編寫一份好的教案需要教師具備系統(tǒng)、全面的教學(xué)知識和經(jīng)驗。教案要根據(jù)學(xué)生的實際生活和社會實踐進(jìn)行案例分析和應(yīng)用拓展。查看這些教案范文,可以發(fā)現(xiàn)不同教師對于教學(xué)目標(biāo)的理解和教學(xué)方法的運用是有差異的。
正比例反比例教案篇一
本單元在學(xué)生具有比和比例的知識,認(rèn)識常見數(shù)量關(guān)系的基礎(chǔ)上編排,通過對兩個數(shù)量保持商一定或積一定的變化,理解正比例關(guān)系和反比例關(guān)系,滲透初步的函數(shù)思想。正比例和反比例歷來是小學(xué)數(shù)學(xué)里的重要內(nèi)容之一,與過去的教材相比,本單元進(jìn)一步加強(qiáng)正、反比例的概念教學(xué),突出正比例關(guān)系的圖像及簡單應(yīng)用,重視正、反比例與現(xiàn)實生活的聯(lián)系,淡化脫離現(xiàn)實背景判斷比例關(guān)系,不安排應(yīng)用正、反比例關(guān)系解決實際問題。全單元編排三道例題和一個練習(xí),前兩道例題都是關(guān)于正比例的,分別教學(xué)正比例的意義和圖像,后一道例題教學(xué)反比例的知識。
例1讓學(xué)生初步感知兩種相關(guān)聯(lián)的量以及成正比例的量的含義。列表呈現(xiàn)了一輛汽車行駛的路程和時間,通過寫出幾組對應(yīng)的路程和時間的比并求比值,發(fā)現(xiàn)各個比的比值都是80,理解80是這輛汽車每小時行駛的千米數(shù),由此得出數(shù)量關(guān)系路程/時間=速度(一定)。在數(shù)量關(guān)系中,路程比時間等于速度是舊知識,速度一定是這個問題情境里的規(guī)律,是正比例概念的生長點。教材先指出路程和時間是兩種相關(guān)聯(lián)的量,用時間變化,路程也隨著變化具體解釋兩種量的相關(guān)聯(lián)。再指出這輛汽車行駛的路程和時間的比的比值總是一定,可以說路程和時間成正比例,它們是成正比例的量,學(xué)生在這里首次感知了正比例關(guān)系。
試一試在另一組數(shù)量關(guān)系中繼續(xù)感知正比例關(guān)系,購買鉛筆數(shù)量和總價的表格里有三個空格,先計算買4枝、5枝、6枝這種鉛筆的總價,讓學(xué)生體會鉛筆的單價每枝0。3元是不變的,總價是隨著數(shù)量變化而變化的,總價與數(shù)量是兩種相關(guān)聯(lián)的量。然后依次回答其他三個問題,得出鉛筆總價和數(shù)量成正比例的結(jié)論,并用式子總價/數(shù)量=單價(一定)作出解釋。試一試的認(rèn)知線索與例1相似,留給學(xué)生自主活動的空間比例1大,使學(xué)生對正比例關(guān)系的體驗更深刻。
學(xué)生在上面兩個實例中感知了正比例的具體含義,教材第63頁要形成正比例的概念。抽象概括正比例的意義是概念形成的重要環(huán)節(jié),也是發(fā)展數(shù)學(xué)思考的極好機(jī)會。首先用字母表示數(shù)量,每個實例里都有兩個相關(guān)聯(lián)的量,分別是路程和時間或者總價與數(shù)量,兩個量的比的比值分別是速度和單價,因而用字母x和y表示兩種相關(guān)聯(lián)的量,用k表示它們的比值;然后把路程/時間=速度(一定)、總價/數(shù)量=單價(一定)表示成y/x=k(一定),并指出正比例關(guān)系可以用這個字母式子表示。用抽象的字母組成的式子表示正比例關(guān)系是認(rèn)知難點,教學(xué)要聯(lián)系兩個實例,引導(dǎo)學(xué)生經(jīng)歷字母表示具體的數(shù)量?字母式子表示常見數(shù)量關(guān)系?字母式子表示正比例關(guān)系的過程,加強(qiáng)對式子y/x=k(一定)的理解。
練一練判斷生產(chǎn)零件的數(shù)量和時間成不成正比例,是把正比例概念具體化,利用概念進(jìn)行演繹推理。具體地說,是分析這個情境里的生產(chǎn)零件數(shù)量和所用時間的比的比值是否始終保持一定,如果具備y/x=k(一定)這種關(guān)系,兩種相關(guān)聯(lián)的量成正比例,否則就不成正比例。學(xué)生在第62頁試一試?yán)镆呀?jīng)進(jìn)行過這樣的分析和判斷,那時是依據(jù)連續(xù)的四個問題進(jìn)行的,現(xiàn)在要求他們獨立開展有條理的推理活動,進(jìn)一步理解正比例的意義,掌握判斷兩種量成不成正比例的方法。練習(xí)十三第1~3題配合例1的教學(xué),第3題判斷正方形的周長與邊長、面積與邊長成不成正比例??梢愿鶕?jù)表格里填的數(shù)據(jù)進(jìn)行推理,因為周長與邊長的比4/1、8/2、12/3、16/4的比值都是4,面積與邊長的比1/1、4/2、9/3、16/4的比值不相等,所以正方形的周長與邊長成正比例,面積與邊長不成正比例。也可以根據(jù)正方形的周長公式和面積公式推理,從邊長4=周長可以得到周長與邊長的比的.比值是確定的數(shù)4,即周長/邊長=4(一定),所以正方形的周長與邊長成正比例。從邊長邊長=面積可以知道,面積雖然隨著邊長的變化而變化,但是面積與邊長的比的比值是變化的量,即面積/邊長=邊長,所以正方形的面積與邊長不成正比例。前一種思考對問題進(jìn)行具體的分析,適宜大多數(shù)學(xué)生的實際水平,也符合《標(biāo)準(zhǔn)》的要求。后一種思考沒有利用數(shù)據(jù)信息,推理的難度較大,不必對學(xué)生提出這樣的要求。教材設(shè)計這道題的意圖是進(jìn)一步使學(xué)生理解正比例的意義,突出正比例概念的內(nèi)涵:兩種相關(guān)聯(lián)量的比的比值保持一定。
像直觀表達(dá)正比例關(guān)系。
例2是按照《標(biāo)準(zhǔn)》的要求根據(jù)給出的有正比例關(guān)系的數(shù)據(jù)在有坐標(biāo)系的方格紙上畫圖,并根據(jù)其中一個量的值估計另一個量的值編排的,設(shè)計的三個問題體現(xiàn)了教學(xué)正比例圖像的三個步驟。第一步認(rèn)識圖像上的點,按照a點表示1小時行80千米b點表示5小時行400千米說出其他各點的具體含義,體會各個點都表示汽車在某段時間所行駛的路程,也體會這些點是根據(jù)對應(yīng)的時間與路程的數(shù)據(jù)在方格紙上畫出來的。第二步認(rèn)識圖像的形狀,從圖中描出的點在一條直線上,體會正比例關(guān)系的圖像是一條直線。了解正比例圖像是直線對以后畫圖能起兩點作用:一是畫正比例關(guān)系的圖像(如第64頁練一練),可以根據(jù)提供的各組數(shù)據(jù)描出圖像的許多個點,再依次連成直線;二是如果按正比例關(guān)系畫出的點不在同一條直線上,表明畫點出現(xiàn)了錯誤,應(yīng)及時糾正。第三步應(yīng)用圖像,估計行駛時間所對應(yīng)的路程或者行駛路程所用的時間。要指導(dǎo)學(xué)生利用畫垂線或畫平行線的技能,盡量使得數(shù)準(zhǔn)確些。如估計2。5小時行駛的千米數(shù),要在橫軸上找到表示2。5小時的點,過這點畫橫軸的垂線,得到垂線與圖像的交點,再過交點作縱軸的垂線,根據(jù)垂足在縱軸上的位置估計行駛的路程。
練習(xí)十三第4、5題配合例2的教學(xué)。判斷實際問題里相關(guān)聯(lián)的兩種量成不成正比例有兩種思路,一種是看畫成的圖像,如果圖像是一條直線,那么兩種量成正比例;如果圖像不是一條直線,那么兩種量不成正比例。另一種是根據(jù)正比例的意義,利用各組對應(yīng)的數(shù)據(jù)寫出比、求比值,從比值是否相等作出成不成正比例的判斷。教學(xué)時要引導(dǎo)學(xué)生應(yīng)用后一種思路,在判斷活動中加強(qiáng)對概念的理解。
