勾股的教案(優(yōu)質(zhì)16篇)

格式:DOC 上傳日期:2023-12-02 08:49:11
勾股的教案(優(yōu)質(zhì)16篇)
時間:2023-12-02 08:49:11     小編:筆硯

教案應(yīng)該包括教學(xué)目標(biāo)、教學(xué)內(nèi)容、教學(xué)方法和評估方式等要素。教案的編寫過程中,還要注重教學(xué)評價和反饋,及時總結(jié)并改進(jìn)教學(xué)策略。這些教案范文從多個維度和角度展示了優(yōu)秀教師的教學(xué)智慧和創(chuàng)意實(shí)踐。

勾股的教案篇一

1、知識與技能目標(biāo):探索并理解直角三角形的三邊之間的數(shù)量關(guān)系,通過探究能夠發(fā)現(xiàn)直角三角形中兩個直角邊的平方和等于斜邊的平方和。

2、過程與方法目標(biāo):經(jīng)歷用測量和數(shù)格子的辦法探索勾股定理的過程,進(jìn)一步發(fā)展學(xué)生的合情推理能力。

3、情感態(tài)度與價值觀目標(biāo):通過本節(jié)課的學(xué)習(xí),培養(yǎng)主動探究的習(xí)慣,并進(jìn)一步體會數(shù)學(xué)與現(xiàn)實(shí)生活的緊密聯(lián)系。

勾股的教案篇二

2.掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一個三角形是直角三角形;。

二數(shù)學(xué)思考。

1.通過勾股定理的逆定理的探索,經(jīng)歷知識的發(fā)生發(fā)展與形成的過程;。

2.通過三角形三邊的數(shù)量關(guān)系來判斷三角形的形狀,體驗數(shù)形結(jié)合法的應(yīng)用.

三解決問題。

通過勾股定理的逆定理的證明及其應(yīng)用,體會數(shù)形結(jié)合法在問題解決中的作用,并能運(yùn)用勾股定理的逆定理解決相關(guān)問題.

四情感態(tài)度。

2.在探究勾股定理的逆定理的證明及應(yīng)用的活動中,通過一系列富有探究性的問題,滲透與他人交流合作的意識和探究精神.

勾股的教案篇三

二.新課學(xué)習(xí)。

探究點(diǎn)一:螞蟻沿圓柱側(cè)面爬行的最短路徑問題。

思考:

1.利用學(xué)具,嘗試從a點(diǎn)到b點(diǎn)沿圓柱側(cè)面畫出幾條線路,你認(rèn)為。

這樣的線路有幾條?可分為幾類?

2.將右圖的圓柱側(cè)面剪開展開成一個長方形,b點(diǎn)在什么位置?從。

a點(diǎn)到b點(diǎn)的最短路線是什么?你是如何畫的?

1.33.螞蟻從a點(diǎn)出發(fā),想吃到b點(diǎn)上的食物,它沿圓柱側(cè)面爬行的最短路程是多少?你是如何解答這個問題的?畫出圖形,寫出解答過程。

4.你是如何將這個實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題的?

小結(jié):

你是如何解決圓柱體側(cè)面上兩點(diǎn)之間的最短距離問題的?

探究點(diǎn)二:利用勾股定理逆定理如何判斷兩線垂直?

但他隨身只帶了卷尺。(參看p13頁雕塑圖1-13)。

(1)你能替他想辦法完成任務(wù)嗎?

1.31.3(2)李叔叔量得ad的長是30cm,ab的長是40cm,

邊垂直于ab邊嗎?你是如何解決這個問題的?

小結(jié):通過本道例題的探索,判斷兩線垂直,你學(xué)會了什么方法?

探究點(diǎn)三:利用勾股定理的方程思想在實(shí)際問題中的應(yīng)用。

例圖1-14是一個滑梯示意圖,若將滑道ac水平放置,則剛好與ab一樣長.已知滑梯的高度ce=3m,cd=1m,試求滑道ac的長.

1.3。

思考:

1.求滑道ac的長的問題可以轉(zhuǎn)化為什么數(shù)學(xué)問題?

2.你是如何解決這個問題的?寫出解答過程。

小結(jié):

四.課堂小結(jié):本節(jié)課你學(xué)到了什么?

