教案是教師在備課過程中制定的教學(xué)計(jì)劃,它指導(dǎo)著課堂教學(xué)的開展。在教案中,教師應(yīng)該合理安排教學(xué)內(nèi)容,確保學(xué)生能夠逐步深入理解。教師編寫教案時(shí)還應(yīng)考慮到學(xué)生的學(xué)習(xí)動(dòng)機(jī)和興趣,激發(fā)他們的學(xué)習(xí)潛能。
正反比例教案篇一
2.利用反比例函數(shù)的圖象解決有關(guān)問題.
1.經(jīng)歷對(duì)反比例函數(shù)圖象的觀察、分析、討論、概括過程,會(huì)說出它的性質(zhì);。
2.探索反比例函數(shù)的圖象的性質(zhì),體會(huì)用數(shù)形結(jié)合思想解數(shù)學(xué)問題.
一、創(chuàng)設(shè)情境。
上節(jié)的練習(xí)中,我們畫出了問題1中函數(shù)的圖象,發(fā)現(xiàn)它并不是直線.那么它是怎么樣的曲線呢?本節(jié)課,我們就來討論一般的反比例函數(shù)(k是常數(shù),k0)的圖象,探究它有什么性質(zhì).
二、探究歸納。
1.畫出函數(shù)的圖象.
分析畫出函數(shù)圖象一般分為列表、描點(diǎn)、連線三個(gè)步驟,在反比例函數(shù)中自變量x0.
解1.列表:這個(gè)函數(shù)中自變量x的取值范圍是不等于零的一切實(shí)數(shù),列出x與y的對(duì)應(yīng)值:
2.描點(diǎn):用表里各組對(duì)應(yīng)值作為點(diǎn)的坐標(biāo),在直角坐標(biāo)系中描出在京各點(diǎn)點(diǎn)(-6,-1)、(-3,-2)、(-2,-3)等.
3.連線:用平滑的曲線將第一象限各點(diǎn)依次連起來,得到圖象的第一個(gè)分支;用平滑的曲線將第三象限各點(diǎn)依次連起來,得到圖象的另一個(gè)分支.這兩個(gè)分支合起來,就是反比例函數(shù)的圖象.
上述圖象,通常稱為雙曲線(hyperbola).
提問這兩條曲線會(huì)與x軸、y軸相交嗎?為什么?
學(xué)生試一試:畫出反比例函數(shù)的圖象(學(xué)生動(dòng)手畫反比函數(shù)圖象,進(jìn)一步掌握畫函數(shù)圖象的步驟).
學(xué)生討論、交流以下問題,并將討論、交流的結(jié)果回答問題.
1.這個(gè)函數(shù)的圖象在哪兩個(gè)象限?和函數(shù)的圖象有什么不同?
2.反比例函數(shù)(k0)的圖象在哪兩個(gè)象限內(nèi)?由什么確定?
(2)當(dāng)k0時(shí),函數(shù)的圖象在第二、四象限,在每個(gè)象限內(nèi),曲線從左向右上升,也就是在每個(gè)象限內(nèi)y隨x的增加而增加.
注1.雙曲線的兩個(gè)分支與x軸和y軸沒有交點(diǎn);。
2.雙曲線的兩個(gè)分支關(guān)于原點(diǎn)成中心對(duì)稱.
以上兩點(diǎn)性質(zhì)在上堂課的問題1和問題2中反映了怎樣的實(shí)際意義?
在問題1中反映了汽車比自行車的速度快,小華乘汽車比騎自行車到鎮(zhèn)上的時(shí)間少.
在問題2中反映了在面積一定的情況下,飼養(yǎng)場(chǎng)的一邊越長,另一邊越小.
三、實(shí)踐應(yīng)用。
例1若反比例函數(shù)的圖象在第二、四象限,求m的值.
分析由反比例函數(shù)的定義可知:,又由于圖象在二、四象限,所以m+10,由這兩個(gè)條件可解出m的值.
解由題意,得解得.
例2已知反比例函數(shù)(k0),當(dāng)x0時(shí),y隨x的.增大而增大,求一次函數(shù)y=kx-k的圖象經(jīng)過的象限.
分析由于反比例函數(shù)(k0),當(dāng)x0時(shí),y隨x的增大而增大,因此k0,而一次函數(shù)y=kx-k中,k0,可知,圖象過二、四象限,又-k0,所以直線與y軸的交點(diǎn)在x軸的上方.
解因?yàn)榉幢壤瘮?shù)(k0),當(dāng)x0時(shí),y隨x的增大而增大,所以k0,所以一次函數(shù)y=kx-k的圖象經(jīng)過一、二、四象限.
例3已知反比例函數(shù)的圖象過點(diǎn)(1,-2).
(1)求這個(gè)函數(shù)的解析式,并畫出圖象;。
(2)由點(diǎn)a在反比例函數(shù)的圖象上,易求出m的值,再驗(yàn)證點(diǎn)a關(guān)于兩坐標(biāo)軸和原點(diǎn)的對(duì)稱點(diǎn)是否在圖象上.
解(1)設(shè):反比例函數(shù)的解析式為:(k0).
而反比例函數(shù)的圖象過點(diǎn)(1,-2),即當(dāng)x=1時(shí),y=-2.
所以,k=-2.
(2)點(diǎn)a(-5,m)在反比例函數(shù)圖象上,所以,
點(diǎn)a的坐標(biāo)為.
點(diǎn)a關(guān)于x軸的對(duì)稱點(diǎn)不在這個(gè)圖象上;。
點(diǎn)a關(guān)于y軸的對(duì)稱點(diǎn)不在這個(gè)圖象上;。
點(diǎn)a關(guān)于原點(diǎn)的對(duì)稱點(diǎn)在這個(gè)圖象上;。
(1)求m的值;。
(2)它的圖象在第幾象限內(nèi)?在各象限內(nèi),y隨x的增大如何變化?
(3)當(dāng)-3時(shí),求此函數(shù)的最大值和最小值.
解(1)由反比例函數(shù)的定義可知:解得,m=-2.
(2)因?yàn)?20,所以反比例函數(shù)的圖象在第二、四象限內(nèi),在各象限內(nèi),y隨x的增大而增大.