例3教學(xué)反比例的意義,安排的教學(xué)活動線索和例1十分相似。在表格里可以看到筆記本的單價在變化,購買的數(shù)量也在變化,而且每組相對應(yīng)的單價和數(shù)量的乘積都是60,這不僅是算得的,還和題目里的用60元買筆記本相一致,因此用數(shù)量關(guān)系式單價數(shù)量=總價(一定)表示這個問題情境里兩個變量的變化規(guī)律。在此基礎(chǔ)上指出單價和數(shù)量是兩種相關(guān)聯(lián)的量,它們成反比例,是兩個成反比例的量。試一試先把表格填寫完整,在填表時體會工地要運的72噸水泥是確定的。然后思考三個問題,抓住每天運的噸數(shù)與需要的天數(shù)的乘積是多少,乘積表示什么數(shù)量以及問題情境的數(shù)量關(guān)系式,從每天運的噸數(shù)天數(shù)=運水泥的總噸數(shù)(一定),理解每天運的噸數(shù)和需要的天數(shù)成反比例。通過上面四個實例的研究,學(xué)生初步感知了反比例的含義,于是用字母x、y表示兩種相關(guān)聯(lián)的量,用k表示兩個量的乘積,把反比例關(guān)系表示成xy=k(一定),形成反比例的概念。
練習(xí)十三第6~8題配合例3的教學(xué),重溫認(rèn)識反比例的過程,應(yīng)用概念進(jìn)行判斷,從而加強(qiáng)對反比例的理解。第8題在方格紙上分別呈現(xiàn)了三個面積都是12平方厘米的長方形、三個周長都是14厘米的長方形,看圖在表格里填出各個長方形的長與寬。前三個長方形的長乘寬分別是121=12、62=12、43=12,即長寬=面積(一定),得到的結(jié)論是長方形的面積一定,長與寬成反比例。后三個長方形的長乘寬分別是61=6、52=10、43=12,這些周長相等的長方形,長與寬的乘積不相等,所以長方形的周長一定,長與寬不成反比例。教學(xué)這道題要讓學(xué)生經(jīng)歷得出結(jié)論的過程,強(qiáng)化對反比例概念的理解。第9~13題是綜合練習(xí),練習(xí)內(nèi)容包括成正比例的量與成反比例的量的比較,成比例的量與不成比例的量的比較,比例尺與正比例關(guān)系,還要尋找生活中成正比例的量或成反比例的量的實例。編排這些練習(xí),要通過比較與判斷進(jìn)一步使學(xué)生清晰地理解概念,掌握成正、反比例的量的變化規(guī)律;要聯(lián)系正比例的概念體會比例尺的意義,形成新的認(rèn)知結(jié)構(gòu);要體驗生活中經(jīng)??吹匠烧壤牧颗c成反比例的量,培養(yǎng)數(shù)學(xué)意識。
正比例反比例教案篇二
教學(xué)要求:1、使學(xué)生理解正比例的意義,能根據(jù)正比例的意義判斷是不是成正比例。
2、培養(yǎng)學(xué)生概括能力和分析判斷能力。
3、培養(yǎng)學(xué)生用發(fā)展變化的觀點來分析問題的能力。
教學(xué)重點:成正比例的量的特征及其判斷方法。
教學(xué)難點:理解兩個變量之間的比例關(guān)系,發(fā)現(xiàn)思考兩種相關(guān)聯(lián)的量的變化規(guī)律.
教學(xué)過程:
一、四顧舊知,復(fù)習(xí)鋪墊。
1、已知路程和時間,求速度。
2、已知總價和數(shù)量,求單價。
3、已知工作總量和工作時間,求工作效率。
二、引導(dǎo)探索,學(xué)習(xí)新知。
1、教學(xué)例1:
出示:一列火車1小時行駛90千米,2小時行駛180千米,
3小時行駛270千米,4小時行駛360千米,
5小時行駛450千米,6小時行駛540千米,
7小時行駛630千米,8小時行駛720千米……。
(1)出示下表,填表。
一列火車行駛的時間和路程。
時間。
路程。
填表,思考:在填表中你發(fā)現(xiàn)了什么?
時間變化,路程也隨著變化,我們就說時間和路程是兩個相關(guān)聯(lián)的量。(板書:兩種相關(guān)聯(lián)的量)。
根據(jù)計算,你發(fā)現(xiàn)了什么?
相對應(yīng)的兩個數(shù)的比的比值一樣或固定不變,在數(shù)學(xué)上叫做一定。
用式子表示他們的關(guān)系是:路程/時間=速度(一定)(板書)。
(2)教師小結(jié):
同學(xué)們通過填表,交流,知道時間和路程是.兩種相關(guān)聯(lián)的量,路程隨著時間的變化而變化.時間擴(kuò)大,路程隨著擴(kuò)大;時間縮小,路程也隨著縮小。即:路程/時間=速度(一定)。
2、教學(xué)例2:
(1)花布的米數(shù)和總價表。
數(shù)量1234567……。
總價8.216.424.632.841.049.257.4……。
(2)觀察圖表,發(fā)現(xiàn)什么規(guī)律?
用式子表示它們的關(guān)系:總價/米數(shù)=單價(一定)。
3、抽象概括正比例的意義。
(1)比較例1、例2,思考并討論:這兩個例題有什么共同點?
(2)兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應(yīng)的兩個數(shù)的比值(也就是商)一定,這兩個量就叫做成正比例的量,它們的關(guān)系叫做正比例關(guān)系。
(3)看書p39,進(jìn)一步理解正比例的意義。
x/y=k(一定)。
4、看書p40例2。
(1)題中有幾種量?哪兩種量是相關(guān)聯(lián)的量?
(2)體積和高度的比的比值是多少?這個比值是什么?是不是一定?
(3)它們的數(shù)量關(guān)系式是什么?
(4)從圖中你發(fā)現(xiàn)了什么?
三、課堂小結(jié):
什么是成正比例的量?它必須具備什么條件?怎樣判斷成正比例的量?
四、課堂練習(xí):
1、p41做一做。
2、p43~44練習(xí)七第1~5題。
第二課時。
教學(xué)內(nèi)容:p42成反比例的量。
教學(xué)目的:1、理解反比例的意義,能根據(jù)反比例的意義,正確的判斷兩種量是否成反比例。
2、通過引導(dǎo)學(xué)生討論探究,分析合作,使學(xué)生進(jìn)一步認(rèn)識事物之間的聯(lián)系和發(fā)展變化的規(guī)律。
3、初步滲透函數(shù)思想。
教學(xué)重點:引導(dǎo)學(xué)生總結(jié)出成反比例的量,是相關(guān)的兩種量中相對應(yīng)的兩個數(shù)積一定,進(jìn)而抽象概括出成反比例的關(guān)系式.
教學(xué)難點:利用反比例的意義,正確判斷兩個量是否成反比例.
教學(xué)過程:
一、復(fù)習(xí)鋪墊。
1、下面兩種量是不是成正比例?為什么?
購買練習(xí)本的價錢0.80元,1本;1.60元,2本;3.20元,4本;4.80元6本.
2、成正比例的量有什么特征?
二、探究新知。
1、導(dǎo)入新課:這節(jié)課我們繼續(xù)學(xué)習(xí)常見的數(shù)量關(guān)系中的另一種特征--成反比例的量。
2、教學(xué)p42例3。
(1)引導(dǎo)學(xué)生觀察上表內(nèi)數(shù)據(jù),然后回答下面問題:
a、表中有哪兩種量?這兩種量相關(guān)聯(lián)嗎?為什么?
b、水的高度是否隨著底面積的變化而變化?怎樣變化的?
d、這個積表示什么?寫出表示它們之間的數(shù)量關(guān)系式。
(2)從中你發(fā)現(xiàn)了什么?這與復(fù)習(xí)題相比有什么不同?
a、學(xué)生討論交流。
b、引導(dǎo)學(xué)生回答:
(3)教師引導(dǎo)學(xué)生明確:因為水的體積一定,所以水的高度隨著底面積的變化面變化。底面積增加,高度反而降低,底面積減少,高度反而升高,而且高度和底面積的乘積一定,我們就說高度和底面積成反比例關(guān)系,高度和底面積叫做成反比例的量。
(4)如果用字母x和y表示兩種相關(guān)的量,用k表示它們的積一定,反比例可以用一個什么樣的式子表示?板書:x×y=k(一定)。
三、鞏固練習(xí)。
1、想一想:成反比例的量應(yīng)具備什么條件?
2、判斷下面每題中的兩個量是不是成反比例,并說明理由。
(1)路程一定,速度和時間。
(2)小明從家到學(xué)校,每分走的速度和所需時間。
(3)平行四邊形面積一定,底和高。
(4)小林做10道數(shù)學(xué)題,已做的題和沒有做的題。
(5)小明拿一些錢買鉛筆,單價和購買的數(shù)量。
(6)你能舉一個反比例的例子嗎?