三.新知應(yīng)用。

1.如圖,臺階a處的螞蟻要爬到b處搬運(yùn)食物,它怎么走最近?并求出最近距離.。

1.3。

2.如圖,在水池的正中央有一根蘆葦,池底長10尺,它高出水而1尺,如果把這根蘆葦拉向水池一邊,它的頂端恰好到達(dá)池邊的水面則這根蘆葦?shù)拈L度是()。

1.3。

五.作業(yè)布置:習(xí)題1.41,3,4題。

勾股的教案篇四

本節(jié)是義務(wù)教育課程標(biāo)準(zhǔn)北師大版實(shí)驗教科書八年級(上)第一章《勾股定理》第3節(jié)。具體內(nèi)容是運(yùn)用勾股定理及其逆定理解決簡單的實(shí)際問題。當(dāng)然,在這些具體問題的解決過程中,需要經(jīng)歷幾何圖形的抽象過程,需要借助觀察、操作等實(shí)踐活動,這些都有助于發(fā)展學(xué)生的分析問題、解決問題能力和應(yīng)用意識;一些探究活動具體一定的難度,需要學(xué)生相互間的合作交流,有助于發(fā)展學(xué)生合作交流的能力。

勾股的教案篇五

勾股定理是揭示三角形三條邊數(shù)量關(guān)系的一條非常重要的性質(zhì),也是幾何中最重要的定理之一。它是解直角三角形的主要依據(jù)之一,同時在實(shí)際生活中具有廣泛的用途,“數(shù)學(xué)源于生活,又用于生活”正是這章書所體現(xiàn)的主要思想。教材在編寫時注意培養(yǎng)學(xué)生的動手操作能力和分析問題的能力,通過實(shí)際操作,使學(xué)生獲得較為直觀的印象;通過聯(lián)系比較、探索、歸納,幫助學(xué)生理解勾股定理,以利于進(jìn)行正確的應(yīng)用。

本節(jié)教科書從畢達(dá)哥拉斯觀察地面發(fā)現(xiàn)勾股定理的傳說談起,讓學(xué)生通過觀察計算一些以直角三角形兩條直角邊為邊長的小正方形的面積與以斜邊為邊長的正方形的面積的關(guān)系,發(fā)現(xiàn)兩直角邊為邊長的小正方形的面積的和,等于以斜邊為邊長的正方形的面積,從而發(fā)現(xiàn)勾股定理,這時教科書以命題的形式呈現(xiàn)了勾股定理。關(guān)于勾股定理的證明方法有很多,教科書正文中介紹了我國古人趙爽的證法。之后,通過三個探究欄目,研究了勾股定理在解決實(shí)際問題和解決數(shù)學(xué)問題中的應(yīng)用,使學(xué)生對勾股定理的作用有一定的認(rèn)識。

一、知識與技能。

1、探索直角三角形三邊關(guān)系,掌握勾股定理,發(fā)展幾何思維。

2、應(yīng)用勾股定理解決簡單的實(shí)際問題。

3學(xué)會簡單的合情推理與數(shù)學(xué)說理。

二、過程與方法。

引入兩段中西關(guān)于勾股定理的史料,激發(fā)同學(xué)們的興趣,引發(fā)同學(xué)們的思考。通過動手操作探索與發(fā)現(xiàn)直角三角形三邊關(guān)系,經(jīng)歷小組協(xié)作與討論,進(jìn)一步發(fā)展合作交流能力和數(shù)學(xué)表達(dá)能力,并感受勾股定理的應(yīng)用知識。

三、情感與態(tài)度目標(biāo)。

通過對勾股定理歷史的了解,感受數(shù)學(xué)文化,激發(fā)學(xué)習(xí)興趣;在探究活動中,學(xué)生親自動手對勾股定理進(jìn)行探索與驗證,培養(yǎng)學(xué)生的合作交流意識和探索精神,以及自主學(xué)習(xí)的能力。

四、重點(diǎn)與難點(diǎn)。

一、創(chuàng)設(shè)情景,揭示課題。

1、教師展示圖片并介紹第一情景。

以中國最早的一部數(shù)學(xué)著作——《周髀算經(jīng)》的開頭為引,介紹周公向商高請教數(shù)學(xué)知識時的對話,為勾股定理的出現(xiàn)埋下伏筆。