(3)因?yàn)樵诘趥€(gè)象限內(nèi),y隨x的增大而增大,
所以當(dāng)x=時(shí),y最大值=;。
當(dāng)x=-3時(shí),y最小值=.
所以當(dāng)-3時(shí),此函數(shù)的最大值為8,最小值為.
例5一個(gè)長方體的體積是100立方厘米,它的長是y厘米,寬是5厘米,高是x厘米.
(1)寫出用高表示長的函數(shù)關(guān)系式;。
(2)寫出自變量x的取值范圍;。
(3)畫出函數(shù)的圖象.
解(1)因?yàn)?00=5xy,所以.
(2)x0.
(3)圖象如下:
說明由于自變量x0,所以畫出的反比例函數(shù)的圖象只是位于第一象限內(nèi)的一個(gè)分支.
四、交流反思。
本節(jié)課學(xué)習(xí)了畫反比例函數(shù)的圖象和探討了反比例函數(shù)的性質(zhì).
1.反比例函數(shù)的圖象是雙曲線(hyperbola).
(2)當(dāng)k0時(shí),函數(shù)的圖象在第二、四象限,在每個(gè)象限內(nèi),曲線從左向右上升,也就是在每個(gè)象限內(nèi)y隨x的增加而增加.
五、檢測(cè)反饋。
1.在同一直角坐標(biāo)系中畫出下列函數(shù)的圖象:
(1);(2).
2.已知y是x的反比例函數(shù),且當(dāng)x=3時(shí),y=8,求:
(1)y和x的函數(shù)關(guān)系式;。
(2)當(dāng)時(shí),y的值;。
(3)當(dāng)x取何值時(shí),?
3.若反比例函數(shù)的圖象在所在象限內(nèi),y隨x的增大而增大,求n的值.
4.已知反比例函數(shù)經(jīng)過點(diǎn)a(2,-m)和b(n,2n),求:
(1)m和n的值;。
(2)若圖象上有兩點(diǎn)p1(x1,y1)和p2(x2,y2),且x1x2,試比較y1和y2的大小.
正反比例教案篇二
1.從現(xiàn)實(shí)情境和已有的知識(shí)經(jīng)驗(yàn)出發(fā),討論兩個(gè)變量之間的相似關(guān)系,加深對(duì)函數(shù)概念的理解.
2.經(jīng)歷抽象反比例函數(shù)概念的過程,領(lǐng)會(huì)反比例函數(shù)的意義,理解反比例函數(shù)的概念.
(二)能力訓(xùn)練要求。
結(jié)合具體情境體會(huì)反比例函數(shù)的意義,能根據(jù)已知條件確定反比例函數(shù)表達(dá)式.
(三)情感與價(jià)值觀要求。
結(jié)合實(shí)例引導(dǎo)學(xué)生了解所討論的函數(shù)的表達(dá)形式,形成反比例函數(shù)概念的具體形象,是從感性認(rèn)識(shí)到理性認(rèn)識(shí)的轉(zhuǎn)化過程,發(fā)展學(xué)生的思維;同時(shí)體驗(yàn)數(shù)學(xué)活動(dòng)與人類生活的密切聯(lián)系及對(duì)人類歷史發(fā)展的作用.
正反比例教案篇三
(一)復(fù)習(xí)猜想導(dǎo)入,引出問題。
1、成正比例的量有什么特征?什么叫正比例關(guān)系?
2、在生活中兩個(gè)相關(guān)聯(lián)的量有的成正比例關(guān)系,還可能成什么關(guān)系?學(xué)生很自然想到反比例,激發(fā)學(xué)生的學(xué)習(xí)欲望,問學(xué)生想學(xué)反比例的哪些知識(shí),學(xué)生大膽猜測(cè),對(duì)反比例的意義展開合理的猜想。由此導(dǎo)入新課。
達(dá)成目標(biāo):猜想導(dǎo)課,激發(fā)探究愿望。
(二)共同探索,總結(jié)方法。
1、明確這節(jié)課的學(xué)習(xí)目標(biāo):(1)理解反比例的意義,能正確地判斷兩種相關(guān)聯(lián)的量是不是成反比例的量。(2)經(jīng)歷反比例意義的探究過程,體驗(yàn)觀察比較、推理、歸納的學(xué)習(xí)方法。
2、情境導(dǎo)入,學(xué)習(xí)探究。
(1)我們先來看一個(gè)實(shí)驗(yàn)。
高度(厘米)302015105。
底面積(平方厘米)1015203060。
體積(立方厘米)。
提問:根據(jù)列表,你從中你發(fā)現(xiàn)了什么?
(2)學(xué)生討論交流。
(3)引導(dǎo)學(xué)生回答:表中的兩個(gè)量是高度和底面積。
高度擴(kuò)大,底面積反而縮小;高度縮小,底面積反而擴(kuò)大。
每兩個(gè)相對(duì)應(yīng)的數(shù)的乘積都是300.
(4)計(jì)算后你又發(fā)現(xiàn)了什么?
每兩個(gè)相對(duì)應(yīng)的數(shù)的乘積都是300,乘積一定。
教師小結(jié):我們就說水的高度和體積成反比例關(guān)系,水的高度和體積是成反比例的量。
教師提問:高底面積和體積,怎樣用式子表示他們的關(guān)系?板書:高×底面積=水的體積(一定)。
(5)如果用字母x和y表示兩種相關(guān)聯(lián)的量,用k表示他們的積一定,反比例關(guān)系可以用一個(gè)什么樣的式子表示?板書:x×y=k(一定)。
小結(jié):通過上面的學(xué)習(xí),你認(rèn)為判斷兩種相關(guān)聯(lián)的量是否成反比例,關(guān)鍵是什么?
