相離三種關系。

2、創(chuàng)設豐富的教學情境,激發(fā)學生的學習動機,培養(yǎng)學習興趣,充分調動學生的學習積極性。本人在教學第一環(huán)節(jié)用現實生活中日出這一景觀,讓學生享受美的情境中,在充分的想象中,從生活中抽象出數學模型,因此讓學生畫出兩種不同的日出圖畫,美術的圖畫讓學生看見了生活中的美。但在教學中本人著重引導學生欣賞另一種圖畫是抽象的數學美,在欣賞美的同時,體會生活中的數學,從而激發(fā)學生的求知欲。

3、給學生提供合作交流的空間和時間。首先給學生的自主學習提供時間,讓學生自己畫出日出情景,接著合作交流兩種日出的圖畫,這樣為學生創(chuàng)設合作交流的空間。

4、組織學生營造教室中的積極的心理氛圍。本人在教學中注重這一方面的滲透。教學第一環(huán)節(jié)中,學生畫出兩種不同的畫面后,及時反饋,給予表揚和鼓勵。尤其是教學過程中,我班田文潔同學由于偏科、數學底子薄弱,我發(fā)現她在畫圖中碰到老師的目光馬上避開,老師意識到她畫圖中可能有問題,我便走到她面前,與她交流,啟發(fā)她如何著手,并且誘導她從數學角度思考又該怎樣畫,這就給了她知識上的啟發(fā)和心理上的支持。還有看見胡海林沒有動筆和本,便走過去摸摸他的頭,并用溫和的目光問:“沒有思路嗎?”我啟發(fā)引導后,讓他和同桌交流,讓同桌再幫助他。這樣體現了對學生的信任、關心和理解。學生在老師的關愛下,學生的幫助下、受到激勵和鼓勵,激發(fā)了學習的興趣,從而用自己的愛心與學生一起營造了一個平等,尊重、信任、理解和寬容的教學氛圍。這正是新課程理念所倡導的。

二、新課講解(探究新知)。

這一部分的教學中主要滲透以下幾個基本理念:

1、讓課堂教學充滿創(chuàng)新活力。

(1)合作學習有利于培養(yǎng)學生的創(chuàng)新精神與創(chuàng)新能力。講述直線和圓相交、相切、相離的概念時,通過師生合作交流得出兩種方法,即交點的個數及點到直線的距離d與半徑r之間的關系,在合作交流中學生加深了對知識的理解和掌握、同時也有利于創(chuàng)新精神和創(chuàng)新能力的培養(yǎng)。

(2)探究過程是培養(yǎng)創(chuàng)新精神和創(chuàng)新能力的重要途徑。例:在講概念時,提出這一個問題:“通過回憶剛才畫出日出的圖畫,同學們發(fā)現直線與圓有三種位置,各自有什么特點?”這就為學生提供了探究的空間,學生很容易得出交點個數,及時抓住探究過程中這一創(chuàng)新的“火花”,給予欣賞和激勵,從而掌握基礎知識和基本技能。

2、教學活動中尊重學生已有的知識和能力。

(1)尊重學生已有的知識和學生的經驗。在講d與r的關系時,復習了上節(jié)所學點和圓的位置關系,這樣,學生學習新知識是在原有知識基礎上自我構建的過程,了解學生的知識基礎是老師備課的一項重要內容。

(2)尊重學生獨特的感受和理解。由于學生間認知上、情感上的差異,這一部分教學很多學生對點到直線的距離即d與r關系很難表述,甚至想不到,所以曾多次激勵學生談獨特的見解。

(3)把新知識納入到原有認知結構中去。新知識是學生已獲得的知識,是學生自我建構后獲得的知識,新知識在獲得后,還有一個重要的任務就是把新知識以一定的方式組織起來,納到原有的認知結構中去,便于記憶和提取。這一環(huán)節(jié)充分體現,即講完兩種方法后便出示表格進行歸納和總結,從而幫助學生不斷優(yōu)化認知結構。

