2023年高二數(shù)學必背知識點(4篇)

格式:DOC 上傳日期:2023-03-21 07:16:54
2023年高二數(shù)學必背知識點(4篇)
時間:2023-03-21 07:16:54     小編:儲心悅Y

在日常學習、工作或生活中,大家總少不了接觸作文或者范文吧,通過文章可以把我們那些零零散散的思想,聚集在一塊。大家想知道怎么樣才能寫一篇比較優(yōu)質(zhì)的范文嗎?這里我整理了一些優(yōu)秀的范文,希望對大家有所幫助,下面我們就來了解一下吧。

高二數(shù)學必背知識點篇一

定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側(cè)視圖(從左向右)、

俯視圖(從上向下)

注:正視圖反映了物體的高度和長度;俯視圖反映了物體的長度和寬度;側(cè)視圖反映了物體的高度和寬度。

斜二測畫法特點:①原來與x軸平行的線段仍然與x平行且長度不變;

②原來與y軸平行的線段仍然與y平行,長度為原來的一半。

(1)幾何體的表面積為幾何體各個面的面積的和。

(2)特殊幾何體表面積公式(c為底面周長,h為高,為斜高,l為母線)

(3)柱體、錐體、臺體的體積公式

(4)球體的表面積和體積公式:v=;s=

高二數(shù)學必背知識點篇二

平面內(nèi)到一定點的距離等于定長的點的集合叫圓,定點為圓心,定長為圓的半徑。

(x-a)^2+(y-b)^2=r^2

(1)標準方程,圓心(a,b),半徑為r;

(2)求圓方程的方法:

一般都采用待定系數(shù)法:先設(shè)后求。確定一個圓需要三個獨立條件,若利用圓的標準方程,

需求出a,b,r;若利用一般方程,需要求出d,e,f;

另外要注意多利用圓的幾何性質(zhì):如弦的中垂線必經(jīng)過原點,以此來確定圓心的位置。

直線與圓的位置關(guān)系有相離,相切,相交三種情況:

(1)設(shè)直線,圓,圓心到l的距離為,則有;;

(2)過圓外一點的切線:①k不存在,驗證是否成立②k存在,設(shè)點斜式方程,用圓心到該直線距離=半徑,求解k,得到方程【一定兩解】

(3)過圓上一點的切線方程:圓(x-a)2+(y-b)2=r2,圓上一點為(x0,y0),則過此點的切線方程為(x0-a)(x-a)+(y0-b)(y-b)=r2

高二數(shù)學必背知識點篇三

如果一個數(shù)列從第二項起,每一項與它的前一項的差等于同一個常數(shù),這個數(shù)列就叫做等差數(shù)列,這個常數(shù)叫做等差數(shù)列的公差,公差常用字母d表示。

等差數(shù)列的通項公式為:an=a1+(n-1)d(1)

前n項和公式為:sn=na1+n(n-1)d/2或sn=n(a1+an)/2(2)

以上n均屬于正整數(shù)。

從(1)式可以看出,an是n的一次函數(shù)(d≠0)或常數(shù)函數(shù)(d=0),(n,an)排在一條直線上,由(2)式知,sn是n的二次函數(shù)(d≠0)或一次函數(shù)(d=0,a1≠0),且常數(shù)項為0。

在等差數(shù)列中,等差中項:一般設(shè)為ar,am+an=2ar,所以ar為am,an的等差中項,且為數(shù)列的平均數(shù)。

且任意兩項am,an的關(guān)系為:an=am+(n-m)d

它可以看作等差數(shù)列廣義的通項公式。

從等差數(shù)列的定義、通項公式,前n項和公式還可推出:a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}

若m,n,p,q∈n,且m+n=p+q,則有am+an=ap+aq,sm-1=(2n-1)an,s2n+1=(2n+1)an+1,sk,s2k-sk,s3k-s2k,…,snk-s(n-1)k…或等差數(shù)列,等等。

和=(首項+末項)×項數(shù)÷2

項數(shù)=(末項-首項)÷公差+1

首項=2和÷項數(shù)-末項

末項=2和÷項數(shù)-首項

末項=首項+(項數(shù)-1)×公差

高二數(shù)學必背知識點篇四

主要掌握好(三四五)

(1)事件的三種運算:并(和)、交(積)、差;注意差a-b可以表示成a與b的逆的積。

(2)四種運算律:交換律、結(jié)合律、分配律、德莫根律。

(3)事件的五種關(guān)系:包含、相等、互斥(互不相容)、對立、相互獨立。

(1)統(tǒng)計定義:頻率穩(wěn)定在一個數(shù)附近,這個數(shù)稱為事件的概率;(2)古典定義:要求樣本空間只有有限個基本事件,每個基本事件出現(xiàn)的可能性相等,則事件a所含基本事件個數(shù)與樣本空間所含基本事件個數(shù)的.比稱為事件的古典概率;

(3)幾何概率:樣本空間中的元素有無窮多個,每個元素出現(xiàn)的可能性相等,則可以將樣本空間看成一個幾何圖形,事件a看成這個圖形的子集,它的概率通過子集圖形的大小與樣本空間圖形的大小的比來計算;

(4)公理化定義:滿足三條公理的任何從樣本空間的子集集合到[0,1]的映射。

(1)加法公式:p(a+b)=p(a)+p(b)-p(ab),特別地,如果a與b互不相容,則p(a+b)=p(a)+p(b);

(2)差:p(a-b)=p(a)-p(ab),特別地,如果b包含于a,則p(a-b)=p(a)-p(b);

(3)乘法公式:p(ab)=p(a)p(b|a)或p(ab)=p(a|b)p(b),特別地,如果a與b相互獨立,則p(ab)=p(a)p(b);

(4)全概率公式:p(b)=∑p(ai)p(b|ai).它是由因求果,

貝葉斯公式:p(aj|b)=p(aj)p(b|aj)/∑p(ai)p(b|ai).它是由果索因;

如果一個事件b可以在多種情形(原因)a1,a2,....,an下發(fā)生,則用全概率公式求b發(fā)生的概率;如果事件b已經(jīng)發(fā)生,要求它是由aj引起的概率,則用貝葉斯公式.

(5)二項概率公式:pn(k)=c(n,k)p^k(1-p)^(n-k),k=0,1,2,....,n.當一個問題可以看成n重貝努力試驗(三個條件:n次重復,每次只有a與a的逆可能發(fā)生,各次試驗結(jié)果相互獨立)時,要考慮二項概率公式.

【本文地址:http://www.aiweibaby.com/zuowen/1720280.html】

全文閱讀已結(jié)束,如果需要下載本文請點擊

下載此文檔