四、全課小節(jié)。
這節(jié)課我們學(xué)習(xí)了成反比例的量,知道了什么樣的兩個量是成反比例的兩個量,也學(xué)會了怎樣判斷兩種量是不是成反比例。
五、課堂練習(xí)。
p45~46練習(xí)七第6~11題。
第三課時。
教學(xué)目標(biāo):1、進(jìn)一步理解正比例和反比例的意義,弄清它們的聯(lián)系和區(qū)別。掌握它們的變化規(guī)律。
2、使學(xué)生能正確判斷正、反比例。
3、發(fā)展學(xué)生分析、比較、抽象、概括能力,激發(fā)學(xué)生的學(xué)習(xí)興趣。
教學(xué)難點:正反比例的聯(lián)系和區(qū)別。
教學(xué)重點:能判斷正、反比例。
教學(xué)過程:
一、復(fù)習(xí):
判斷:下面每組中的兩個量成什么關(guān)系?
1、單價一定,數(shù)量和總價。
2、路程一定,速度和時間。
3、正方形的邊長和它的面積。
4、時間一定,工效和工作總量。
二、新知:
1、出示課題:
2、教學(xué)補充例題。
出示表1。
路程(千米)5102550100。
時間(時)1251020。
表2。
速度(千米/時)1005020105。
時間(時)1251020。
分組討論、交流:說一說怎樣想的,同時填空。引導(dǎo)學(xué)生討論回答。
總結(jié)路程、速度、時間三個量中每兩個量之間的比例關(guān)系。
速度×?xí)r間=路程=速度=時間。
判斷:
(1)速度一定,路程和時間成什么比例?
(2)路程一定,速度和時間成什么比例?
(3)時間一定,路程和速度成什么比例?
3、比較正比例、反比例的關(guān)系。
正反比例的相同點:都有兩種相關(guān)聯(lián)的量,一種量隨著另一種量變化。
不同點:正比例使變化相同,一種量擴(kuò)大或縮小,另一種量也擴(kuò)大或縮小。相對應(yīng)的每兩個數(shù)的比值(商)一定,反比例是變化相反,一種量擴(kuò)大(或縮?。?,另一種量反而縮?。〝U(kuò)大)相對應(yīng)的每兩個量的積一定。
三、鞏固練習(xí)。
1、做一做。
判斷單價、數(shù)量和總價中的一種量一定,另外兩種量成什么關(guān)系。為什么?
單價一定,數(shù)量和總價-。
總價一定,數(shù)量和單價-。
數(shù)量一定,總價和單價-。
2.判斷下面一些相關(guān)聯(lián)的量成什么比例?為什么?
(1)除數(shù)一定,和成比例。
被除數(shù)-定,和成比例。
(2)前項一定,和成比例。
(3)后項一定,和成比例。
(4)長方形的長、寬和面積三總量,如果長是一定的,寬和面積成正例關(guān)系。這三種量再什么條件下還能組成比例關(guān)系,是哪種比例關(guān)系。
正比例反比例教案篇三
最近兩節(jié)課教了正、反比例的有關(guān)知識,學(xué)生的學(xué)習(xí)效果不太令人滿意,總感覺有這樣那樣的不足,比如:學(xué)生對概念的理解還不是那么深刻;對正、反比例的判斷方法掌握得還不夠到位等等。其實我深知本課學(xué)習(xí)內(nèi)容比較抽象,怎樣讓這些抽象的概念知識形象化,教學(xué)中我注重了強(qiáng)化學(xué)生的體驗感知,我從多個學(xué)生耳熟能詳?shù)纳顚嵗胧?,讓學(xué)生充分感悟所學(xué)的數(shù)學(xué)概念。隨后還進(jìn)行了大量的`層次不同的練習(xí)。
教學(xué)效果與以往相比是有了明顯的提高,但總感覺還是那么不太令人滿意。練習(xí)中學(xué)生對兩種正反比例的量判斷還不是那么熟練,特別是像有時兩種相關(guān)聯(lián)的量并不成比例,如人的身高和年齡;圓的面積和半徑等等。學(xué)生判斷時就會犯經(jīng)驗主義的錯誤,正比例、反比例張冠李戴。反映出學(xué)生對概念的掌握還不是那么清晰。
所以我感覺對于這樣比較抽象的概念課,今后的教學(xué)中我們應(yīng)該如何突破?如何進(jìn)一步提高課堂效益,消除學(xué)生的認(rèn)識誤區(qū),值得我們好好深思。
正比例反比例教案篇四
p50第3——8題,正反比例關(guān)系練習(xí)。
進(jìn)一步認(rèn)識正、反比例關(guān)系的意義,能根據(jù)正、反比例關(guān)系的意義正確判斷,培養(yǎng)學(xué)生分析推理和判斷能力。
一、揭示課題。
二、基本知識練習(xí)。
2、練:950第4題。
先說出數(shù)量關(guān)系式,再判斷成什么比例?
三、綜合練習(xí)。
1、練習(xí):p50第5題。
想一想:這三種數(shù)量之間有怎樣的關(guān)系式,你能找出哪幾種比例關(guān)系?
口答并說說怎樣想的。
2、做練習(xí)十二第6題、第7題。
3、做第8題。
提問:從直線上看,支數(shù)擴(kuò)大或縮小時,錢數(shù)分別怎樣變化?
四、延伸練習(xí)。
下面題里的數(shù)量成什么關(guān)系?你能列出式子表示數(shù)量之間的相等關(guān)系嗎?
1、一輛汽車從甲地到乙地要行千米,每小時行50千米,4小時到達(dá);如果每小時行80千米,2.5小時到達(dá)。
2、某工廠3小時織布1800米,照這樣計算,8小時織布x米。
五、課堂。
通過這節(jié)課的練習(xí),你進(jìn)一步認(rèn)識和掌握了哪些知識?
六、作業(yè)。
《練習(xí)與測試》p25第五、六題。
正比例反比例教案篇五
p47~48,例7、正、反比例的比較。
進(jìn)一步理解正、反比例的意義,弄清它們的聯(lián)系和區(qū)別,掌握它們的變化規(guī)律,能正確運用。
一、復(fù)習(xí)
判斷下面兩種理成不成比例,成什么比例,為什么?
(1)單價一定,數(shù)量和總價。
(2)路程一定,速度和時間。
(3)正方形的邊長和它的面積。
(4)工作時間一定,工作效率和工作總量。
二、新授。
1、揭示課題
2、學(xué)習(xí)例7
(1)認(rèn)識:“千米/時”的讀法意義。
(2)出示書中的問題要求學(xué)生逐一回答。
(3)提問:誰能說一說路程、速度和時間這三個量可以寫成什么樣的關(guān)系式?
(4)填空:用下面的形式分別表示兩個表的內(nèi)容。
當(dāng)()一定時,()和()成()比例關(guān)系。
還有什么樣的依存關(guān)系?
(5)教師作評講并。
(6)用圖表示例7中的兩種量的關(guān)系。
指導(dǎo)學(xué)生描點、連線
在這條直線上,當(dāng)時間的值擴(kuò)大時,路程的對應(yīng)值是怎樣變化的?時間的值縮小呢?
用同樣的方法觀察右表。
3、正、反比例的特點(異同點)
由學(xué)生比、說
三、鞏固練習(xí)
1、練一練第1、2題
2、p49第1題。
四、課堂:
正、反比例關(guān)系各有什么特點?怎樣判斷正比例或反比例關(guān)系?關(guān)鍵是什么?
五、作業(yè)
p49第2題(1)(4)(5)(6)(9)
六、課后作業(yè)
1、p49第2題(2)(3)(7)(8)(10)
2、收集生活中正、反比例關(guān)系的量并分析。
正比例反比例教案篇六
教學(xué)過程。
談話導(dǎo)入。
師:誰能用比的知識說一說我們班男女同學(xué)的人數(shù)情況?
(指名匯報)。
師:今天我們就一起來整理和復(fù)習(xí)比和比例的有關(guān)知識。
回顧與整理。
1.(1)舉例說一說什么是比,什么是比例,什么是比例尺以及它們的應(yīng)用。
預(yù)設(shè)。
生1:兩個數(shù)相除又叫作兩個數(shù)的比,如5÷2,可以寫成5∶2。
生2:表示兩個比相等的式子叫作比例,如8∶4=24∶12。
生3:圖上距離和實際距離的比,叫作這幅圖的比例尺,如一幅地圖的比例尺是。比例尺可分為數(shù)值比例尺和線段比例尺。
生4:配制農(nóng)藥會應(yīng)用到比的知識;地圖上一般都有比例尺。
……。
(2)說一說比與比例有什么區(qū)別。
比
比例。
各部分名稱。
0.9∶0.6=1.5。
前項后項比值。
基本性質(zhì)。
比的前項和后項同時乘或除以相同的數(shù)(0除外),比值不變。
在比例里,兩個內(nèi)項的積等于兩個外項的積。
(3)出示教材83頁“回顧與交流”2題。
學(xué)生獨立完成,思考比、分?jǐn)?shù)、除法之間的關(guān)系,并全班交流。
預(yù)設(shè)。
生1:除法算式中的被除數(shù)相當(dāng)于分?jǐn)?shù)的分子,相當(dāng)于比的前項;除法算式中的除數(shù)相當(dāng)于分?jǐn)?shù)的分母,相當(dāng)于比的后項;除號相當(dāng)于分?jǐn)?shù)的分?jǐn)?shù)線,相當(dāng)于比的比號。
生2:除法算式的商相當(dāng)于分?jǐn)?shù)的分?jǐn)?shù)值,相當(dāng)于比的比值。
強(qiáng)調(diào):因為0不能作除數(shù),所以所有分?jǐn)?shù)的分母及比的后項都不能為0。
正比例反比例教案篇七
3.滲透辯證唯物主義的觀點,進(jìn)行“運用變化觀點”的啟蒙教育.。
教學(xué)重點。
理解正反比例的意義,掌握正反比例的變化的規(guī)律.。
教學(xué)難點。
理解正反比例的意義,掌握正反比例的變化的規(guī)律.。
教學(xué)過程。
一、導(dǎo)入新課。
(一)昨天老師買了一些蘋果,吃了一部分,你能想到什么?