3、提倡自主,合作,探究的學習方式。這一理念在這一環(huán)節(jié)的教學中又得到充分體現。采用獨立思考、分組討論,合作交流得出本節(jié)的重要內容即本節(jié)的重點。

4、注重教師是學習活動的參與者。教師應引導學生在自主探索和合作交流中達到對新知識的理解。教學中我發(fā)現馮成同學的第二種方式是大部分學生沒有想到的,并且講述很好,過渡自然。因此異常興奮,我與同學們同時鼓掌,即達到高潮。充分體現了師生間共同分享感情和認識。

三、鞏固練習(深化練習)。

1、練習符合學生的認知規(guī)律,難易度適中。

2、練習量適中,題型多樣,有選擇題,填空題、解答題。

3、注重分層教學和能力培養(yǎng)、持續(xù)發(fā)展,設計了必做題,選做題。

四、課堂小結:

課堂小結是一個重要的環(huán)節(jié),本人給學生一定的思考和交流的空間,除了讓學生自己總結本節(jié)知識外,還用表格的形式又展現給大家,讓同學們再次回顧、反思、記憶。更重要的是讓學生總結本節(jié)的數學方法和數學思想,以及生活中處處充滿數學,數學為生活服務等理念。

不論從新課程理念,還是教學效果來看,這都是一節(jié)比較滿意的課。另外,教學過程凸現雙基,目標落實,教學結構完整有序,層層推進。教師對學生的尊重和愛護也都隨處體現,教師對知識的精益求精,讓這一節(jié)課所有的知識點都清晰地呈現在學生面前,教師對學生間的相互評價,相互合作無疑又為學生間的友誼注入新的動力,作業(yè)設計分層教學,有必做題和選做題。

當然,這節(jié)課仍有需要改進的地方:

一、語言有待錘煉,在整節(jié)課中,老師的提問過于頻繁,其中不乏有很多較好的提問起到點拔、引導作用,但仍有一些問題不必要的,且提問時廢話較多。

二、時間分配的不太合理,練習時間稍有不足,因前面內容即創(chuàng)設情境和探究新知識占用較多時間,所以后面的練習時間相對較短,對于分層教學處理練習就顯得倉促。

三、板書不夠規(guī)范,因本節(jié)書本沒有例題,所以應在黑板上板書作業(yè)格式,這樣在以后作業(yè)中有格式示范,書寫規(guī)范。

四、教學過程不太注重數學思想滲透,例:創(chuàng)設情境中畫圖,導出直線與圓的三種位置關系,要啟發(fā)誘導學生采用了什么數學思想。

針對以上問題,在以后的教學中,要加強語言錘煉,要注重分層教學,注重能力培養(yǎng),要注重數學思想和方法滲透。

總之,這是我對自己本節(jié)課的一些教學反思,或者說是對新課程理念的淺薄認識。

直線的位置關系教案篇十六

“國培計劃”初中數學——陳曉峰(江西省寧都五中)。

節(jié)課的教學,我認為成功之處有以下幾點:

1.由日落的三張照片(太陽與地平線相離、相切、相交)引入,學生比較感興趣,充分感受生活中反映直線與圓位置關系的現象,體驗到數學來源于實踐。對生活中的數學問題發(fā)生好奇,這是學生最容易接受的學習數學的好方法。新課標下的數學教學的基本特點之一就是密切關注數學與現實生活的聯系,從生活中“找”數學,“想”數學,讓學生真正感受到生活之中處處有數學。

2.在探索直線和圓位置關系所對應的數量關系時,我先引導學生回顧點和圓的位置關系所對應的數量關系,啟發(fā)學生運用類比的思想來思考問題,解決問題,學生很輕松的就能夠得出結論,從而突破本節(jié)課的難點,使學生充分理解位置關系與數量關系的相互轉化,這種等價關系是研究切線的理論基礎,從而為下節(jié)課探索切線的性質打好基礎。