周公問:“竊聞乎大夫善數(shù)也,請問古者包犧立周天歷度.夫天不可階而升,地不可得尺寸而度,請問數(shù)安從出?”商高答:“數(shù)之法出于圓方,圓出于方,方出于矩,矩出九九八十一,故折矩以為勾廣三,股修四,徑隅五。既方其外,半之一矩,環(huán)而共盤.得成三、四、五,兩矩共長二十有五,是謂積矩。故禹之所以治天下者,此數(shù)之所由生也。”

2、教師展示圖片并介紹第二情景。

畢達(dá)哥拉斯是古希臘著名的數(shù)學(xué)家。相傳在2500年以前,他在朋友家做客時,發(fā)現(xiàn)朋友家用地磚鋪成的地面反映了直角三角形的某種特性。

二、師生協(xié)作,探究問題。

1、現(xiàn)在請你也動手?jǐn)?shù)一下格子,你能有什么發(fā)現(xiàn)嗎?

2、等腰直角三角形是特殊的直角三角形,一般的直角三角形是否也有這樣的特點(diǎn)呢?

3、你能得到什么結(jié)論嗎?

三、得出命題。

勾股定理:如果直角三角形的兩直角邊長分別為a、b,斜邊長為c,那么,即直角三角形兩直角邊的平方和等于斜邊的平方。解釋:由于我國古代把直角三角形中較短的直角邊稱為勾,較長的邊稱為股,斜邊稱為弦,所以,把它叫做勾股定理。

第一種方法:邊長為的正方形可以看作是由4個直角邊分別為、,斜邊為的直角三角形圍在外面形成的。因為邊長為的正方形面積加上4個直角三角形的面積等于外圍正方形的面積,所以可以列出等式,化簡得。

第二種方法:邊長為的正方形可以看作是由4個直角邊分別為、,斜邊為的。

角三角形拼接形成的(虛線表示),不過中間缺出一個邊長為的正方形“小洞”。

因為邊長為的正方形面積等于4個直角三角形的面積加上正方形“小洞”的面積,所以可以列出等式,化簡得。

這種證明方法很簡明,很直觀,它表現(xiàn)了我國古代數(shù)學(xué)家趙爽高超的證題思想和對數(shù)學(xué)的鉆研精神,是我們中華民族的驕傲。

五、應(yīng)用舉例,拓展訓(xùn)練,鞏固反饋。

勾股定理的靈活運(yùn)用勾股定理在實(shí)際的生產(chǎn)生活當(dāng)中有著廣泛的應(yīng)用。勾股定理的發(fā)現(xiàn)和使用解決了許多生活中的問題,今天我們就來運(yùn)用勾股定理解決一些問題,你可以嗎?試一試。

六、歸納總結(jié)。

2、方法歸納:數(shù)方格看圖找關(guān)系,利用面積不變的方法。用直角三角形三邊表示正方形的面積觀察歸納注意畫一個直角三角形表示正方形面積,再次驗證自己的發(fā)現(xiàn)。

七、討論交流。

讓學(xué)生發(fā)表自己的意見,提出他們模糊不清的概念,給他們一個梳理知識的機(jī)會,通過提示性的引導(dǎo),讓學(xué)生對勾股定理的概念豁然開朗,為后面勾股定理的應(yīng)用打下基礎(chǔ)。

我們班的同學(xué)很聰明。大家很快就通過數(shù)格子發(fā)現(xiàn)了勾股定理的規(guī)律。還有什么地方不懂的嗎?跟大家一起來交流一下。請同學(xué)們課后在反思天地中都發(fā)表一下自己的學(xué)習(xí)心得。

勾股的教案篇六

本節(jié)課探究體驗貫穿始終,展示交流貫穿始終,習(xí)慣養(yǎng)成貫穿始終,情感教育貫穿始終,文化育人貫穿始終。

采用“七巧板”代替教材中“畢達(dá)哥拉斯地板磚”利用我國傳統(tǒng)文化引入課題,趙爽弦圖證明定理,符合本節(jié)課以我國數(shù)學(xué)文化為主線這一設(shè)計理念,展現(xiàn)了我國古代數(shù)學(xué)璀璨的歷史,激發(fā)學(xué)生再創(chuàng)數(shù)學(xué)輝煌的愿望。

