最新數(shù)學(xué)知識(shí)點(diǎn)手抄報(bào)(14篇)

格式:DOC 上傳日期:2023-03-21 07:41:52
最新數(shù)學(xué)知識(shí)點(diǎn)手抄報(bào)(14篇)
時(shí)間:2023-03-21 07:41:52     小編:儲(chǔ)心悅Y

在日常的學(xué)習(xí)、工作、生活中,肯定對(duì)各類范文都很熟悉吧。范文怎么寫才能發(fā)揮它最大的作用呢?下面是小編幫大家整理的優(yōu)質(zhì)范文,僅供參考,大家一起來看看吧。

數(shù)學(xué)知識(shí)點(diǎn)手抄報(bào)篇一

抽樣調(diào)查:調(diào)查部分?jǐn)?shù)據(jù),根據(jù)部分來估計(jì)總體的調(diào)查方式稱為抽樣調(diào)查。

總體:要考察的全體對(duì)象稱為總體。

個(gè)體:組成總體的每一個(gè)考察對(duì)象稱為個(gè)體。

樣本:被抽取的所有個(gè)體組成一個(gè)樣本。

樣本容量:樣本中個(gè)體的數(shù)目稱為樣本容量。

頻數(shù):一般地,我們稱落在不同小組中的數(shù)據(jù)個(gè)數(shù)為該組的頻數(shù)。

頻率:頻數(shù)與數(shù)據(jù)總數(shù)的比為頻率。

組數(shù)和組距:在統(tǒng)計(jì)數(shù)據(jù)時(shí),把數(shù)據(jù)按照一定的范圍分成若干各組,分成組的個(gè)數(shù)稱為組數(shù),每一組兩個(gè)端點(diǎn)的差叫做組距。

1、數(shù)據(jù)處理一般包括收集數(shù)據(jù)、整理數(shù)據(jù)、描述數(shù)據(jù)和分析數(shù)據(jù)等過程。

(1)通過調(diào)查收集數(shù)據(jù)的一般步驟:

①明確調(diào)查問題

②確定調(diào)查對(duì)象

③選擇調(diào)查方法

④展開調(diào)查

⑤記錄結(jié)果

⑥得出結(jié)論

(2)收集數(shù)據(jù)常用的方法:

①民意調(diào)查:如投票選舉

②實(shí)地調(diào)查:如現(xiàn)場(chǎng)進(jìn)行觀察、收集、統(tǒng)計(jì)數(shù)據(jù)

③媒體調(diào)查:報(bào)紙、電視、電話、網(wǎng)絡(luò)等調(diào)查都是媒體調(diào)查。

2、數(shù)據(jù)的表示方法:

(1)統(tǒng)計(jì)表:直觀地反映數(shù)據(jù)的分布規(guī)律

(2)折線圖:反映數(shù)據(jù)的變化趨勢(shì)

(3)條形圖:反映每個(gè)項(xiàng)目的具體數(shù)據(jù)

(4)扇形圖:反映各部分在總體中所占的百分比

(5)頻數(shù)分布直方圖:直觀形象地反映頻數(shù)分布情況

(6)頻數(shù)分布折線圖:在頻數(shù)分布直方圖的基礎(chǔ)上,取每一個(gè)長方形上邊的中點(diǎn),和左右頻數(shù)為零與直方圖相距半個(gè)組距的兩個(gè)點(diǎn)

3、調(diào)查方式:

(1)全面調(diào)查,優(yōu)點(diǎn)是可靠,、真實(shí);

(2)抽樣調(diào)查,優(yōu)點(diǎn)是省時(shí)、省力,減少破壞性;隨機(jī)抽樣調(diào)查具有廣泛性和代表性。。

4、總體和樣本:

(1)總體:要考察的所有對(duì)象

(2)個(gè)體:組成總體的每一個(gè)考察對(duì)象

(3)樣本:從總體中抽出的所有實(shí)際被調(diào)查的對(duì)象組成一個(gè)樣本。

(4)樣本容量:樣本中給個(gè)體的數(shù)目

5、組距:每個(gè)小組兩個(gè)端點(diǎn)之間的距離

6、畫直方圖的一般步驟:

(1)計(jì)算最大值與最小值的差;

(2)決定組距與組數(shù),先根據(jù)數(shù)據(jù)個(gè)數(shù)確定組距,再計(jì)算組數(shù),

注意無論整除與否,組數(shù)總是比商的整數(shù)位數(shù)多1;

(3)確定分點(diǎn),并分組;

(4)列頻數(shù)分布表;