3.新課標下的數學強調人人學有價值的數學,人人學有用的數學,為此,在做一做之后我安排了一道實際問題:“經過兩村莊的筆直公路會不會穿越一個圓形的森林公園?”培養(yǎng)學生解決實際問題的能力。由于此題要學生回到生活中去運用數學,學生的積極性高漲,都急著討論解決方案,是乏味的數學學習變得有滋有味,使學生體會到學數學的重要性,體驗“生活中處處用數學”。

同時,我也感覺到本節(jié)課的設計有不妥之處,主要有以下三點:

1.學生觀察得到直線和圓的三種位置關系后,是由我講解的三個概念:相交、相切、相離。學生被動的接受,對概念的理解不是很深刻,可以改為讓學生下定義,師生共同討論的形式給學生以思維想象的空間,充分調動學生的積極性,使學生實現自主探究。

2.雖然我在設計本節(jié)課時是體現讓學生自主操作探究的原則,但在讓學生探索直線和圓三種位置關系所對應的數量關系時,沒有給予學生足夠的探索、交流的時間,限制了學生的思維。此處應充分發(fā)揮小組的特點,讓學生相互啟發(fā)討論,形成思維互補,集思廣益,從而使概念更清楚,結論更準確。

直線的位置關系教案篇十七

本節(jié)課由蔡**老師執(zhí)教,主要有三部分組成。首先前面兩個問題通過復習前幾課學過的點到直線的距離公式以及兩條直線的位置關系的判定,為下面例子中判斷直線與圓的位置關系作好鋪墊。緊接著通過回顧直線與圓的三種位置關系引入新課,并結合圖形深入探究每種關系中圓心到直線的距離d與圓的半徑r的大小關系以及交點個數的情況。再通過例題的講解與練習的訓練去總結直線和圓的位置關系所反映出來的數量關系。最后師生對本節(jié)課知識點進行共同小結,完成本節(jié)課的整體教學內容。

聽了這節(jié)課之后,我認為本節(jié)課的整體思路清晰、流暢,結構合理,重點突出,較好地完成了本節(jié)課的教學目標。在引導學生歸納出直線與圓的`位置關系的數量關系后再進行相關的例題講解和習題訓練,確保了學生對本節(jié)課重點知識的掌握。不過,個人認為本節(jié)課還是有一些值得探討的問題:1、例1是對本節(jié)課所學知識的應用,是本節(jié)課的重點及難點,應該著重分析這塊。學生對帶有絕對值符號的c的范圍并不能很好地理解,因涉及先前學過的內容,可舉個適當小例子幫助學生回顧,如:,則的范圍是什么等等。2、個人覺得練習一中判斷直線與圓的位置關系時,圓心到直線的距離計算得d=,讓學生求k的范圍難度太大。本來學生才剛掌握點到直線的距離公式,還不能很好熟練的運用,現在式子中又有絕對值又有根號求k的范圍,學生的積極性很容易被打壓,應當換個適當難度的,及時提高學生的積極性,培養(yǎng)他們的興趣。3、應讓學生多動手、動口回答問題,及時鞏固所學知識。

本節(jié)課是在直線和直線的基礎上進一步學習的內容,也是后面學習直線與圓的方程的應用的基礎,起著承上啟下的作用,而且三種位置關系的研究方法和思路基本一直,都是從研究位置關系開始進而研究位置關系而發(fā)生的數量關系,教師可以用類比的教學方式使學生掌握這種學習方法。其實,一堂課的教學很大程度上受教學細節(jié)的影響,比如:語言的描述是否準確,是否及時對學生進行表揚等。每次聽完課,我都會拿自己進行比較,看看還有哪些自己沒做到的,或是沒注意的,然后多多實踐,盡量充實自己,收獲不少啊。

直線的位置關系教案篇十八

已知直線都是正數)與圓相切,則以為三邊長的三角形是________三角形.