(二)教師提問。
1.你為什么馬上能想到還剩多少呢?
2.是不是因為吃了的和剩下的是兩種相關(guān)聯(lián)的量?
教師板書:兩種相關(guān)聯(lián)的量。
(三)教師談話。
在實際生活中兩種相關(guān)的量是很多的,例如總價和單價是兩種相關(guān)聯(lián)的量,總價和。
數(shù)量也是兩種相關(guān)聯(lián)的量.你還能舉出一些例子嗎?
二、新授教學(xué)。
(一)成正比例的量。
例1.一列火車行駛的時間和所行的路程如下表:
時間(時)12345678……。
路程(千米)90180270360450540630720……。
1.寫出路程和時間的比并計算比值.。
(1)。
(2)2表示什么?180呢?比值呢?
(3)這個比值表示什么意義?
(4)360比5可以嗎?為什么?
……。
2.思考。
(1)180千米對應(yīng)的時間是多少?4小時對應(yīng)的路程又是多少?
(2)在這一組題中上邊的一列數(shù)表示什么?下邊一列數(shù)表示什么?所求出的比值呢?
教師板書:時間、路程、速度。
(3)速度是怎樣得到的?
教師板書:
(4)路程比時間得到了速度,速度也就是比值,比值相當(dāng)于除法中的什么?
(5)在這組題中誰與誰是兩種相關(guān)聯(lián)的量?它們是如何相關(guān)聯(lián)的?舉例說明變化規(guī)律.。
3.小結(jié):有什么規(guī)律?
教師板書:商不變。
(二)成反比例的量。
1.華豐機(jī)械廠加工一批機(jī)器零件,每小時加工的數(shù)量和所需的加工時間如下表.。
工效(個)102030405060……。
時間(時)603020151210……。
2.教師提問。
(1)計算工效和時間的乘積.。
(2)這一組題中涉及了幾種量?誰與誰是相關(guān)聯(lián)的量?
(3)請你舉例說明誰與誰是相對應(yīng)的兩個數(shù)?
(4)在這一組題中兩種相關(guān)聯(lián)的量是如何變化的?(舉例說明)。
3.小結(jié):有什么規(guī)律?(板書:積不變)。
(三)不成比例的量。
1.出示表格。
運走的噸數(shù)10203040。
剩下的噸數(shù)90807060。
總噸數(shù)(和不變)100100100100。
2.教師提問。
(1)總噸數(shù)是怎樣得到的?
(2)誰與誰是兩種相關(guān)聯(lián)的量?
(3)它們又是怎樣變化的?變化的規(guī)律是什么?
運走的噸數(shù)少,剩下的噸數(shù)多;運走的噸數(shù)多,剩下的噸數(shù)少;總和不變。
(四)結(jié)合三組題觀察、討論、總結(jié)變化規(guī)律.。
討論題:
1.這三組題每組題中誰與誰是兩種相關(guān)聯(lián)的量?
2.在變化過程中,它們的異同點是什么?
共同點:都有兩種相關(guān)聯(lián)的量,一種量變化,另一量也隨著變化。
不同點:第一組商不變,第二組積不變,第三組和不變.。
總結(jié):
3.分別概括正、反比例的意義。
4.強(qiáng)調(diào)第三組題中兩種相關(guān)聯(lián)的量叫做不成比例。
5.教師提問。
(1)兩種量成正比例必須具備什么條件?
(2)兩種量成反比例必須具備什么條件?
(五)字母關(guān)系式。
三、鞏固練習(xí)。
判斷下面各題是否成比例?成什么比例?
正比例反比例教案篇八
小學(xué)六年級的學(xué)生在學(xué)習(xí)正比例和反比例這部分內(nèi)容時,尤其是在練習(xí)過程中容易混淆不清,經(jīng)常弄錯。下面,本文從不同的角度幫助他們正確區(qū)分這兩者的關(guān)系,希望對他們的學(xué)習(xí)會有所幫助。
一、正確認(rèn)識兩者的意義。
正比例和反比例的意義教材中是安排在從p39到p47來進(jìn)行敘述講解的,且都是通過對實驗中的數(shù)據(jù)進(jìn)行分析之后概括得出的結(jié)論,這樣學(xué)生相對易于接受。
1.正比例的意義:教材中的表述是“兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應(yīng)的兩個數(shù)的比值一定,這兩種量就叫做成正比例的量,它們的關(guān)系叫做正比例關(guān)系。”
2.反比例的意義:教材中的表述是“兩種相關(guān)聯(lián)的量,一種量變化,另種量也隨著變化,如果這兩種量中相對應(yīng)的兩個數(shù)的積一定,這兩種量就叫做成反比例的量,它們的關(guān)系叫做反比例關(guān)系。”
如果用字母x和y表示兩種相關(guān)聯(lián)的量,用k表示它們的比值(一定),正比例關(guān)系可以用下面的關(guān)系式來表示:
y/x=k(一定)或y=kx(k一定)。
(二)反比例關(guān)系的表達(dá)式。
如果用字母x和y表示兩種相關(guān)聯(lián)的量,用k表示它們的乘積(一定),反比例關(guān)系可以用下面的關(guān)系式來表示:
x×y=k(k一定)或y=kx(k一定)。
1.正比例關(guān)系中兩種相關(guān)聯(lián)的量的變化規(guī)律。正比例關(guān)系中兩種相關(guān)聯(lián)的量的變化規(guī)律是:同時擴(kuò)大,同時縮小,比值(或商)不變。
例如:汽車每小時行駛的速度一定,所行的路程和所用的時間是否成正比例?