勾股的教案篇七

從知識結(jié)構(gòu)上看,勾股定理揭示了直角三角形三條邊之間的數(shù)量關(guān)系,為后續(xù)學(xué)習(xí)解直角三角形提供重要的理論依據(jù),在現(xiàn)實(shí)生活中有著廣泛的應(yīng)用。

從學(xué)生認(rèn)知結(jié)構(gòu)上看,它把形的特征轉(zhuǎn)化成數(shù)量關(guān)系,架起了幾何與代數(shù)之間的橋梁;

勾股定理又是對學(xué)生進(jìn)行愛國主義教育的良好素材,因此具有相當(dāng)重要的地位和作用。

根據(jù)數(shù)學(xué)新課程標(biāo)準(zhǔn)以及八年級學(xué)生的認(rèn)知水平我確定如下學(xué)習(xí)目標(biāo):知識技能、數(shù)學(xué)思考、問題解決、情感態(tài)度。其中【情感態(tài)度】方面,以我國數(shù)學(xué)文化為主線,激發(fā)學(xué)生熱愛祖國悠久文化的情感。

(二)重點(diǎn)與難點(diǎn)。

為變被動接受為主動探究,我確定本節(jié)課的重點(diǎn)為:勾股定理的探索過程。限于八年級學(xué)生的思維水平,我將面積法(拼圖法)發(fā)現(xiàn)勾股定理確定為本節(jié)課的難點(diǎn),我將引導(dǎo)學(xué)生動手實(shí)驗突出重點(diǎn),合作交流突破難點(diǎn)。

勾股的教案篇八

本節(jié)課的教學(xué)對象是初二學(xué)生,他們的參與意識教強(qiáng),思維活躍,為了實(shí)現(xiàn)本節(jié)課的教學(xué)目標(biāo),我力求以下三個方面對學(xué)生進(jìn)行引導(dǎo):

(1)從創(chuàng)設(shè)問題情景入手,通過知識再現(xiàn),孕育教學(xué)過程;。

(2)從學(xué)生活動出發(fā),順勢教學(xué)過程;。

(3)利用探索研究手段,通過思維深入,領(lǐng)悟教學(xué)過程.

2.課前準(zhǔn)備。

教具:教材、電腦、多媒體課件.

學(xué)具:用矩形紙片做成的圓柱、剪刀、教材、筆記本、課堂練習(xí)本、文具.

勾股的教案篇九

思路點(diǎn)撥:要求甲、乙兩人的距離,就要確定甲、乙兩人在平面的位置關(guān)系,由于甲往東、乙往北,所以甲所走的路線與乙所走的路線互相垂直,然后求出甲、乙走的路程,利用勾股定理,即可求出甲、乙兩人的距離.(13千米)。

勾股的教案篇十

1、通過拼圖,用面積的方法說明勾股定理的正確性.

2、通過實(shí)例應(yīng)用勾股定理,培養(yǎng)學(xué)生的知識應(yīng)用技能.

一、學(xué)前準(zhǔn)備:

1、閱讀課本第46頁到第47頁,完成下列問題:。

2、剪四個完全相同的直角三角形,然后將它們拼成如圖所示的'圖形。大正方形的面積可以表示為_________________________,又可以表示為__________________________.對比兩種表示方法,看看能不能得到勾股定理的結(jié)論。用上面得到的完全相同的四個直角三角形,還可以拼成如下圖所示的圖形,與上面的方法類似,也能說明勾股定理是正確的方法(請逐一說明)。

二、合作探究:

(一)自學(xué)、相信自己:

(二)思索、交流:

(三)應(yīng)用、探究:

(四)鞏固練習(xí):

1、如圖,64、400分別為所在正方形的面積,則圖中字。

母a所代表的正方形面積是_________。

三.學(xué)習(xí)體會:

本節(jié)課我們進(jìn)一步認(rèn)識了勾股定理,并用兩種方法證明了這個定理,在應(yīng)用此定理解決問題時,應(yīng)注意只有直角三角形的三邊才有這樣的關(guān)系,如果不是直角三角形應(yīng)該構(gòu)造直角三角形來解決。

2②圖。

四.自我測試:

五.自我提高:

勾股的教案篇十一

教學(xué)目標(biāo)1.在探索平行四邊形的判別條件中,理解并掌握用邊、對角線來判定平行四邊形的方法.