三、解答題。

當為何值時,直線與圓有兩個公共點?有一個公共點?無公共點?

四、填空題。

若直線與圓相切,則實數的值等于________.

圓心為且與直線相切的圓的方程為________.

直線與圓相切,則實數等于________.

直線與圓相切,則________.

過點作圓的切線,且直線與平行,則與間的距離是________.

過點,作圓的切線,則切線的條數為________條.

過點的圓與直線相切于點,則圓的方程為________.

五、解答題。

過點作圓的切線,求此切線的方程.。

圓與直線相切于點,且與直線也相切,求圓的方程.。

六、填空題。

由直線上的一點向圓引切線,則切線長的最小值為_____________.

七、解答題。

求滿足下列條件的圓的切線方程:

(1)經過點;

(2)斜率為;

(3)過點.。

已知圓的方程為,求過的圓的切線方程.。

八、填空題。

直線被圓截得的弦長等于________.

直線被圓截得的弦長等于________.

直線被圓所截得的弦長為________.

圓截直線所得弦的長度為4,則實數的值是________.

設直線與圓相交于兩點,若,則圓的面積為________.

直線被圓截得的弦長為________.

直線被圓所截得的弦長為________.

圓心坐標為的圓在直線上截得的弦長為,那么這個圓的方程為________.

過點的直線被圓截得的弦長為,則直線的斜率為________.

過原點的直線與圓相交所得弦的長為2,則該直線的方程為________.

九、解答題。

圓心在直線上,圓過點,且截直線所得弦長為,求圓的方程.。

十、填空題。

過點作圓的弦,其中最短弦的長為________.

十一、解答題。

已知圓,直線.

(1)求證:對,直線與圓總有兩個不同的交點;

(2)若直線與圓交于兩點,當時,求的值.。

設圓上的點關于直線的對稱點仍在圓上,且直線被圓截得的弦長為,求圓的方程.。

已知圓,直線.。

證明:不論取什么實數,直線與圓恒交于兩點。

求直線被圓截得的弦長最小時的方程,并求此時的弦長。

十二、填空題。

圓上到直線的距離等于1的點有________個.

在平面直角坐標系中,已知圓上有且僅有四個點到直線的距離為1,則實數的取值范圍是________.

設圓上有且僅有兩個點到直線的距離等于1,則圓半徑的取值范圍是________.

直線與曲線有且只有一個公共點,則b的取值范圍是_________。

若直線與圓恒有兩個交點,則實數的取值范圍為________.

已知點滿足,則的取值范圍是________.

若過點的直線與曲線有公共點,則直線的斜率的取值范圍為。

直線的位置關系教案篇十九

c.掌握直線和圓的位置關系判定的應用,會求已知圓的交線和切線方程。

(2)能力目標

讓學生通過觀察,分析,總結歸納出根據直線與圓的方程來判斷直線與圓的位置關系的方法,培養(yǎng)學生分析問題解決問題的能力,讓學生對坐標法有進一步的了解,并能用參數法、數形結合的方法去分析、解決相應的數學問題,同時訓練學生數學思維,培養(yǎng)學生尋求一題多解的能力。

(3)情感目標

通過學生自己動手實驗和探索,培養(yǎng)學生動手能力和發(fā)現問題的能力;通過師生互動,生生互動的教學活動過程,形成學生的體驗性認識,體會成功的愉悅,提高數學學習的興趣,樹立學好數學的信心,培養(yǎng)鍥而不舍的鉆研精神和合作交流的科學態(tài)度。

重點:直線和圓的三種位置關系

難點:直線和圓的三種位置關系的性質和判定的應用

教學方法:問題探究式、啟發(fā)式引導、參與式探究、互動式討論

學習方法:自主探究、觀察發(fā)現、合作交流、歸納總結。

教學手段:借助多媒體動態(tài)演示,構建學生探究式學習的教學環(huán)境。

1、創(chuàng)設情景、引入新課;