完成該題練習(xí)時,可以先寫出路程、速度和時間三者之間的關(guān)系式:速度=路程/時間,已知條件中速度為一定(即常量),根據(jù)“速度=路程/時間”這一關(guān)系式,結(jié)合正比例的意義,即可知道所行的路程和所用的時間是成正比例關(guān)系的。也就是說,當(dāng)速度一定時,走的路程越多,所花費的時間也越多,反之,亦然。換句話說,路程和時間是成倍增長或縮小的。
2.反比例關(guān)系的兩種相關(guān)聯(lián)的量的變化規(guī)律。
反比例關(guān)系的兩種相關(guān)聯(lián)的量的變化規(guī)律是:一種量擴(kuò)大,另一種量縮小,一種量縮而另一種量則擴(kuò)大,積不變。
例如:當(dāng)圖上距離一定時,實際距離和比例尺是否成反比例?因為實際距離×比例尺=圖上距離(一定),所以,實際距離和比例尺是成反比例的。
1.在事物關(guān)系中都包含有三個量,(本網(wǎng)網(wǎng))即有兩個變量和一個常量(即定值)。
2.在相關(guān)聯(lián)的兩個變量中,當(dāng)一個變量發(fā)生變化時(擴(kuò)大或縮?。瑒t另一個變量也隨之發(fā)生變化。
3.它們相對應(yīng)的兩個變量的積或商都是一定的(即常量)。
也就是說,在正比例和反比例的兩個相關(guān)聯(lián)的變量中,均是一個量變化,另一個量也隨之變化。并且變化方式均屬于擴(kuò)大(乘以一個數(shù))或縮?。ǔ砸粋€數(shù))若干倍的變化。
1.正比例的定量(或定值)是兩個變量中相對應(yīng)的兩個數(shù)(即變量)的比值(或商)。反比例的定量是兩個變量中相對應(yīng)的兩個數(shù)的積。
2.當(dāng)用圖象來表示正比例或反比例中兩個變量之間的關(guān)系時,所畫出來的圖象是不一樣的。正比例的圖象是一條傾斜的直線(又叫斜線)。反比例的圖象是一條曲線,且兩端永遠(yuǎn)不會與兩條軸線(即橫軸和縱軸或函數(shù)中所稱的x軸和y軸)相交。
當(dāng)正比例中的x值(自變量的值)轉(zhuǎn)化為它的倒數(shù)時,由正比例轉(zhuǎn)化為反比例;當(dāng)反比例中的x值(自變量的值)也轉(zhuǎn)化為它的倒數(shù)時,則由反比例轉(zhuǎn)化為正比例。
需要說明的是,教科書中在“正比例和反比例的意義”的講解中,并沒有指出正比例和反比例關(guān)系表達(dá)式中常量和變量的取值范圍。根據(jù)正比例的關(guān)系式y(tǒng)/x=k(一定)和反比例的關(guān)系x×y=k(k一定)可以知道,無論是正比例還是反比例,兩個變量x、y和常量k均不能為零。試想,在正比例y/x=k(一定)中,如果x為0,式子無意義;如果y為0,x不為0,則x的值是不確定的(這時候k的值為0),此時x和y就不存在正比例的說法了。同樣,在反比例x×y=k(k一定)中,如果x和y兩個變量中,只要其中一個為0或兩個都同時為0,則k的值都為0,x和y也無所謂反比例關(guān)系了。再說,如果x和y同時為0的話,那么x和y也不叫變量了,都不符合反比例的意義。所以,無論是正比例關(guān)系,還是反比例關(guān)系中,兩個變量x和y以及常量k都不能為0。
因此,當(dāng)正比例或反比例關(guān)系中其中一個變量用字母表示時,要求我們通過討論確定另一個變量的取值范圍的時候,我們就要注意正比例或反比例關(guān)系中兩個變量的取值絕對不能為零,否則,就失去意義了。
【參考文獻(xiàn)】。
1.盧江、楊剛主編,義務(wù)教育課程標(biāo)準(zhǔn)實驗教科書小學(xué)六年級《數(shù)學(xué)》下冊[s],人民教育出版社出版。
2.謝鼓平主編,小學(xué)六年級數(shù)學(xué)《教案與設(shè)計》[s],新疆青少年出版社出版。
3.《貴州教育》[j]第3-4期合訂本第65頁中《小學(xué)數(shù)學(xué)畢業(yè)復(fù)習(xí)建議》(王艷)。
正比例反比例教案篇九
其二為今后對函數(shù)進(jìn)一步的學(xué)習(xí)做準(zhǔn)備我們再來看一看函數(shù)課程的發(fā)展鏈。
小學(xué):數(shù)的認(rèn)識,圖形數(shù)量找規(guī)律,數(shù)的`計算,圖形周長和面積,字母表示數(shù)—變量,統(tǒng)計—變量,商不變的性質(zhì)—常函數(shù),正反比例—函數(shù)。
初中:一次函數(shù),二次函數(shù),正反比例函數(shù),函數(shù)概念的初步認(rèn)識。
高中:函數(shù)概念的映射定義。一些具體函數(shù)模型—簡單冪函數(shù)及其拓展,實際函數(shù)的模型——分段函數(shù),指數(shù)函數(shù),對數(shù)函數(shù),三角函數(shù),數(shù)列,函數(shù)思想的廣泛應(yīng)用。
到了大學(xué)還在繼續(xù)著對函數(shù)的學(xué)習(xí),可以看出小學(xué)階段的只是對函數(shù)的最初級的最淺顯的認(rèn)識,但卻影響著孩子今后對函數(shù)的學(xué)習(xí)。從多方面理解變化的量,打破了思維的局限,利于今后函數(shù)概念正確的建立。
正比例反比例教案篇十
1、甲數(shù)除以乙數(shù)的商是2.8,甲、乙兩數(shù)的最簡比是()。
2、圓的周長與直徑的比值是();正方形的周長與邊長的比值是()。
3、在24的約數(shù)中選出四個數(shù),組成一個比例是()。
4、如果蘋果重量的1/6與橘子重量的20%相等,那么蘋果重量與橘子重量的比是()。
5、在一個比例中。兩個內(nèi)項互為倒數(shù),其中一個外項是最小的合數(shù),另一個外項是()。
6、用一張長和寬之比為2:1的紙剪兩個最大的圓,這張紙的利用率是()。
7、一根鋼管長3米,截去1/3后又截去1/3米,比原來短了()米。
8、圓柱體的側(cè)面積一定,()和高成反比例。
9、兩個長方形的面積比是8:7,長的比是4:5,寬的比是()。
10、請寫出兩個內(nèi)項相等,兩個比的比值都是0.4的一個比例。
二、判斷題。
2、等第等高的平行四邊形與三角形的面積之比為2:1。
4、甲、乙兩個足球隊的比賽結(jié)果是3:0,這個比的前項是3,后項是0。
5、兩個正方體的棱長之比為2:3,則他們的體積之比為4:9。
三、選擇題。
1、一種長5毫米的零件,畫在圖紙上長10厘米,這副圖的比例尺是()。
a、1/2b、2/1c、1/20d、20/1。
2、圓的面積和()成正比例。
a、半徑b、直徑c、半徑的平方d、
3、一項工程,甲獨做5天完成,乙獨做6天完成,甲、乙兩人的工作效率的比是()。
a、5:6b、6:5c、1/6:1/5d、5/11:6/11。
4、路程一定,所走的路程和剩下的`路程()。
5、xy+2=k(一定),x和y()。
6、下列選項中,()成正比例,()成反比例,()不成比例。
a、比的前項一定,比的后項和比值。
b、比例尺一定,分母和分?jǐn)?shù)值。
c、正方形的邊長和面積。
四、計算題(解比例略)。
五、解決問題。
6、一個長方形操場長100米,寬50米,把它畫在比例尺是1/2000的圖紙上,長和寬各應(yīng)畫多少厘米?請畫出這個長方形。
正比例反比例教案篇十一
在教學(xué)《正比例和反比例的復(fù)習(xí)》這一課時,我就開門見山的向?qū)W生提問那誰來說說正比例和反比例之間的有什么區(qū)別和聯(lián)系?完成這張表格。出示小黑板。
讓學(xué)生通過觀察表格,總結(jié)出兩種比例關(guān)系下兩種量不同的變化規(guī)律,即另一方面的不同點。
在原來的教學(xué)設(shè)計中,我只是簡單的安排了復(fù)習(xí),讓學(xué)生口述正反比例的意義,然后再讓學(xué)生做幾個判斷正反比例的題目,在實際上的過程中,我讓學(xué)生自己復(fù)習(xí)完成上面的表格。
目的有兩個:
1、使一部分不能完整說出意義的后進(jìn)生有個清楚的再認(rèn)識,達(dá)到鞏固舊知的教學(xué)目的。
2、為讓學(xué)生準(zhǔn)確說出兩者的不同點和相同點鋪設(shè)道路。學(xué)生常無法用準(zhǔn)確的語言總結(jié)兩者的聯(lián)系表達(dá)出來,所以這一小小的臨時改動收到了良好的效果。
因此,個人認(rèn)為在以后的教學(xué)設(shè)計中,復(fù)習(xí)的設(shè)計也要多樣化,要把復(fù)習(xí)當(dāng)作新課一樣來加以修改、創(chuàng)新,讓復(fù)習(xí)課取得更好的教學(xué)效果。
正比例反比例教案篇十二