(6)歸納總結(jié)反比例的意義。
達(dá)成目標(biāo):比較思想是在小學(xué)數(shù)學(xué)教學(xué)中應(yīng)用十分普遍的數(shù)學(xué)思想方法,《成反比例的量》是繼《成正比例的量》一課后學(xué)習(xí)的內(nèi)容,兩節(jié)課的學(xué)習(xí)內(nèi)容和學(xué)習(xí)方法有相似之處,學(xué)生從知識(shí)的差別中找到同一,也可以從同一中找出差別,學(xué)生學(xué)習(xí)新知識(shí),進(jìn)行深化拓展,歸納總結(jié)。
(三)運(yùn)用方法,解決問題。
1、生活中,哪些相關(guān)聯(lián)的量成反比例關(guān)系,舉例說一說。
2、課后做一做每天運(yùn)的噸數(shù)和運(yùn)貨的天數(shù)成反比例關(guān)系嗎?為什么?
3、出示反比例圖像,與正比例圖像進(jìn)行比較學(xué)習(xí)。
達(dá)成目標(biāo):學(xué)生利用對(duì)反比例概念的理解,判斷相關(guān)聯(lián)的量是否成反比例,學(xué)會(huì)分析并進(jìn)行判斷。
(四)反饋鞏固,分層練習(xí)。
判斷下面每題中的兩個(gè)量是不是成反比例,并說明理由。
(1)路程一定,速度和時(shí)間。
(2)小明從家到學(xué)校,每分走的速度和所需時(shí)間。
(3)平行四邊形面積一定,底和高。
(4)小林做10道數(shù)學(xué)題,已做的題和沒有做的題。
(5)小明拿一些錢買鉛筆,單價(jià)和購買的數(shù)量。
達(dá)成目標(biāo):使學(xué)生體會(huì)到數(shù)學(xué)來源于現(xiàn)實(shí)生活,又服務(wù)于現(xiàn)實(shí)生活的特點(diǎn),體現(xiàn)數(shù)學(xué)的應(yīng)用性。
(五)課堂總結(jié),提升認(rèn)識(shí)。
高度(厘米)302015105。
底面積(平方厘米)1015203060。
體積(立方厘米)300300300300300。
高度擴(kuò)大,底面積反而縮小;高度縮小,底面積反而擴(kuò)大。
高×底面積=水的體積(一定)。
反比例關(guān)系式:x×y=k(一定)。
正反比例教案篇四
二、展示與交流。
利用反義詞來導(dǎo)入今天研究的課題。今天研究兩種量成反比例關(guān)系的變化規(guī)律。
情境(一)。
認(rèn)識(shí)加法表中和是12的直線及乘法表中積是12的曲線。
引導(dǎo)學(xué)生發(fā)現(xiàn)規(guī)律:加法表中和是12,一個(gè)加數(shù)隨另一個(gè)加數(shù)的變化而變化;乘法表中積是12,一個(gè)乘數(shù)隨另一個(gè)乘數(shù)的變化而變化。
情境(二)。
情境(三)。
寫出關(guān)系式:每杯果汁量×杯數(shù)=果汗總量(一定)。
5、以上兩個(gè)情境中有什么共同點(diǎn)?
引導(dǎo)小結(jié):都有兩種相關(guān)聯(lián)通的量,其中一種量變化,另一種量也隨著變化,并且這兩種量中相對(duì)應(yīng)的兩個(gè)數(shù)的乘積是一定的。這兩種量之間是反比例關(guān)系。
活動(dòng)四:想一想。
二、反饋與檢測(cè)。
1、判斷下面每題是否成反比例。
(1)出油率一定,香油的質(zhì)量與芝麻的質(zhì)量。
(2)三角形的面積一定,它的底與高。
(3)一個(gè)數(shù)和它的倒數(shù)。
(4)一捆100米電線,用去長度與剩下長度。
(5)圓柱體的體積一定,底面積和高。
(6)小林做10道數(shù)學(xué)題,已做的題和沒有做的題。
(7)長方形的長一定,面積和寬。
(8)平行四邊形面積一定,底和高。
2、教材“練一練”p33第1題。
3、教材“練一練”p33第2題。
4、找一找生活中成反比例的例子,并與同伴交流。
兩個(gè)相關(guān)聯(lián)的量,乘積一定,成反比例。
關(guān)系式:x×y=k(一定)。
正反比例教案篇五
反比例的意義》是新課標(biāo)人教版小學(xué)數(shù)學(xué)六年級(jí)下冊(cè)第47-48頁的內(nèi)容。本節(jié)課的內(nèi)容是在教學(xué)了成正比例的量的`基礎(chǔ)上進(jìn)行教學(xué)的,是前面“比例”知識(shí)的深化,是后面學(xué)習(xí)“用它解決一些簡(jiǎn)單正、反比例的實(shí)際問題”的基礎(chǔ),它起著承前啟后的作用,是小學(xué)階段比例初步知識(shí)教學(xué)中的一項(xiàng)重要內(nèi)容。為此,教學(xué)時(shí)先引導(dǎo)學(xué)生回憶已學(xué)過的數(shù)量關(guān)系,通過舉例、交流,知識(shí)遷移,體會(huì)生活中存在著大量的反比例的關(guān)系,在此基礎(chǔ)上探求新知,最后深化新知。
正反比例教案篇六
知識(shí)與技能目標(biāo):使學(xué)生理解反比例關(guān)系的意義,能根據(jù)反比例的意義正確判斷兩種量是否成反比例。
能力目標(biāo):經(jīng)歷反比例意義的構(gòu)建過程,培養(yǎng)發(fā)現(xiàn)的能力和歸納概括的能力。
情感與態(tài)度目標(biāo):體會(huì)反比例與生活之間的聯(lián)系,感悟到事物之間相互聯(lián)系和相互轉(zhuǎn)化的辨證唯物主義的觀點(diǎn)。
正反比例教案篇七
本課時(shí)教學(xué)設(shè)計(jì)特點(diǎn):一是情景設(shè)置和幾個(gè)表格的設(shè)計(jì),都注重從現(xiàn)實(shí)題材出發(fā),讓學(xué)生感受到反比例在現(xiàn)實(shí)生活中的廣泛應(yīng)用。二是通過讓學(xué)生自己去分類整理、自主探究、合作交流得出反比例的意義,有利于發(fā)展學(xué)生的數(shù)學(xué)思維。
正反比例教案篇八
有些好的教學(xué)片段,往往在不經(jīng)意間被你瞬間捕捉。而一堂精彩的數(shù)學(xué)課,必須有教學(xué)理念的支撐,教學(xué)方法的落實(shí),學(xué)生思維的啟發(fā)。