2.會綜合運(yùn)用平行四邊形的判定方法和性質(zhì)來解決問題。

教學(xué)重點(diǎn):平行四邊形的判定方法及應(yīng)用。

教學(xué)難點(diǎn):平行四邊形的判定定理與性質(zhì)定理的靈活應(yīng)用。

二.探。

閱讀教材p44至p45。

利用手中的學(xué)具——硬紙板條,通過觀察、測量、猜想、驗證、探索構(gòu)成平行四邊形的條件,思考并探討:

(1)你能適當(dāng)選擇手中的硬紙板條搭建一個平行四邊形嗎?

(2)你怎樣驗證你搭建的四邊形一定是平行四邊形?

(3)你能說出你的做法及其道理嗎?

(4)能否將你的探索結(jié)論作為平行四邊形的一種判別方法?你能用文字語言表述出來嗎?

(5)你還能找出其他方法嗎?

從探究中得到:

平行四邊形判定方法1兩組對邊分別相等的四邊形是平行四邊形。

平行四邊形判定方法2對角線互相平分的四邊形是平行四邊形。

證一證。

平行四邊形判定方法1兩組對邊分別相等的四邊形是平行四邊形。

證明:(畫出圖形)。

平行四邊形判定方法2一組對邊平行且相等的四邊形是平行四邊形。

證明:(畫出圖形)。

三.結(jié)。

兩組對邊分別相等的四邊形是平行四邊形。

對角線互相平分的四邊形是平行四邊形。

四.用。

勾股的教案篇十二

應(yīng)用勾股定理及勾股定理的逆定理解決實(shí)際問題。

2。內(nèi)容解析。

運(yùn)用勾股定理的逆定理可以從三角形邊的數(shù)量關(guān)系來識別三角形的形狀,它是用代數(shù)方法來研究幾何圖形,也是向?qū)W生滲透“數(shù)形結(jié)合”這一數(shù)學(xué)思想方法的很好素材。綜合運(yùn)用勾股定理及其逆定理能幫助我們解決實(shí)際問題。

基于以上分析,可以確定本課的教學(xué)重點(diǎn)是靈活運(yùn)用勾股定理的逆定理解決實(shí)際問題。

勾股的教案篇十三

學(xué)會觀察圖形,勇于探索圖形間的關(guān)系,培養(yǎng)學(xué)生的空間觀念。

2、過程與方法。

(1)經(jīng)歷一般規(guī)律的探索過程,發(fā)展學(xué)生的抽象思維能力。

(2)在將實(shí)際問題抽象成幾何圖形過程中,提高分析問題、解決問題的能力及滲透數(shù)學(xué)建模的思想。

3、情感態(tài)度與價值觀。

(1)通過有趣的問題提高學(xué)習(xí)數(shù)學(xué)的興趣。

(2)在解決實(shí)際問題的過程中,體驗數(shù)學(xué)學(xué)習(xí)的實(shí)用性。

教學(xué)重點(diǎn):

探索、發(fā)現(xiàn)事物中隱含的勾股定理及其逆及理,并用它們解決生活實(shí)際問題。

教學(xué)難點(diǎn):

利用數(shù)學(xué)中的建模思想構(gòu)造直角三角形,利用勾股定理及逆定理,解決實(shí)際問題。

教學(xué)準(zhǔn)備:

多媒體。

教學(xué)過程:

第一環(huán)節(jié):創(chuàng)設(shè)情境,引入新課(3分鐘,學(xué)生觀察、猜想)。

情景:

第二環(huán)節(jié):合作探究(15分鐘,學(xué)生分組合作探究)。

學(xué)生分為4人活動小組,合作探究螞蟻爬行的最短路線,充分討論后,匯總各小組的方案,在全班范圍內(nèi)討論每種方案的路線計算方法,通過具體計算,總結(jié)出最短路線。讓學(xué)生發(fā)現(xiàn):沿圓柱體母線剪開后展開得到矩形,研究“螞蟻怎么走最近”就是研究兩點(diǎn)連線最短問題,引導(dǎo)學(xué)生體會利用數(shù)學(xué)解決實(shí)際問題的方法:建立數(shù)學(xué)模型,構(gòu)圖,計算。

第三環(huán)節(jié):做一做(7分鐘,學(xué)生合作探究)。

教材23頁。

李叔叔想要檢測雕塑底座正面的ad邊和bc邊是否分別垂直于底邊ab,但他隨身只帶了卷尺。

(1)你能替他想辦法完成任務(wù)嗎?