接到學(xué)期公開課任務(wù)的當(dāng)天晚上就開始著手準(zhǔn)備,查找相關(guān)資料,做到心中有數(shù),怕自己做的不好,很是緊張。第二天先寫好了常規(guī)的教學(xué)設(shè)計,也算是雛形已定。我覺得對我自己來說,教學(xué)設(shè)計一定要先把握好教學(xué)目標(biāo)的分析,所以我參照要求設(shè)定了合適的教學(xué)目標(biāo)。初稿是按照流水帳形式,和平時上課一樣,按照復(fù)習(xí)引入、講授新課、分析例題、練習(xí)鞏固、歸納小結(jié)、布置作業(yè)等程序進(jìn)行。初稿交給指導(dǎo)老師后,孟主任建議其中的復(fù)習(xí)引入環(huán)節(jié)做大的調(diào)整,對習(xí)題的設(shè)置也給出了指導(dǎo)建議,修改后流暢了很多。隨后設(shè)計了學(xué)卷,給董老師把關(guān)指導(dǎo)。因為我定位于層次相對高的學(xué)生,在習(xí)題的數(shù)量設(shè)置、坡度設(shè)置上不合理,難度不適宜。有些題目過于簡單,毫無價值;而有些則過難,在課堂上會耽誤很多時間,于是想到變式訓(xùn)練,在題目設(shè)置的順序和難度上下工夫。
在第一次試講后,發(fā)現(xiàn)引入部分太拖沓,用了10分鐘時間才歸納得出反比例函數(shù)的定義和形式,隨后的兩個針對定義設(shè)計的稍難的題目就直接跨過到待定系數(shù)法求反比例函數(shù)解析式,課程結(jié)束得比較匆忙。
在備課組老師的指導(dǎo)下,重新設(shè)置了題目的數(shù)量,第4題中原來為了復(fù)習(xí)設(shè)置了五個小問題,在函數(shù)概念上糾纏過多,反而引起學(xué)生理解困難;把引入部分第5題的練習(xí)由原來的四個減少到兩個,剩下了的兩個留在第7題作為練習(xí)。由于函數(shù)解析式的形式通過歸納與對比形成新知識并不需要太多雷同的題目,這樣引入時間大大減少,而列關(guān)系式的題目難度并不大,把第一次的逐題講解變成了答案展示,節(jié)約了近10分鐘時間。其實開始是對學(xué)生的水平不太相信,怕題目過難,學(xué)生不能迅速完成,時間證明,引入部分的題目難度不大,學(xué)生能迅速完成,而我還是按照自己的想法進(jìn)行第一次的試講,所以時間顯得很緊張,沒有顧及學(xué)生的實際水平。
第3題的最后一問“反比例函數(shù)kxy=還可以表示成什么的形式”,這個問題顯得很寬泛,學(xué)生也無從下手,不知從哪個角度入手,也不明白老師想問的問題到底是什么,這是一個無效的設(shè)計。后來結(jié)合要求,麗濤說新課只要求學(xué)生能辨認(rèn)出偽裝后的反比例函數(shù)或者說經(jīng)過等價變形的反比例函數(shù)的形式,因此問題改成了以選擇題的形式出現(xiàn),這樣學(xué)生也有了一定的目標(biāo)范圍,也不會因為問題設(shè)置不合理而耽誤過多時間。當(dāng)他能正確選擇出答案時,也說明他知道了這幾個答案是由標(biāo)準(zhǔn)形式經(jīng)歷了怎么樣的等價變形而得到的。
第6題目更改設(shè)計后是使得教學(xué)過程流暢了很多且節(jié)約了時間,但是在實際上課過程中,對這個問題忽略了,認(rèn)為學(xué)生能直接選擇出答案就是他們已經(jīng)牢記了這些形式。此處應(yīng)該在學(xué)生選擇了正確答案后,教師最好再花2分鐘的時間講解下變形過程,同時也回顧了分式的乘法、負(fù)指數(shù)的意義等知識,加深知識點之間的聯(lián)系;或者讓學(xué)生口頭回答他選擇的理由。總之在這里應(yīng)該停頓回顧下這個重要的知識點,以加深對新知識的印象,及時總結(jié)歸納反比例函數(shù)形式的特點,要能突破這個學(xué)生理解的難點,要不會對第8題的影響就比較大。
第5題在講解過程中花了過多的時間,說明前面kxy=及其變形講解不透徹。k值(反比例系數(shù))不能順利求出,表示y是的x反比例函數(shù)疑惑頗多,講解費時,在成反比例和反比例函數(shù)之間有混淆。經(jīng)過對比板書,學(xué)生明白了題目要求的是y與x成反比例,為了鞏固對反比例概念的理解,增加了練習(xí)6。
課堂歸納小結(jié)第一次設(shè)計的時候,就是問一句“本節(jié)課你有什么收獲?”,對于這些寬泛的問題,學(xué)生一般都不知怎么回答,所以要緊扣定義,引導(dǎo)學(xué)生。這樣,學(xué)生知道了本節(jié)課的內(nèi)容,也明白了空白處就是本節(jié)課的重點要掌握的部分了。
在講課的過程中,與學(xué)生的互動較少,沒有充分調(diào)動起學(xué)生的積極性,自己也有點緊張,學(xué)生也有點緊張。在數(shù)次不停修改教學(xué)設(shè)計的過程中,自己的認(rèn)識也在不斷提高,題目設(shè)計水平也有了提高,指導(dǎo)老師,還有我的同事都給了我不少的建議和幫助,才使我的設(shè)計更臻完善,在此也感謝他們!
正比例反比例教案篇十三
正比例和反比例復(fù)習(xí)反思復(fù)習(xí)階段,似乎少了往日的輕松,時而還夾雜著匆忙的氣息,感覺孩子們的表情略顯凝重了,或許,要整理與復(fù)習(xí)整個小學(xué)階段的所有知識點,確實不是一件輕而易舉的事。而我,這個階段不僅是孩子們知識復(fù)習(xí)中的領(lǐng)路人,更應(yīng)該是緩解他們內(nèi)心不安的強(qiáng)大后盾。于是,我盡量會讓復(fù)習(xí)課堂變得輕松一些,變得和諧一些,減少一切不必要的壓力。
今天,與孩子們一起圍繞課本上的復(fù)習(xí)進(jìn)度,整理與復(fù)習(xí)《正比例與反比例》。
這個知識點大部分是六下的知識,并不是很早的學(xué)習(xí)內(nèi)容,所以孩子們應(yīng)該不會陌生。我想,如何讓將舊知與其融合,才是本節(jié)課我最需要關(guān)注的。
這部分知識,主要復(fù)習(xí)比的意義和性質(zhì),以及正比例和反比例的量。課前,我讓孩子們自主進(jìn)行了整理,讓孩子們對正比例和反比例的知識有一個全面地認(rèn)識,使所學(xué)知識結(jié)構(gòu)化、系統(tǒng)化。課上,按照課本上的設(shè)計意圖,我結(jié)合了具體的例子,引導(dǎo)孩子們回憶并整理比的意義、基本性質(zhì)以及比的應(yīng)用,再利用填空的形式幫助孩子們進(jìn)一步明確比與分?jǐn)?shù)、除法的關(guān)系,順利成章地過渡到比的基本性質(zhì)、分?jǐn)?shù)的基本性質(zhì)和商不變規(guī)律的內(nèi)在一致性。
對于復(fù)習(xí)正比例和反比例,重點是理解兩者的意義。我先讓孩子們回憶判斷兩種量是否成正比例或反比例的方法。孩子們還是很熟練的,都能按照定義來判斷,比值一定成正比例,乘積一定就成反比例,兩個量和或差一定時,兩個量不成比例。而判斷的關(guān)鍵還是在于找到數(shù)量之間的關(guān)系,當(dāng)兩個量成正比例關(guān)系的時候圖像呈一條直線,而反比例的兩個量的圖像呈一條曲線。雖然曲線在課本中未出現(xiàn)過,但當(dāng)時新知時,我還是讓孩子們初步了解了,有了比較,我相信孩子們腦海中的印象是深刻的。此刻復(fù)習(xí),孩子們果然記憶猶新,在孩子們判斷的過程中,我發(fā)現(xiàn)孩子們基本已能熟練判斷,對數(shù)量關(guān)系的理解,也比之前有所進(jìn)步。
復(fù)習(xí)課上,專項練習(xí)是必備的。除了課本上安排的練習(xí),我還為孩子們補充了一些解決實際問題的練習(xí),讓孩子們在實際問題中進(jìn)一步認(rèn)識成正比例和反比例的量,感受正比例和反比例是描述數(shù)量關(guān)系及其變化規(guī)律,以及深刻理解正比例和反比例的意義。
正比例反比例教案篇十四
教學(xué)內(nèi)容:
教科書第64頁例3,完成隨后的練一練和練習(xí)十三第6~8兩題。
教學(xué)目標(biāo):
1、使學(xué)生經(jīng)歷從具體實例中認(rèn)識成反比例的量的過程,初步理解反比例的意義,學(xué)會根據(jù)反比例的意義判斷兩種相關(guān)聯(lián)的量是不是成反比例。
2、使學(xué)生在認(rèn)識成反比例的量的過程中,體會數(shù)量之間相依互變的關(guān)系,感受有效表示數(shù)量關(guān)系及其變化規(guī)律的不同數(shù)學(xué)模型,進(jìn)一步培養(yǎng)觀察能力和發(fā)現(xiàn)規(guī)律的能力。
3、使學(xué)生進(jìn)一步體會數(shù)學(xué)與日常生活的密切聯(lián)系,增強(qiáng)從生活現(xiàn)象中探索數(shù)學(xué)知識和規(guī)律的意識。
教學(xué)重難點:理解反比例的意義,學(xué)會根據(jù)反比例的意義判斷兩種相關(guān)聯(lián)的量是不是成反比例。
教學(xué)準(zhǔn)備:實物投影。
教學(xué)過程:
一、談話導(dǎo)入。