比例分配應(yīng)用題剛上完。我對(duì)此有些想法,以便在今后的教學(xué)中積累一點(diǎn)有用的東西,以便更好的服務(wù)于學(xué)生。
一、有價(jià)值的問題,激發(fā)學(xué)生積極思維。
導(dǎo)課問題有價(jià)值。我處理如下,有45只蘋果分給六(1)班的男女同學(xué),你們自己打算怎樣分。這樣的問題比較開放,不以條條框框限制學(xué)生思維,限制學(xué)生的思維空間,體現(xiàn)學(xué)生主體性發(fā)展的過程,充分挖掘每個(gè)學(xué)生的潛能。
引導(dǎo)問題有價(jià)值。如能否根據(jù)比例與分?jǐn)?shù)之間的聯(lián)系來解決比例分配應(yīng)用題等。問題必須提在點(diǎn)子上,讓學(xué)生在已有的基礎(chǔ)上,運(yùn)用知識(shí)遷移解釋問題的解決。一堂成功的數(shù)學(xué)課就在于師生之間的解釋清晰明了的程度。
二、營造機(jī)會(huì),尋找思維的切入口。
聯(lián)系導(dǎo)課問題,營造機(jī)會(huì)。抓住按男女生人數(shù)來分作為契機(jī),六(1)班男生21人,女生24人,以班級(jí)實(shí)際聯(lián)系比的知識(shí),讓學(xué)生自編符合課時(shí)要求的應(yīng)用題。拉進(jìn)知識(shí)與學(xué)生的距離,啟發(fā)學(xué)生思維,創(chuàng)造距離機(jī)會(huì)。
三、提供線索條件,讓學(xué)生嘗試摸索。
如比例分配應(yīng)用題解答方法不是一種,賽一賽誰的方法多,并給自己的方法取個(gè)名好嗎?再如男女生人數(shù)比是7比8,你知道了什么?也可以接著給予提示。教學(xué)就是要?jiǎng)?chuàng)設(shè)一個(gè)寬松的環(huán)境,鼓勵(lì)學(xué)生思考、討論、想象。敢于提出自己的`獨(dú)立見解和方法。
四、倡導(dǎo)學(xué)生相互解釋,驗(yàn)證方案地可行性。
現(xiàn)在的學(xué)習(xí),是多渠道、多元化、提倡終身學(xué)習(xí)的學(xué)習(xí)。學(xué)生最終必須得依賴自己,而不是教師,因此他們不得不學(xué)會(huì)學(xué)習(xí)。在數(shù)學(xué)教學(xué)中,盡量避免教師的絕對(duì)權(quán)威,判斷學(xué)生的是非。應(yīng)在教師的引導(dǎo)下,逐步應(yīng)用一些方法讓學(xué)生用自己的知識(shí)來審視自己的思考過程。
最后,針對(duì)自己不足提些疑問,希望我的教學(xué)反思上交后,幫助我解決一個(gè)疑問。再此我表示深深地感謝。
(1)、課文規(guī)定一課時(shí)的內(nèi)容我能否分兩課時(shí)上,比如情況出現(xiàn)在公開課。
(2)、方法多樣化,是否能夠照顧到后近生。
(3)、上課時(shí),鼓勵(lì)學(xué)生一題多解,有時(shí)學(xué)生的方法確實(shí)可行,但你不能很好的解釋,該如何處理。
正反比例教案篇九
小學(xué)數(shù)學(xué)十二冊(cè)比例的應(yīng)用,本節(jié)課是在學(xué)生理解了正、反比例的意義并學(xué)會(huì)解比例的基礎(chǔ)上進(jìn)行教學(xué)的主要包括正、反比例的應(yīng)用題,這是比和比例知識(shí)的綜合運(yùn)用,教材通過兩個(gè)例題,講解正、反比例應(yīng)用題的解法通過講解使學(xué)生掌握正、反比例應(yīng)用題的特點(diǎn)以及解題的步驟。
用正、反比例解應(yīng)用題,首先要根據(jù)題意分析數(shù)量關(guān)系,能從題中找出兩種相關(guān)聯(lián)的量,這兩種量中相對(duì)應(yīng)的兩個(gè)數(shù)的比值(或積)是一定,從而判斷這兩種量中是否成正(或者反)比例,然后設(shè)未知數(shù)x,比例解答,判斷過程也是正反比例意義實(shí)際應(yīng)用的過程。
數(shù)學(xué)目標(biāo)。
一、知識(shí)目標(biāo)。
1、使學(xué)生能正確判斷應(yīng)用題中涉及的量成什么比例關(guān)系。
二、能力目標(biāo)。
1、培養(yǎng)學(xué)生的判斷推理能力。
2、培養(yǎng)學(xué)生的.分析能力。
三、情感目標(biāo)。
引導(dǎo)學(xué)生利用已有的知識(shí),自己探索,解決實(shí)際問題,培養(yǎng)學(xué)生的勇于探索的精神。
教學(xué)生點(diǎn)、難點(diǎn)。
正確判斷題中數(shù)量成何比例,根據(jù)相等關(guān)系等式。
教學(xué)方法。
引導(dǎo)探究,合作學(xué)習(xí)。
教學(xué)手段。
多媒體輔助教學(xué)。
教學(xué)流程。
復(fù)習(xí)導(dǎo)入。
本節(jié)課的教學(xué)內(nèi)容是正、反比例的應(yīng)用,因此通過本小節(jié)的教學(xué),使學(xué)生加深對(duì)正、反比例的意義的理解,能正確判斷成正、反比的量。
正反比例教案篇十
教學(xué)目標(biāo):
知識(shí)與技能:
1.結(jié)合豐富的實(shí)例,認(rèn)識(shí)反比例。
2.能根據(jù)反比例的意義,判斷兩個(gè)相關(guān)聯(lián)的量是不是反比例。
過程與方法:
通過猜想、分析、對(duì)比、概括、舉例、判斷等活動(dòng),結(jié)合實(shí)例,理解反比例的意義,認(rèn)識(shí)反比例。
情感態(tài)度價(jià)值觀:
培養(yǎng)學(xué)生自主、合作學(xué)習(xí)、探索新知的能力,激發(fā)學(xué)習(xí)數(shù)學(xué)的熱情。感受反比例關(guān)系在生活中的廣泛應(yīng)用。初步滲透函數(shù)思想。
認(rèn)識(shí)反比例,根據(jù)反比例意義判斷兩個(gè)相關(guān)聯(lián)的量是否成反比例。
認(rèn)識(shí)反比例,根據(jù)反比例意義判斷兩個(gè)相關(guān)聯(lián)的量是否成反比例。
電腦課件。
一、復(fù)習(xí)引入。
1、計(jì)算。
2、判斷下面各題中的兩種量是否成正比例?為什么?