2、引導啟發(fā)、探索新知;

3、講練結合、鞏固新知;

4、知識拓展、深化提高;

5、小結新知,畫龍點睛

6、布置作業(yè),復習鞏固;

重新閱讀課本本節(jié)相關內容并預習下一節(jié)課內容。

直線與圓的位置關系是高考的考點之一,是在學生已有的平面幾何知識基礎上進行教學,以點與圓的位置關系上升為直線與圓的位置關系,從簡單到復雜,從幾何特征到代數問題(坐標法)的教學過程,它應用比較廣泛,同時也為后面圓和圓的位置關系作了鋪墊,對后面的解題及相關數學問題的解決將起到重要的作用,且本節(jié)是直線與圓錐曲線位置關系的基礎,故要求學生充分掌握。

針對上述情況,我精心設計教學過程,借助多媒體動態(tài)演示直線和圓的位置關系,直觀形象地展示了直線與圓的位置關系,化抽象為具體,以便學生更好的.理解他們之間的關系及其幾何特征,再引導學生把幾何形式的結論轉化為代數形式;教學過程中采用問題探究式、參與式探究、互動式討論等教學方法,為學生自主探究、合作交流構建一個好的平臺;分層次設置例題,讓全體學生都得到提升;講解例題時應用啟發(fā)式引導教學方法,不斷訓練學生數學思維,借助圖象分析題意,加深學生對數形結合思想了解;新課結束后,引導學生小結本課內容,培養(yǎng)學生歸納總結的能力。

直線的位置關系教案篇二十

薛老師執(zhí)教的高三文科復習課:《直線與圓的位置關系》,首先從一個引例出發(fā),讓學生嘗試作圖和驗證,得出知識要點,繼而在此基礎上繼續(xù)研究直線方程和軌跡等問題。例題只有一個,但小題很多,題題遞進,環(huán)環(huán)相扣,在此環(huán)節(jié)上教師以學生訓練為主,教師講授和引導為輔,共同完成本節(jié)課的整體教學內容。

我聽了薛老師的這節(jié)課認為本節(jié)課設計高度重視學生的主動參與、親自操作,讓學生從中去體驗學習知識的過程,同時,也注重培養(yǎng)學生的自主學習能力和創(chuàng)新意識。整體看來這節(jié)課的優(yōu)點很多,很值得我去學習。

總結起來,大概有以下幾個特點。

(一)注重一個“滲透”——德育滲透。

在數學教學中,我們常常把德育教育與辯證唯物主義、愛國主義情懷聯系在一起,借助古今中外數學史不惜把數學課上成政治課,卻成為一堂蹩腳的課。其實,通過數學問題的發(fā)生和解決過程的教學,培養(yǎng)與鍛煉學生知難而進的堅強意志,敗而不餒的心理素質,一絲不茍的學習品質,勤于思考的良好學風,勇于探索的創(chuàng)新精神,實事求是的科學態(tài)度,這也是是德育教育,更是數學本質上的德育教育。本課薛老師把這種德育教育滲透到教學的每一個環(huán)節(jié),力求“潤物細無聲”。當學生解題遇到困難時,教師能給予耐心的引導。但,在課堂上,處理第(3)小題第二問時,有一名男生利用圓的定義很巧妙地給出了軌跡方程,薛老師可能沒有很好地把握表揚的機會,而是詢問學生有否最后算出答案,顯得有些匆促。

(二)堅持兩個“原則”

1、例題設計注重分層教學,堅持面向全體學生的原則。

題目母體來源于學生現有教輔書《全品》,卻在原題基礎上進行了分層遞進的改編,讓不同的學生都有不同的收獲。以學生的最近發(fā)展區(qū)為指向,充分尊重了學生現有的認知水平和個性差異,為不同層次的學生采用適合自己個性的方法進行學習創(chuàng)造了條件。