前面我們已經(jīng)初步學(xué)習(xí)了如何判斷兩種相關(guān)聯(lián)的量是否成正比例,并且知道正比例的圖象是一條直線。今天我們將共同學(xué)習(xí)兩種相關(guān)聯(lián)的量可能出現(xiàn)的另一種比例關(guān)系——反比例。
板書課題:認(rèn)識成反比例的量。
二、教學(xué)例3。
1、出示例3的表格,讓學(xué)生說一說表中列出了哪兩種量。
2、引導(dǎo)學(xué)生觀察表中的數(shù)據(jù),說一說這兩種量的數(shù)值分別是怎樣變化的。
可先讓同桌相互說一說,再組織全班交流。通過交流,使學(xué)生初步感知兩種量的變化情況:單價擴(kuò)大,數(shù)量反而縮小;單價縮小,數(shù)量反而擴(kuò)大。
小結(jié):數(shù)量和單價是兩種相關(guān)聯(lián)的量,單價變化,數(shù)量也隨著變化。
3、引導(dǎo)學(xué)生進(jìn)一步觀察表中的數(shù)據(jù),找一找這兩種量的變化的規(guī)律,啟發(fā)學(xué)生從“變化”中去尋找“不變”。
學(xué)生可能會從不同的角度去尋找規(guī)律。
如果學(xué)生發(fā)現(xiàn)不了上述規(guī)律,可引導(dǎo)學(xué)生寫出幾組相對應(yīng)的數(shù)量和單價的乘積。
根據(jù)學(xué)生的回答,教師板書關(guān)系式:數(shù)量×單價=總價(一定)。
5、教師對兩種量之間的關(guān)系作具體說明:數(shù)量。
和單價是兩種相關(guān)聯(lián)的量,單價變化,數(shù)量也隨著變化。當(dāng)單價和對應(yīng)數(shù)量的積總是一定,也就是總價一定時,單價和數(shù)量成反比例,單價和數(shù)量是成反比例的量。
三、教學(xué)“試一試”
1、要求學(xué)生根據(jù)表中的已知條件先把表格填寫完整。
2、根據(jù)表中的數(shù)據(jù),依次討論表格下面的三個問題,并仿照例3作適當(dāng)?shù)陌鍟?/p>
3、讓學(xué)生根據(jù)板書完整地說一說鉛筆的總價和數(shù)量成什么關(guān)系。
四、抽象表達(dá)正比例的意義。
1、引導(dǎo)學(xué)生觀察上面的兩個例子,說說它們有什么共同點。
2、啟發(fā)學(xué)生思考:如果用字母x和。
根據(jù)學(xué)生的回答,板書關(guān)系式:xy=k(一定)。
五、鞏固練習(xí)。
1、完成第65頁的“練一練”。
先讓學(xué)生獨立思考并作出判斷,再要求說明判斷理由。
2、做練習(xí)十三第6~8題。
第6、7題讓學(xué)生按題目要求先各自算一算、想一想,再組織討論和交流。讓學(xué)生完整地說出判斷兩種量是否成反比例的思考過程。
第8題。
1、讓學(xué)生根據(jù)左邊表格中的要求收集數(shù)據(jù),并回答問題(1)。
2、讓學(xué)生根據(jù)右邊表格中的要求收集數(shù)據(jù),并回答問題(2)。
填好表格后,組織學(xué)生討論,明確:只有當(dāng)兩種相關(guān)聯(lián)的量的積一定時,它們才能成反比例。
五、課堂練習(xí):補充習(xí)題相關(guān)練習(xí)。
正比例反比例教案篇十五
其二為今后對函數(shù)進(jìn)一步的學(xué)習(xí)做準(zhǔn)備我們再來看一看函數(shù)課程的發(fā)展鏈。
小學(xué):數(shù)的認(rèn)識,圖形數(shù)量找規(guī)律,數(shù)的`計算,圖形周長和面積,字母表示數(shù)—變量,統(tǒng)計—變量,商不變的性質(zhì)—常函數(shù),正反比例—函數(shù)。
初中:一次函數(shù),二次函數(shù),正反比例函數(shù),函數(shù)概念的初步認(rèn)識。
高中:函數(shù)概念的映射定義。一些具體函數(shù)模型—簡單冪函數(shù)及其拓展,實際函數(shù)的模型——分段函數(shù),指數(shù)函數(shù),對數(shù)函數(shù),三角函數(shù),數(shù)列,函數(shù)思想的廣泛應(yīng)用。
到了大學(xué)還在繼續(xù)著對函數(shù)的學(xué)習(xí),可以看出小學(xué)階段的只是對函數(shù)的最初級的最淺顯的認(rèn)識,但卻影響著孩子今后對函數(shù)的學(xué)習(xí)。從多方面理解變化的量,打破了思維的局限,利于今后函數(shù)概念正確的建立。
正比例反比例教案篇十六
我們發(fā)現(xiàn)教材把比的認(rèn)識放到了六年級的上學(xué)期,學(xué)完了百分?jǐn)?shù)之后就認(rèn)識了比,而刪除了比例的意義和性質(zhì)、解比例以及應(yīng)用正反比應(yīng)用題。而只研究正反比例(圖片),加入了變化的量(圖片),、畫一畫(圖片)、探究與發(fā)現(xiàn)(圖片),等內(nèi)容。
為什么加變化的量、畫一畫、探究與發(fā)現(xiàn)等內(nèi)容?
由困惑引發(fā)了我們的思考。通過學(xué)習(xí)和實踐我們有了下面的答案。
其一在《課標(biāo)》中,更強(qiáng)調(diào)了通過繪圖、估計值、找實例交流等不同于以往的教學(xué)活動,幫助學(xué)生體會、理解兩個變量之間相互依存的關(guān)系,豐富了關(guān)于變量的經(jīng)歷,為以后念打下基礎(chǔ)。學(xué)生繪圖的過程可以說是他親身體驗的過程,是他“經(jīng)歷運用數(shù)學(xué)符號和圖形描述現(xiàn)實世界的過程”,只有親身的經(jīng)歷和體驗,才能給學(xué)生留下深刻的印象,真正體會、理解兩個變量之間相互依存的關(guān)系,豐富了關(guān)于變量的經(jīng)歷,加深了對函數(shù)的認(rèn)識。多種研究也表明,為了有助于學(xué)生對函數(shù)思想的理解,應(yīng)使他們對函數(shù)的多種表示———數(shù)值表示(表格)、圖像表示、解析表示(關(guān)系式),有豐富的經(jīng)歷。在正比例、反比例的學(xué)習(xí)中,應(yīng)十分重視三種方式的結(jié)合。函數(shù)圖像更有利于學(xué)生直觀的理解變量的變化關(guān)系,并且利用規(guī)律解決問題,更好的進(jìn)行函數(shù)思想的滲透。這一點可以從課堂和課后的作業(yè)中找到答案。
其二為今后對函數(shù)進(jìn)一步的學(xué)習(xí)做準(zhǔn)備我們再來看一看函數(shù)課程的發(fā)展鏈。
小學(xué):數(shù)的認(rèn)識,圖形數(shù)量找規(guī)律,數(shù)的計算,圖形周長和面積,字母表示數(shù)—變量,統(tǒng)計—變量,商不變的性質(zhì)—常函數(shù),正反比例—函數(shù)。
初中:一次函數(shù),二次函數(shù),正反比例函數(shù),函數(shù)概念的初步認(rèn)識。
高中:函數(shù)概念的映射定義。一些具體函數(shù)模型—簡單冪函數(shù)及其拓展,實際函數(shù)的模型——分段函數(shù),指數(shù)函數(shù),對數(shù)函數(shù),三角函數(shù),數(shù)列,函數(shù)思想的廣泛應(yīng)用。
到了大學(xué)還在繼續(xù)著對函數(shù)的學(xué)習(xí),可以看出小學(xué)階段的只是對函數(shù)的最初級的最淺顯的認(rèn)識,但卻影響著孩子今后對函數(shù)的學(xué)習(xí)。從多方面理解變化的量,打破了思維的局限,利于今后函數(shù)概念正確的建立。
正比例反比例教案篇十七
教學(xué)內(nèi)容:
p47~48,例7、正、反比例的比較。
教學(xué)目的:
進(jìn)一步理解正、反比例的意義,弄清它們的聯(lián)系和區(qū)別,掌握它們的變化規(guī)律,能正確運用。
教學(xué)過程:
一、復(fù)習(xí)。
判斷下面兩種理成不成比例,成什么比例,為什么?
(1)單價一定,數(shù)量和總價。
(2)路程一定,速度和時間。
(3)正方形的邊長和它的面積。
(4)工作時間一定,工作效率和工作總量。
二、新授。
1、揭示課題。
2、學(xué)習(xí)例7。
(1)認(rèn)識:“千米/時”的讀法意義。
(2)出示書中的問題要求學(xué)生逐一回答。
(3)提問:誰能說一說路程、速度和時間這三個量可以寫成什么樣的.關(guān)系式?
(4)填空:用下面的形式分別表示兩個表的內(nèi)容。
當(dāng)一定時,()和()成()比例關(guān)系。
還有什么樣的依存關(guān)系?
(5)教師作評講并小結(jié)。
(6)用圖表示例7中的兩種量的關(guān)系。
指導(dǎo)學(xué)生描點、連線。
在這條直線上,當(dāng)時間的值擴(kuò)大時,路程的對應(yīng)值是怎樣變化的?時間的值縮小呢?