(1)文具盒的單價(jià)一定,買文具盒的個(gè)數(shù)和總價(jià)。
(2)一堆貨物一定,運(yùn)走的量和剩下的量。
(3)汽車行駛的速度一定,行駛的路程和時(shí)間。
3、說說什么是正比例。
師:大家對(duì)正比例知識(shí)理解掌握得非常好,接下來我們就該學(xué)習(xí)什么了?
二、出示學(xué)習(xí)目標(biāo)。
1.能根據(jù)反比例的意義,判斷兩個(gè)相關(guān)聯(lián)的量是不是反比例。
2.通過猜想、分析、對(duì)比、概括、舉例、判斷等活動(dòng),結(jié)合實(shí)例,理解反比例的意義,認(rèn)識(shí)反比例。
3.培養(yǎng)學(xué)生探索研究的能力,感受反比例關(guān)系在生活中的廣泛應(yīng)用。
三、指導(dǎo)自學(xué)。
師:給你們講個(gè)小故事:
過了幾天,財(cái)主到了裁縫店取帽子,結(jié)果一看,頓時(shí)傻了眼:10頂?shù)拿弊有〉弥荒艽髟谑种割^上了!
學(xué)習(xí)提示:獨(dú)立思考?
1、“為什么同一匹布,裁縫說做1頂帽子,2頂帽子,10頂都可以呢?”
合作學(xué)習(xí)小組討論上述的問題??磿献鲗W(xué)習(xí)。
1、把25頁例。
2、例3的表格補(bǔ)充完整。
4、你知道什么是反比例嗎?
四、學(xué)生自學(xué)。
五、檢查自學(xué)效果。
讓學(xué)生說說自學(xué)要求中的內(nèi)容。
師歸納:兩種相關(guān)聯(lián)的量,一種量隨著另一種量的變化而變化,在變化過程中兩種量的積一定,那么這兩種量成反比例。
六、引導(dǎo)更正,指導(dǎo)運(yùn)用。
你們還找出類似這樣關(guān)系的量來嗎?”
學(xué)生:要走一段路,速度越慢(快),用的時(shí)間就越多(少)運(yùn)一堆貨物,每次運(yùn)的越多(少),運(yùn)的次數(shù)就越?。ǘ啵┌倜踪惻?,路程100米不變,速度和時(shí)間是反比例;排隊(duì)做操,總?cè)藬?shù)不變,排隊(duì)的行數(shù)和每行的人數(shù)是反比例;長方體的體積一定,底面積和高是反比例。
七、當(dāng)堂訓(xùn)練基礎(chǔ)練習(xí)。
1、填空。
兩種_____的量,一種量隨著另一種量變化,如果這兩種量中相對(duì)應(yīng)的兩個(gè)數(shù)的______,這兩種量叫做成反比例的量,它們的關(guān)系叫做_______關(guān)系。
2、判斷下面每題中的兩種量是不是成反比例,并說明理由。
(1)煤的總量一定,每天的燒煤量和能夠燒的天數(shù)。
(2)張伯伯騎自行車從家到縣城,騎自行車的速度和所需的時(shí)間。
(3)生產(chǎn)電視機(jī)的總臺(tái)數(shù)一定,每天生產(chǎn)的臺(tái)數(shù)和所用的天數(shù)。
(4)圓柱體的體積一定,底面積和高。
(5)小林做10道數(shù)學(xué)題,已做的題和沒有做的題。
(6)長方形的長一定,面積和寬。
(7)平行四邊形面積一定,底和高。提高練習(xí)。
四、小結(jié)。
通過這節(jié)課的學(xué)習(xí),你有什么收獲?
相關(guān)聯(lián),一個(gè)量變化,另一個(gè)量也隨著變化積一定。
xy=k(一定)。
正反比例教案篇十一
知識(shí)與技能目標(biāo):使學(xué)生理解反比例關(guān)系的意義,能根據(jù)反比例的意義正確判斷兩種量是否成反比例。
能力目標(biāo):經(jīng)歷反比例意義的構(gòu)建過程,培養(yǎng)發(fā)現(xiàn)的能力和歸納概括的能力。
情感與態(tài)度目標(biāo):體會(huì)反比例與生活之間的聯(lián)系,感悟到事物之間相互聯(lián)系和相互轉(zhuǎn)化的辨證唯物主義的觀點(diǎn)。
重點(diǎn):理解反比例關(guān)系的意義,能根據(jù)反比例的意義正確判斷兩種量是否成反比例。
難點(diǎn):掌握反比例的特征,能夠正確判斷反比例關(guān)系。
(一)復(fù)習(xí)猜想導(dǎo)入,引出問題。
1、成正比例的量有什么特征?什么叫正比例關(guān)系?