第四環(huán)節(jié):鞏固練習(xí)(10分鐘,學(xué)生獨(dú)立完成)。

2.如圖,臺階a處的螞蟻要爬到b處搬運(yùn)食物,它怎么走最近?并求出最近距離。

第五環(huán)節(jié)課堂小結(jié)(3分鐘,師生問答)。

內(nèi)容:如何利用勾股定理及逆定理解決最短路程問題?

第六環(huán)節(jié):布置作業(yè)(2分鐘,學(xué)生分別記錄)。

作業(yè):1.課本習(xí)題1.5第1,2,3題.。

要求:a組(學(xué)優(yōu)生):1、2、3。

b組(中等生):1、2。

c組(后三分之一生):1。

勾股的教案篇十四

教學(xué)目標(biāo):

1、知識目標(biāo):

(2)學(xué)會利用勾股定理進(jìn)行計算、證明與作圖;

(3)了解有關(guān)勾股定理的歷史。

2、能力目標(biāo):

(1)在定理的證明中培養(yǎng)學(xué)生的拼圖能力;

(2)通過問題的解決,提高學(xué)生的運(yùn)算能力。

3、情感目標(biāo):

(1)通過自主學(xué)習(xí)的發(fā)展體驗獲取數(shù)學(xué)知識的感受;

(2)通過有關(guān)勾股定理的歷史講解,對學(xué)生進(jìn)行德育教育。

教學(xué)難點(diǎn):通過有關(guān)勾股定理的歷史講解,對學(xué)生進(jìn)行德育教育。

教學(xué)用具:直尺,微機(jī)。

教學(xué)方法:以學(xué)生為主體的討論探索法。

教學(xué)過程:

1、新課背景知識復(fù)習(xí)。

(1)三角形的三邊關(guān)系。

(2)問題:(投影顯示)。

直角三角形的三邊關(guān)系,除了滿足一般關(guān)系外,還有另外的特殊關(guān)系嗎?

2、定理的獲得。

讓學(xué)生用文字語言將上述問題表述出來。

勾股定理:直角三角形兩直角邊的平方和等于斜邊的平方。

強(qiáng)調(diào)說明:

(1)勾――最短的邊、股――較長的直角邊、弦――斜邊。

(2)學(xué)生根據(jù)上述學(xué)習(xí),提出自己的問題(待定)。

3、定理的證明方法。

方法一:將四個全等的直角三角形拼成如圖1所示的正方形。

方法二:將四個全等的直角三角形拼成如圖2所示的正方形。

方法三:“總統(tǒng)”法、如圖所示將兩個直角三角形拼成直角梯形。

以上證明方法都由學(xué)生先分組討論獲得,教師只做指導(dǎo)、最后總結(jié)說明。

4、定理與逆定理的應(yīng)用。

5、課堂小結(jié):

已知直角三角形的兩邊求第三邊。

已知直角三角形的一邊,求另兩邊的關(guān)系。

6、布置作業(yè):

a、書面作業(yè)p130#1、2、3。

b、上交作業(yè)p132#1、3。

勾股的教案篇十五

11.如圖,一個高、寬的大門,需要在對角線的頂點(diǎn)間加固一個木條,求木條的長.

12.一個三角形三條邊的長分別為,,,這個三角形最長邊上的高是多少?

13.如圖,小李準(zhǔn)備建一個蔬菜大棚,棚寬4m,高3m,長20m,棚的斜面用塑料薄膜遮蓋,不計墻的厚度,請計算陽光透過的最大面積.

勾股的教案篇十六

1、勾股定理直角三角形兩直角邊a、b的平方和等于斜邊c的平方。(即:a2+b2=c2)。

2、勾股定理的逆定理如果三角形的三邊長:a、b、c,則有關(guān)系a2+b2=c2,那么這個三角形是直角三角形。

3、勾股定理的證明常見方法如下:

方法一:,,化簡可證.

方法二:

四個直角三角形的面積與小正方形面積的和等于大正方形的面積.

四個直角三角形的面積與小正方形面積的和為。

大正方形面積為所以。

方法三:,,化簡得證。

【本文地址:http://aiweibaby.com/zuowen/16961528.html】

全文閱讀已結(jié)束,如果需要下載本文請點(diǎn)擊

下載此文檔