用同樣的方法觀察右表。
3、總結(jié)正、反比例的特點(異同點)。
由學(xué)生比、說。
三、鞏固練習(xí)。
1、練一練第1、2題。
2、p49第1題。
四、課堂小結(jié):
正、反比例關(guān)系各有什么特點?怎樣判斷正比例或反比例關(guān)系?關(guān)鍵是什么?
五、作業(yè)。
p49第2題(1)(4)(5)(6)(9)。
六、課后作業(yè)。
1、p49第2題(2)(3)(7)(8)(10)。
2、收集生活中正、反比例關(guān)系的量并分析。
正比例反比例教案篇十八
優(yōu)點:
3、題目與現(xiàn)實生活聯(lián)系緊密,讓大家感覺學(xué)習(xí)數(shù)學(xué)很有用;
4、課堂上學(xué)生討論的時間充足,參與度較高,且時效性較強(qiáng);
5、課堂調(diào)控能力較強(qiáng),有自己的教學(xué)風(fēng)格;
6、板書明確、清晰,一目了然;
7、設(shè)計合理,處理偶發(fā)事件的能力較強(qiáng)。
缺點:
1、課堂氣氛沒有以前活躍;
2、知識量太大,難度較大,很少有不經(jīng)過思考或稍作思考就能回答出來的問題;
3、小組合作時,沒有分好工,導(dǎo)致在計算相對應(yīng)的每組數(shù)的和、差、積、商時,每個同學(xué)都在計算,因而用的時間較多,如果四人小組分好工,沒人計算一種運算,時間就會節(jié)約一半。
4、對學(xué)生的鼓勵性語言欠缺;
5、板書中的字體不太規(guī)范,要加強(qiáng)基本功的訓(xùn)練;
針對聽課老師和學(xué)生的評價,在以后的教學(xué)中,我會發(fā)揚優(yōu)點、克服不足,不斷提高自己的教學(xué)水平。
正比例反比例教案篇十九
在數(shù)學(xué)中,比例是一個總體中各個部分的數(shù)量占總體數(shù)量的比重,用于反映總體的構(gòu)成或者結(jié)構(gòu)。兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化。表示兩個比相等的式子叫做比例。
比例有四個項,分別是兩個內(nèi)項和兩個外項;在7:9=21:27中,其中7與27叫做比例的外項,9與21叫做比例的內(nèi)項。
比例有四個項,分別是兩個內(nèi)項和兩個外項。
正比例反比例教案篇二十
教學(xué)目的:
2、結(jié)合所學(xué)知識,正確判斷正、反比例。
3、發(fā)展學(xué)生理論聯(lián)系實際的能力,提高學(xué)生的應(yīng)用意識。
重點難點:正確判斷正、反比例。
教具學(xué)具:多媒體課件。
教學(xué)過程:
一、判斷題:
1、圓的面積和圓的半徑成正比例。(??)。
2、圓的面積和圓的半徑的平方成正比例。(??)。
3、圓的面積和圓的周長的平方成正比例。(??)。
4、正方形的面積和邊長成正比例。(??)。
5、正方形的周長和邊長成正比例。(??)。
6、長方形的面積一定時,長和寬成反比例。(??)。
7、長方形的周長一定時,長和寬成反比例。(??)。
8、三角形的面積一定時,底和高成反比例。(??)。
9、梯形的面積一定時,上底和下底的和與高成反比例。(??)。
10、圓的周長和圓的半徑成正比例。(??)。
二、判斷下面每題中的三個量成什么比例?
(3)單價、總價和數(shù)量???????????(4)平行四邊形的面積、底和高。
(5)總千克數(shù)、每天吃的千克數(shù)和天數(shù)。
三、下列各題中的兩種量是不是成比例,成什么比例,并說明理由。
(1)買相同的電腦,購買的電腦臺數(shù)與總價。
(2)每捆練習(xí)本的本數(shù)相同,練習(xí)本的總本數(shù)與捆數(shù)。
(3)總路程一定,已行的路程與未行的路程。
(4)分?jǐn)?shù)值一定,分?jǐn)?shù)的分子與分母??(5)長方形的長一定,它的面積和寬。
(6)長方體的體積一定,底面積和高????????(7)圓的周長和直徑。
(8)一本書的總頁數(shù)一定,看的天數(shù)與平均每天看的頁數(shù)。
(9)訂閱《揚子晚報》,訂的份數(shù)與總價。
(10)圖上距離一定,實際距離與比例尺。
(11)小麥的出粉率一定,小麥的質(zhì)量與面粉的質(zhì)量。
(12)六(1)班同學(xué)做操,每排站的人數(shù)與排數(shù)。
四、下面題里的數(shù)量成什么關(guān)系?
你能列出式子表示數(shù)量之間的相等關(guān)系嗎?
(1)小紅看一本兒童小說,每天看12頁,10天可以看完;如果每天看15頁,8天可以看完。
(2)一種螺絲釘,20個重30克。一盒這樣的螺絲釘是600克,一共有400個。
教后反思:
正比例反比例教案篇二十一
由于學(xué)生有了前面學(xué)習(xí)正比例的基礎(chǔ),加上正比例與反比例在意義上研究的時候存在有一定的共性,因此學(xué)生在整堂課的學(xué)習(xí)上與前面學(xué)習(xí)的正比例相比有明顯的提高,而且在課時的安排上,在學(xué)習(xí)正比例的安排了2個課時,這里只是安排1個課時,緊隨著課之后教材安排了一堂正反比例比較、綜合的一堂課,對學(xué)生在出現(xiàn)正反比例有點模糊的時候就及時地加以糾正。
反比例關(guān)系和正比例關(guān)系一樣,是比較重要的一種數(shù)量關(guān)系,學(xué)生理解并掌握了這種數(shù)量關(guān)系,可以加深對比例的理解,并能應(yīng)用它解決一些簡單的正、反比例方面的實際問題。同時通過反比例的教學(xué),可以進(jìn)一步滲透函數(shù)思想,為學(xué)生今后學(xué)習(xí)中學(xué)數(shù)學(xué)和物理、化學(xué)打下基礎(chǔ)。反比例的意義這部分內(nèi)容是在學(xué)生理解并掌握比和比例的意義、性質(zhì)的基礎(chǔ)上進(jìn)行教學(xué)的,但概念比較抽象,學(xué)習(xí)難度比較大,是六年級教學(xué)內(nèi)容的一個教學(xué)重點也是一個教學(xué)難點。
在教學(xué)反比例的意義時,我首先通過復(fù)習(xí),鞏固學(xué)生對正比例意義的理解。然后安排準(zhǔn)備題正比例的判斷,從中發(fā)現(xiàn)第3小題不成正比例,從而引入學(xué)習(xí)內(nèi)容和學(xué)習(xí)目標(biāo)。這通過復(fù)習(xí)、比較,不成正比例,那么它成不成比例呢?又會成什么比例?通過設(shè)疑不僅激發(fā)了學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,還激起了學(xué)生自主參與的積極性和主動性,為自主探究新知創(chuàng)造了條件并激發(fā)了積極的情感態(tài)度。因為反比例的意義這一部分的內(nèi)容的編排跟正比例的意義比較相似,在教學(xué)反比例的意義時,我以學(xué)生學(xué)習(xí)的正比例的意義為基礎(chǔ),在學(xué)生之間創(chuàng)設(shè)了一種自主探究、相互交流、相互合作的關(guān)系,讓學(xué)生主動、自覺地去觀察、分析、概括、發(fā)現(xiàn)規(guī)律,培養(yǎng)了學(xué)生的自主探究的.能力。在學(xué)完例3后,我并沒有急于讓學(xué)生概括出反比例的意義,而是讓學(xué)生按照學(xué)習(xí)例3的方法學(xué)習(xí)試一試,接著對例3和試一試進(jìn)行比較,得出它們的相同點,在此基礎(chǔ)上來揭示反比例的意義,就顯得水道渠成了。然后,再通過“想一想”中兩種相關(guān)聯(lián)的量進(jìn)行判斷,以加深學(xué)生對反比例意義的理解。最后,通過學(xué)生對正反比例意義的對比,加強(qiáng)了知識的內(nèi)在聯(lián)系,通過區(qū)別不同的概念,鞏固了知識。并通過練習(xí),使學(xué)生加深對概念的理解。
在正比例和反比例的教學(xué)中,我練習(xí)題安排難易不到位。由于學(xué)生剛接觸反比例的意義,應(yīng)多練習(xí)學(xué)生接觸較多的題目,使學(xué)生的基礎(chǔ)得到鞏固,不能讓難題把學(xué)生剛建立起的知識結(jié)構(gòu)沖跨,參與學(xué)生的探究不夠。
【本文地址:http://aiweibaby.com/zuowen/16746467.html】