(5)繪制頻數(shù)分布直方圖

填空題答題技巧

要求熟記的基本概念、基本事實(shí)、數(shù)據(jù)公式、原理,復(fù)習(xí)時(shí)要特別細(xì)心,注意記熟,做到臨考前能準(zhǔn)確無誤、清晰回憶。

對(duì)那些起關(guān)鍵作用的,或最容易混淆記錯(cuò)的概念、符號(hào)或圖形要特別注意,因?yàn)榭疾榈耐褪撬鼈?。如區(qū)間的端點(diǎn)開還是閉、定義域和值域要用區(qū)間或集合表示、單調(diào)區(qū)間誤寫成不等式或把兩個(gè)單調(diào)區(qū)間取了并集等等。

解答題答題技巧

(1)仔細(xì)審題。注意題目中的關(guān)鍵詞,準(zhǔn)確理解考題要求。

(2)規(guī)范表述。分清層次,要注意計(jì)算的準(zhǔn)確性和簡(jiǎn)約性、邏輯的條理性和連貫性。

(3)給出結(jié)論。注意分類討論的問題,最后要?dú)w納結(jié)論。

(4)講求效率。合理有序的書寫試卷和使用草稿紙,節(jié)省驗(yàn)算時(shí)間。

1、同號(hào)兩數(shù)相加,取相同的符號(hào),并把絕對(duì)值相加;

2、異號(hào)兩數(shù)相加,取絕對(duì)值較大的符號(hào),并用較大的絕對(duì)值減去較小的絕對(duì)值;

3、一個(gè)數(shù)與0相加,仍得這個(gè)數(shù)。

數(shù)學(xué)知識(shí)點(diǎn)手抄報(bào)篇二

表示方根的代數(shù)式叫做根式。

含有關(guān)于字母開方運(yùn)算的代數(shù)式叫做無理式。

注意:①從外形上判斷;②區(qū)別: 、 是根式,但不是無理式(是無理數(shù))。

在平面內(nèi)畫兩條互相垂直、原點(diǎn)重合的數(shù)軸,組成平面直角坐標(biāo)系。

水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標(biāo)軸的交點(diǎn)為平面直角坐標(biāo)系的原點(diǎn)。

平面直角坐標(biāo)系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點(diǎn)重合

①正方向的規(guī)定橫軸取向右為正方向,縱軸取向上為正方向

②單位長度的規(guī)定;一般情況,橫軸、縱軸單位長度相同;實(shí)際有時(shí)也可不同,但同一數(shù)軸上必須相同。

③象限的規(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。

相信上面對(duì)平面直角坐標(biāo)系知識(shí)的講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們都能考試成功。

在同一個(gè)平面上互相垂直且有公共原點(diǎn)的兩條數(shù)軸構(gòu)成平面直角坐標(biāo)系,簡(jiǎn)稱為直角坐標(biāo)系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做x軸或橫軸,鉛直的數(shù)軸叫做y軸或縱軸,x軸或y軸統(tǒng)稱為坐標(biāo)軸,它們的公共原點(diǎn)o稱為直角坐標(biāo)系的原點(diǎn)。

通過上面對(duì)平面直角坐標(biāo)系的構(gòu)成知識(shí)的講解學(xué)習(xí),希望同學(xué)們對(duì)上面的內(nèi)容都能很好的掌握,同學(xué)們認(rèn)真學(xué)習(xí)吧。

建立了平面直角坐標(biāo)系后,對(duì)于坐標(biāo)系平面內(nèi)的任何一點(diǎn),我們可以確定它的坐標(biāo)。反過來,對(duì)于任何一個(gè)坐標(biāo),我們可以在坐標(biāo)平面內(nèi)確定它所表示的一個(gè)點(diǎn)。

對(duì)于平面內(nèi)任意一點(diǎn)c,過點(diǎn)c分別向x軸、y軸作垂線,垂足在x軸、y軸上的對(duì)應(yīng)點(diǎn)a,b分別叫做點(diǎn)c的橫坐標(biāo)、縱坐標(biāo),有序?qū)崝?shù)對(duì)(a,b)叫做點(diǎn)c的坐標(biāo)。

一個(gè)點(diǎn)在不同的象限或坐標(biāo)軸上,點(diǎn)的坐標(biāo)不一樣。

希望上面對(duì)點(diǎn)的坐標(biāo)的性質(zhì)知識(shí)講解學(xué)習(xí),同學(xué)們都能很好的掌握,相信同學(xué)們會(huì)在考試中取得優(yōu)異成績(jī)的。

