高二數(shù)學(xué)必備知識(shí)點(diǎn)(4篇)

格式:DOC 上傳日期:2023-03-21 06:38:37
高二數(shù)學(xué)必備知識(shí)點(diǎn)(4篇)
時(shí)間:2023-03-21 06:38:37     小編:儲(chǔ)心悅Y

每個(gè)人都曾試圖在平淡的學(xué)習(xí)、工作和生活中寫一篇文章。寫作是培養(yǎng)人的觀察、聯(lián)想、想象、思維和記憶的重要手段。那么我們?cè)撊绾螌懸黄^為完美的范文呢?下面是小編幫大家整理的優(yōu)質(zhì)范文,僅供參考,大家一起來看看吧。

高二數(shù)學(xué)必備知識(shí)點(diǎn)篇一

異面直線性質(zhì):既不平行,又不相交.

異面直線判定:過平面外一點(diǎn)與平面內(nèi)一點(diǎn)的直線與平面內(nèi)不過該店的直線是異面直線

異面直線所成角:作平行,令兩線相交,所得銳角或直角,即所成角.兩條異面直線所成角的范圍是(0°,90°],若兩條異面直線所成的角是直角,我們就說這兩條異面直線互相垂直.

求異面直線所成角步驟:

a、利用定義構(gòu)造角,可固定一條,平移另一條,或兩條同時(shí)平移到某個(gè)特殊的位置,頂點(diǎn)選在特殊的位置上.b、證明作出的角即為所求角c、利用三角形來求角

(7)等角定理:如果一個(gè)角的兩邊和另一個(gè)角的`兩邊分別平行,那么這兩角相等或互補(bǔ).

(8)空間直線與平面之間的位置關(guān)系

直線在平面內(nèi)——有無數(shù)個(gè)公共點(diǎn).

三種位置關(guān)系的符號(hào)表示:aαa∩α=aaα

(9)平面與平面之間的位置關(guān)系:平行——沒有公共點(diǎn);αβ

相交——有一條公共直線.α∩β=b

高二數(shù)學(xué)必備知識(shí)點(diǎn)篇二

1、學(xué)會(huì)三視圖的分析:

2、斜二測(cè)畫法應(yīng)注意的地方:

(1)在已知圖形中取互相垂直的軸ox、oy。畫直觀圖時(shí),把它畫成對(duì)應(yīng)軸o'x'、o'y'、使∠x'o'y'=45°(或135°);(2)平行于x軸的線段長(zhǎng)不變,平行于y軸的線段長(zhǎng)減半.(3)直觀圖中的45度原圖中就是90度,直觀圖中的90度原圖一定不是90度.

3、表(側(cè))面積與體積公式:

⑴柱體:①表面積:s=s側(cè)+2s底;②側(cè)面積:s側(cè)=;③體積:v=s底h

⑵錐體:①表面積:s=s側(cè)+s底;②側(cè)面積:s側(cè)=;③體積:v=s底h:

⑶臺(tái)體①表面積:s=s側(cè)+s上底s下底②側(cè)面積:s側(cè)=

⑷球體:①表面積:s=;②體積:v=

4、位置關(guān)系的證明(主要方法):注意立體幾何證明的書寫

(1)直線與平面平行:①線線平行線面平行;②面面平行線面平行。

(2)平面與平面平行:①線面平行面面平行。

(3)垂直問題:線線垂直線面垂直面面垂直。核心是線面垂直:垂直平面內(nèi)的兩條相交直線

5、求角:(步驟-------ⅰ.找或作角;ⅱ.求角)

⑴異面直線所成角的求法:平移法:平移直線,構(gòu)造三角形;

⑵直線與平面所成的角:直線與射影所成的角

高二數(shù)學(xué)必備知識(shí)點(diǎn)篇三

圓錐曲線方程:

1、橢圓:①方程(a>b>0)注意還有一個(gè);②定義:|pf1|+|pf2|=2a>2c;③e=④長(zhǎng)軸長(zhǎng)為2a,短軸長(zhǎng)為2b,焦距為2c;a2=b2+c2;

2、雙曲線:①方程(a,b>0)注意還有一個(gè);②定義:||pf1|-|pf2||=2a<2c;③e=;④實(shí)軸長(zhǎng)為2a,虛軸長(zhǎng)為2b,焦距為2c;漸進(jìn)線或c2=a2+b2

3、拋物線:①方程y2=2px注意還有三個(gè),能區(qū)別開口方向;②定義:|pf|=d焦點(diǎn)f(,0),準(zhǔn)線x=-;③焦半徑;焦點(diǎn)弦=x1+x2+p;

4、直線被圓錐曲線截得的弦長(zhǎng)公式:

直線、平面、簡(jiǎn)單幾何體:

1、學(xué)會(huì)三視圖的分析:

2、斜二測(cè)畫法應(yīng)注意的地方:

(1)在已知圖形中取互相垂直的軸ox、oy。畫直觀圖時(shí),把它畫成對(duì)應(yīng)軸o'x'、o'y'、使∠x'o'y'=45°(或135°);

(2)平行于x軸的線段長(zhǎng)不變,平行于y軸的線段長(zhǎng)減半.

(3)直觀圖中的45度原圖中就是90度,直觀圖中的90度原圖一定不是90度.

3、表(側(cè))面積與體積公式:

⑴柱體:①表面積:s=s側(cè)+2s底;②側(cè)面積:s側(cè)=;③體積:v=s底h

⑵錐體:①表面積:s=s側(cè)+s底;②側(cè)面積:s側(cè)=;③體積:v=s底h:

⑶臺(tái)體①表面積:s=s側(cè)+s上底s下底②側(cè)面積:s側(cè)=

⑷球體:①表面積:s=;②體積:v=

4、位置關(guān)系的證明(主要方法):注意立體幾何證明的書寫

(1)直線與平面平行:①線線平行線面平行;②面面平行線面平行。

(2)平面與平面平行:①線面平行面面平行。

(3)垂直問題:線線垂直線面垂直面面垂直。核心是線面垂直:垂直平面內(nèi)的兩條相交直線

5、求角:(步驟-------ⅰ.找或作角;ⅱ.求角)

⑴異面直線所成角的求法:平移法:平移直線,構(gòu)造三角形;

⑵直線與平面所成的角:直線與射影所成的角

高二數(shù)學(xué)必備知識(shí)點(diǎn)篇四

等腰直角三角形面積公式:s=a2/2,s=ch/2=c2/4(其中a為直角邊,c為斜邊,h為斜邊上的高)。

面積公式

若假設(shè)等腰直角三角形兩腰分別為a,b,底為c,則可得其面積:

s=ab/2。

且由等腰直角三角形性質(zhì)可知:底邊c上的高h(yuǎn)=c/2,則三角面積可表示為:

s=ch/2=c2/4。

等腰直角三角形是一種特殊的三角形,具有所有三角形的性質(zhì):穩(wěn)定性,兩直角邊相等直角邊夾一直角銳角45°,斜邊上中線角平分線垂線三線合一。

【本文地址:http://aiweibaby.com/zuowen/1718622.html】

全文閱讀已結(jié)束,如果需要下載本文請(qǐng)點(diǎn)擊

下載此文檔