2、教學過程授人以漁,堅持以學生發(fā)展為本的原則。

讓學生深刻經歷:通過作圖和求解基本例題回憶知識結構——通過嘗試深化知識內容——通過遞進擴展知識聯系,教會學生研究的方法,而不是結果。

(三)落實三個“容量”——知識量、活動量和思維量。

本節(jié)課所選內容以解析幾何為平臺,卻可以集函數性質、圖像、方程、不等式于一體,例題只有一題,但以此展開的小題卻逐層遞進和推進,容量大,難度高。可喜的是,薛老師通過合理運用現代技術和整合例題,成功地豐富了知識量;加強探索與過程教學,有效地落實了思維量;突出學生板演與探究教學,巧妙地增加了活動量,值得借鑒。

(四)實現四個“轉變”——學生角色從被動到主動;教師角色從傳授到指導;學習理念從封閉到開放;學習形式從單一到多元。

本課初步實現了“四個轉變”是由于采用了探究式的教學策略,為學生提供開放性的學習內容、開放性的教育資源和開放性的教學形式。特別是向學生提供了更多的機會和時間,讓學生嘗試和探究、合作和交流、歸納和總結,最大限度地提高學生學習活動的自由度,促使學生思維空間的充分開放。

(五)培養(yǎng)五種“能力”——應用能力、探究能力、反思與提問能力、交流合作能力和創(chuàng)新能力。

本課從引入開始,充分放手讓學生動腦、動口、動手,使研究問題得以逐個深入,難點得以一個個突破,能力得以一點點培養(yǎng)。事實上,解析幾何復習課,重在數形結合,重在幾何性質,重在靜動結合,課堂貴在“生動”,所謂“生動”,是指“生”出“動”。要樹立生本意識,立足學生“可動”;設置問題探究,引領學生“會動”;課前充分預設,不怕學生“亂動”;及時表揚肯定,激勵學生“愿動”。

但是我認為這節(jié)課也有一些值得探討的問題:

第一、老師講的還是太多。聽說杜郎口中學要求老師每節(jié)課講課時間不能超過10分鐘,否則是不合格的。一堂課,就只有40分鐘,老師講多了,學生自然就參與少了。這樣的后果就會導致學生具體體驗時間不夠,同時規(guī)范操作和演練也不夠。

第二、在學生回答引入題時,假設直線方程時,學生沒有考慮到斜率是否存在的情況,這時,老師沒有及時進行補充和糾正。一個很明顯的后果就是導致在(2)問的板演中,學生解答出錯。

第三,學生板演時沒有很好地結合圖像進行解題,這時,老師應該要適時引導學生作好草圖。凸顯解題時要從宏觀到微觀,從直覺到精確,從定性到定量分析。

第四,本節(jié)課最大的特色就是很好的整合了例題,以一題可以掃遍所有的直線與圓的有關知識點,這是一種復習習慣和策略。教師在這個點上應該要向學生強調,引導學生今后復習也應該有意識地進行整合和提升,做到既“重復”,又“學習”,這才是復習。

第五,本節(jié)課還有一個線索,就是前面的題目基本上能借助幾何性質進行解題,而最后一問必須采用解析幾何的思路,就是用代數的方法解題,這實際上要求老師要進行總結,告訴學生直線與圓的位置關系解題時,先考慮幾何性質,再借助代數方法解決,這不僅是一般的解題思路,也為后面的直線與橢圓的位置關系埋下伏筆。

總之,這是一堂原生態(tài)的高三復習課,讓我獲益匪淺。以上僅是一家之言,在此權當拋磚引玉,謝謝大家!

【本文地址:http://www.aiweibaby.com/zuowen/16688145.html】

全文閱讀已結束,如果需要下載本文請點擊

下載此文檔