2、在生活中兩個(gè)相關(guān)聯(lián)的量有的成正比例關(guān)系,還可能成什么關(guān)系?學(xué)生很自然想到反比例,激發(fā)學(xué)生的學(xué)習(xí)欲望,問學(xué)生想學(xué)反比例的哪些知識(shí),學(xué)生大膽猜測(cè),對(duì)反比例的意義展開合理的猜想。由此導(dǎo)入新課。
達(dá)成目標(biāo):猜想導(dǎo)課,激發(fā)探究愿望。
(二)共同探索,總結(jié)方法。
1、明確這節(jié)課的學(xué)習(xí)目標(biāo):
(1)理解反比例的意義,能正確地判斷兩種相關(guān)聯(lián)的量是不是成反比例的量。
(2)經(jīng)歷反比例意義的探究過程,體驗(yàn)觀察比較、推理、歸納的學(xué)習(xí)方法。
2、情境導(dǎo)入,學(xué)習(xí)探究。
(1)我們先來看一個(gè)實(shí)驗(yàn)。
高度(厘米)302015105。
底面積(平方厘米)1015203060。
體積(立方厘米)。
提問:根據(jù)列表,你從中你發(fā)現(xiàn)了什么?
(2)學(xué)生討論交流。
(3)引導(dǎo)學(xué)生回答:表中的兩個(gè)量是高度和底面積。
高度擴(kuò)大,底面積反而縮?。桓叨瓤s小,底面積反而擴(kuò)大。
每兩個(gè)相對(duì)應(yīng)的數(shù)的乘積都是300.
(4)計(jì)算后你又發(fā)現(xiàn)了什么?
每兩個(gè)相對(duì)應(yīng)的數(shù)的乘積都是300,乘積一定。
教師小結(jié):我們就說水的高度和體積成反比例關(guān)系,水的高度和體積是成反比例的量。
教師提問:高底面積和體積,怎樣用式子表示他們的關(guān)系?板書:高×底面積=水的體積(一定)。
(5)如果用字母x和y表示兩種相關(guān)聯(lián)的量,用k表示他們的積一定,反比例關(guān)系可以用一個(gè)什么樣的式子表示?板書:x×y=k(一定)。
小結(jié):通過上面的學(xué)習(xí),你認(rèn)為判斷兩種相關(guān)聯(lián)的`量是否成反比例,關(guān)鍵是什么?
(6)歸納總結(jié)反比例的意義。
(7)比較歸納正反比例的異同點(diǎn)。
達(dá)成目標(biāo):比較思想是在小學(xué)數(shù)學(xué)教學(xué)中應(yīng)用十分普遍的數(shù)學(xué)思想方法,《成反比例的量》是繼《成正比例的量》一課后學(xué)習(xí)的內(nèi)容,兩節(jié)課的學(xué)習(xí)內(nèi)容和學(xué)習(xí)方法有相似之處,學(xué)生從知識(shí)的差別中找到同一,也可以從同一中找出差別,學(xué)生學(xué)習(xí)新知識(shí),進(jìn)行深化拓展,歸納總結(jié)。
(三)運(yùn)用方法,解決問題。
1、生活中,哪些相關(guān)聯(lián)的量成反比例關(guān)系,舉例說一說。
2、課后做一做每天運(yùn)的噸數(shù)和運(yùn)貨的天數(shù)成反比例關(guān)系嗎?為什么?
3、出示反比例圖像,與正比例圖像進(jìn)行比較學(xué)習(xí)。
達(dá)成目標(biāo):學(xué)生利用對(duì)反比例概念的理解,判斷相關(guān)聯(lián)的量是否成反比例,學(xué)會(huì)分析并進(jìn)行判斷。
(四)反饋鞏固,分層練習(xí)。
判斷下面每題中的兩個(gè)量是不是成反比例,并說明理由。
(1)路程一定,速度和時(shí)間。
(2)小明從家到學(xué)校,每分走的速度和所需時(shí)間。
(3)平行四邊形面積一定,底和高。
(4)小林做10道數(shù)學(xué)題,已做的題和沒有做的題。
(5)小明拿一些錢買鉛筆,單價(jià)和購買的數(shù)量。
達(dá)成目標(biāo):使學(xué)生體會(huì)到數(shù)學(xué)來源于現(xiàn)實(shí)生活,又服務(wù)于現(xiàn)實(shí)生活的特點(diǎn),體現(xiàn)數(shù)學(xué)的應(yīng)用性。
(五)課堂總結(jié),提升認(rèn)識(shí)。
正反比例教案篇十二
正反比例應(yīng)用題從教參上看主要是分三個(gè)層次:1、正比例應(yīng)用題的教學(xué),2、反比例應(yīng)用題的教學(xué),3、正反比例應(yīng)用題解答方法的。重點(diǎn)應(yīng)放在如何判斷每題中的兩個(gè)量是否成比例,成什么比例上。下面我結(jié)合自己本節(jié)課的教學(xué)談一談我自己的體會(huì)。成功之處:
1、開頭的復(fù)習(xí)比較的設(shè)計(jì)比較到位,層次分明,時(shí)間分配得當(dāng)。
2、總結(jié)解比例的方法時(shí)能鼓勵(lì)學(xué)生去體驗(yàn),通過小組的方式去總結(jié)解正反比例應(yīng)用題的方法。
不足之處:
1、例題教學(xué)時(shí)應(yīng)讓學(xué)生討論分析,多花時(shí)間研究數(shù)量關(guān)系式。
2、教師在教學(xué)時(shí)不能按步就搬,學(xué)生的閃光點(diǎn),及進(jìn)表揚(yáng),充分讓學(xué)生表現(xiàn)自己。
3、改造例1時(shí)讓學(xué)生宏觀上思考與例1的區(qū)別,這樣可讓學(xué)生更深層次地理解比例應(yīng)用題的解題步驟。
4、練習(xí)題中的表述要清,練習(xí)的亮點(diǎn)沒有得到很好的拓展。
只不過是比例的兩種形式而已。
好不容易有這樣熱烈的氣氛,我趁熱打鐵,把練習(xí)十的第8題繼續(xù)讓學(xué)生分組討論列式,結(jié)果又有兩種列式(1)解:設(shè)如果每分鐘整修8平方米x分鐘可以整修完成。列方程為6.4×30=x×8。(2)解:設(shè)如果每小時(shí)整修8平方米x小時(shí)可以整修完成。列式為6.4×0.5=x×8。按例每分鐘整修6.4平方米乘0.5小時(shí)不能表示什么,也就是這個(gè)式子根本沒意義,但是用反比例的意義來理解這題,也就不難理解了。
通過這樣的教學(xué),把“正反比例應(yīng)用題”這課上活了,而且把正反比例的意義挖的更深,學(xué)生的興趣更濃,積極性更高,掌握的知識(shí)更牢。
正反比例教案篇十三
蘇霍姆林斯基說過:“在人的心靈深處,總有一種根深蒂固的需要,這就是希望自己是一個(gè)發(fā)現(xiàn)者、研究者、探索者?!边@種需要在兒童的身上表現(xiàn)得更為突出。一旦學(xué)生的學(xué)習(xí)興趣被激發(fā)起來,他們就希望通過自己的努力來獲取知識(shí),從而體驗(yàn)成功的喜悅。
考慮到學(xué)生學(xué)習(xí)基礎(chǔ)、能力的差異,練習(xí)設(shè)計(jì)為學(xué)生提供多層次、多種類的選擇,以滿足不同層次學(xué)生發(fā)展的需要。以上的幾個(gè)練習(xí)分成三個(gè)層次,設(shè)置了三個(gè)智力臺(tái)階(基礎(chǔ)性練習(xí)、綜合性練習(xí)、拓展性練習(xí)),適合不同層次學(xué)生的需要,為不同層次的學(xué)生提供取得成功機(jī)會(huì),使他們?cè)诰毩?xí)中獲得成功的體驗(yàn),樹立積極自信的信心。
現(xiàn)在數(shù)學(xué)與實(shí)際生活聯(lián)系越來越密切,應(yīng)用性越來越強(qiáng),我在這節(jié)課的練習(xí)設(shè)計(jì)也反映這一特點(diǎn),其中有許多與現(xiàn)實(shí)生活及各行各業(yè)密切聯(lián)系的習(xí)題,既有學(xué)生做練習(xí),騎車上學(xué),又有學(xué)校燒煤、買課桌,農(nóng)民播種,工廠運(yùn)貨物等問題。使學(xué)生體會(huì)到數(shù)學(xué)來源于現(xiàn)實(shí)生活,又服務(wù)于現(xiàn)實(shí)生活的特點(diǎn),體現(xiàn)數(shù)學(xué)的應(yīng)用性。
正反比例教案篇十四
1.經(jīng)歷探索兩種相關(guān)聯(lián)的量的變化情況過程,發(fā)現(xiàn)規(guī)律,理解反比例的意義。
2.根據(jù)反比例的意義,正確判斷兩種量是否成反比例。
教學(xué)重點(diǎn):反比例的意義。
教學(xué)難點(diǎn):正確判斷兩種量是否成反比例。
一導(dǎo)入新課。
1.讓學(xué)生說一說成正比例的兩種量的變化規(guī)律。
回答要點(diǎn):
(1)兩種相關(guān)聯(lián)的量;
(2)一個(gè)量增加,另一個(gè)量也相應(yīng)增加;一個(gè)量減少,另一個(gè)量也相應(yīng)減少;
(3)兩個(gè)量的比值一定。
2.舉例說明。
如:每袋大米質(zhì)量相同,大米的袋數(shù)與總質(zhì)量成正比例。
理由:
(1)每袋大米質(zhì)量一定,大米的.總質(zhì)量隨著袋數(shù)的變化而變化;
(2)大米的袋數(shù)增加,大米的總質(zhì)量也相應(yīng)增加,大米的袋數(shù)。
減少,大米的總質(zhì)量也相應(yīng)減少;
(3)總質(zhì)量與袋數(shù)的比值一定。
所以,大米的袋數(shù)與總質(zhì)量成正比例。
板書:
3.揭示課題。
今天,我們一起來學(xué)習(xí)反比例。兩種量是什么樣的關(guān)系時(shí),這兩種量成反比例呢?
板書課題:成反比例的量。
正反比例教案篇十五
反比例。(教材第47頁例2)。
1.使學(xué)生理解反比例的意義,能正確地判斷兩種相關(guān)聯(lián)的量是不是成反比例的量。
2.讓學(xué)生經(jīng)歷反比例意義的探究過程,體驗(yàn)觀察比較、推理、歸納的學(xué)習(xí)方法。
引導(dǎo)學(xué)生總結(jié)出成反比例的量的特點(diǎn),進(jìn)而抽象概括出反比例的關(guān)系式。利用反比例的意義,正確判斷兩個(gè)量是否成反比例。
投影儀。
復(fù)習(xí)導(dǎo)入
1.讓學(xué)生說說什么是正比例,然后用投影出示下面的題。
下面各題中哪兩種量成正比例?為什么?
(1)每公頃產(chǎn)量一定,總產(chǎn)量和公頃數(shù)。
(2)一袋大米的重量一定,吃了的和剩下的。
(3)修房屋時(shí),粉刷的面積和所需涂料的數(shù)量。
教師:如果加工零件總數(shù)一定,每小時(shí)加工數(shù)和加工時(shí)間會(huì)成什么變化?關(guān)系怎樣?這就是我們這節(jié)課要學(xué)習(xí)的內(nèi)容。
1.教學(xué)例2。
創(chuàng)設(shè)情境。
教師:把相同體積的水倒入底面積不同的杯子,高度會(huì)怎樣變化?
出示教材第47頁例2的情境圖和表格。
請(qǐng)學(xué)生認(rèn)真觀察表中數(shù)據(jù)的變化情況,組織學(xué)生分小組討論:
(1)水的高度和底面積變化有關(guān)系嗎?
(2)水的高度是怎樣隨著底面積變化的?
(3)水的高度和底面積的變化有什么規(guī)律?
學(xué)生不難發(fā)現(xiàn):底面積越大,水的高度越低;底面積越小,水的高度越高,而且高度和底面積的乘積(水的體積)一定。
教師板書配合說明這一規(guī)律:
30×10=20×15=15×20=……=300
教師根據(jù)學(xué)生的匯報(bào)說明:高度和底面積有這樣的變化關(guān)系,我們就說高度和底面積成反比例的關(guān)系,高度和底面積叫做成反比例的量。
2.歸納反比例的意義。
組織學(xué)生小組內(nèi)討論:反比例的意義是什么?
學(xué)生小組內(nèi)交流,指名匯報(bào)。
教師總結(jié):像這樣,兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對(duì)應(yīng)的兩個(gè)數(shù)的積一定,這兩種量就叫做成反比例的量,它們的關(guān)系叫做反比例關(guān)系。
3.用字母表示。
學(xué)生探討后得出結(jié)果。
x×y=k(一定)
4.師:生活中還有哪些成反比例的量?
在教師的引導(dǎo)下,學(xué)生舉例說明。如:
(1)大米的質(zhì)量一定,每袋質(zhì)量和袋數(shù)成反比例。
(2)教室地板面積一定,每塊地磚的面積和塊數(shù)成反比例。
(3)長方形的面積一定,長和寬成反比例。
5.組織學(xué)生將例1與例2進(jìn)行比較,小組內(nèi)討論:
正比例與反比例的相同點(diǎn)和不同點(diǎn)有哪些?
學(xué)生交流、匯報(bào)后,引導(dǎo)學(xué)生歸納:
相同點(diǎn):都表示兩種相關(guān)聯(lián)的量,且一種量變化,另一種量也隨著變化。
不同點(diǎn):正比例關(guān)系中比值一定,反比例關(guān)系中乘積一定。
6.你還有什么疑問
?如果學(xué)生提出表示反比例關(guān)系的圖像有什么特征,教師應(yīng)該引導(dǎo)學(xué)生觀察教材第48頁“你知道嗎?”中的圖像。
反比例關(guān)系也可以用圖像來表示,表示兩個(gè)量的點(diǎn)不在同一條直線上,點(diǎn)所連接起來的圖像是一條曲線,圖像特征不要求掌握。
課堂作業(yè)
1.教材第48頁的“做一做”。
2.教材第51頁第9、10題。
答案:1.(1)每天運(yùn)的噸數(shù)和所需的天數(shù)兩種量,它們是相關(guān)聯(lián)的量。
(2)300×1=150×2=100×3=300(答案不唯一),積都是300。積表示貨物的總量。
(3)成反比例,因?yàn)槊刻爝\(yùn)的噸數(shù)變化,需要的天數(shù)也隨著變化,且它們的積一定。
2.第9題:成反比例,因?yàn)槊科康娜萘颗c瓶數(shù)的乘積一定。
第10題:5010012
說一說成反比例關(guān)系的量的變化特征。
課后作業(yè)
1.完成練習(xí)冊(cè)中本課時(shí)的練習(xí)。
2.教材51~52頁第8、14題。
答案:
2.第8題:成反比例,因?yàn)榻淌业拿娣e一定,而每塊地磚的面積與所需數(shù)量的乘積都等于教室的面積54m2。
第14題:(1)斑馬和長頸鹿的奔跑路程和奔跑時(shí)間成正比例。
(2)分析:可以通過圖像直接估計(jì),先在橫軸上找到18分的位置,然后在兩個(gè)圖像中找到相應(yīng)的點(diǎn),再分別在豎軸上找到與這個(gè)點(diǎn)對(duì)應(yīng)的數(shù)值;也可以通過計(jì)算找到。
解答:從圖像中可以知道斑馬10min跑12km,那么1min跑1.2km,18min跑1.2×18=21.6(km)。
從圖像中可以知道長頸鹿5min跑4km,1min跑0.8km,18min跑0.8×18=14.4(km)。
(3)斑馬跑得快。
第3課時(shí)反比例
兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對(duì)應(yīng)的兩個(gè)數(shù)的積一定,這兩種量就叫做成反比例的量,它們的關(guān)系叫做反比例關(guān)系。
用x和y表示兩種相關(guān)聯(lián)的量,x和y成反比例關(guān)系用字母表示為×y=k(一定)
正比例與反比例的相同點(diǎn)和不同點(diǎn):
相同點(diǎn):都表示兩種相關(guān)聯(lián)的量,且一種量變化,另一種量也隨著變化。
不同點(diǎn):正比例關(guān)系中比值一定,反比例關(guān)系中乘積一定。
正反比例教案篇十六
《成反比例的量》是在學(xué)習(xí)《成正比例的量》之后學(xué)習(xí)的。為了吸取上次課的教學(xué)經(jīng)驗(yàn),我改變了教學(xué)方法,目是調(diào)動(dòng)學(xué)生學(xué)習(xí)的興趣,培養(yǎng)學(xué)生自主學(xué)習(xí)的能力。
一、復(fù)習(xí)舊知,引入新知。
二、自主探究,學(xué)習(xí)新知。
有了一些疑問,相信學(xué)生們會(huì)急著想要解決呢!我就順勢(shì)提出讓學(xué)生們自己看書來尋找這些答案,然后再進(jìn)行交流。在交流的過程中,讓學(xué)生對(duì)別人的發(fā)言及時(shí)補(bǔ)充和發(fā)表自己看法,這樣既學(xué)會(huì)了思考,又培養(yǎng)了學(xué)生學(xué)會(huì)傾聽的學(xué)習(xí)習(xí)慣。接著對(duì)成正比例的量和成反比例的量進(jìn)行比較,找到新舊知識(shí)之間的聯(lián)系與區(qū)別。
在整個(gè)自主學(xué)習(xí)的過程中,學(xué)生們很好地利用已有知識(shí)和經(jīng)驗(yàn)的遷移,理解了反比例的意義,不僅讓學(xué)生獲得了數(shù)學(xué)知識(shí),還增強(qiáng)了自主學(xué)習(xí)數(shù)學(xué)的信心,同時(shí)還培養(yǎng)了學(xué)生自主獲取新知識(shí)的能力。
這課學(xué)生自主學(xué)習(xí)的積極性都很高,學(xué)習(xí)效果較好,為了鼓勵(lì)學(xué)生學(xué)習(xí)的積極和主動(dòng)性:
一是人人能自主積極參加新知的探索與學(xué)習(xí);
二是大家能充分合作,發(fā)揮出了各自的能力;
三是大家學(xué)會(huì)了如何利用舊知識(shí)來學(xué)習(xí)新知識(shí)的方法;四是很多同學(xué)通過自主學(xué)習(xí)獲得知識(shí)后,有一種快樂感和成就感。
【本文地址:http://www.aiweibaby.com/zuowen/17063137.html】