如果多項(xiàng)式有公因式就先提公因式,沒有公因式的多項(xiàng)式就考慮運(yùn)用公式法;若是四項(xiàng)或四項(xiàng)以上的多項(xiàng)式,

通常采用分組分解法,最后運(yùn)用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。

注意:因式分解一定要分解到每一個(gè)因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個(gè)范圍內(nèi)因式分解,應(yīng)該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結(jié)果,必須是幾個(gè)整式的積的形式。

相信上面對(duì)因式分解的一般步驟知識(shí)的內(nèi)容講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們會(huì)考出好成績(jī)。

:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式的變形叫把這個(gè)多項(xiàng)式因式分解。

:①結(jié)果必須是整式②結(jié)果必須是積的形式③結(jié)果是等式④

因式分解與整式乘法的關(guān)系:m(a+b+c)

一個(gè)多項(xiàng)式每項(xiàng)都含有的公共的因式,叫做這個(gè)多項(xiàng)式各項(xiàng)的公因式。

:①系數(shù)是整數(shù)時(shí)取各項(xiàng)最大公約數(shù)。②相同字母取最低次冪③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個(gè)多項(xiàng)式各項(xiàng)的公因式。

①確定公因式。②確定商式③公因式與商式寫成積的形式。

①不準(zhǔn)丟字母

②不準(zhǔn)丟常數(shù)項(xiàng)注意查項(xiàng)數(shù)

③雙重括號(hào)化成單括號(hào)

④結(jié)果按數(shù)單字母單項(xiàng)式多項(xiàng)式順序排列

⑤相同因式寫成冪的形式

⑥首項(xiàng)負(fù)號(hào)放括號(hào)外

⑦括號(hào)內(nèi)同類項(xiàng)合并。

數(shù)學(xué)知識(shí)點(diǎn)手抄報(bào)篇三

一、整十?dāng)?shù)、整百數(shù)的除法

1.熟練在掌握整十?dāng)?shù)、整百數(shù)的除法計(jì)算。

2.知道除法算式中各部分的名稱:被除數(shù)、除數(shù)、商。

3.一道除法算式能用不同的方式表示:

例:183

(1)18除以3除以的前面是被除數(shù)、除以的后面是除數(shù)

(2)3除18除的前面是除數(shù),除的后面是被除數(shù)

(3)18被3除

辨別:30除一個(gè)數(shù),商和余數(shù)都是2,求這個(gè)數(shù)?

(求被除數(shù))

30除以一個(gè)數(shù),商和余數(shù)都是2,求這個(gè)數(shù)?

(求除數(shù))

4.了解除法是乘法的逆運(yùn)算,因此一道乘法算式能寫兩道除法算式

例:907=6306307=906309=70

反之,乘法并不是除法的逆運(yùn)算。

二、兩位數(shù)或三位數(shù)被一位數(shù)除p34-42

1.橫式p34、39:

兩位數(shù)分拆方法:1、我們把被除數(shù)分拆成能夠被除數(shù)除盡的最大整十?dāng)?shù)。

2、把剩下的整十?dāng)?shù)與個(gè)位上的數(shù)合起來再被除數(shù)去除。

因此,分拆時(shí)一般先看除數(shù),

除數(shù)是2被除數(shù)一般可分出20、40、60、80

除數(shù)是3被除數(shù)一般可分出30、60、90

除數(shù)是4被除數(shù)一般可分出40、80

當(dāng)無法分出整十?dāng)?shù)時(shí),可按乘法口決表進(jìn)行分拆,便于口算。

三位數(shù)分拆方法:先分整百的,再分整十的,最后分單個(gè)的;整百的不夠分,和整十的合起來再分,整十的不夠分,和單個(gè)的合起來繼續(xù)分。分的時(shí)候還要考慮是否方便口算。

(注意:與兩位數(shù)乘一位數(shù)橫式不同的地方在于沒有列出加法算式)

2.豎式:

方法:(1)從被除數(shù)的高位除起

(2)被除數(shù)最高位上的數(shù)比除數(shù)小時(shí),就看前兩位,除到哪一位,商就寫在哪一位上。

(3)當(dāng)十位或個(gè)位不夠商1時(shí),要用0來占位。(商中間或末尾有0的除法)

(4)余數(shù)要比除數(shù)小

(注意部分步驟可以省略)

例:p37p41例3

步驟:一商、二乘、三減、四比、五落

驗(yàn)算方法:通過被除數(shù)=除數(shù)商+余數(shù)來驗(yàn)證被除數(shù)與原題中的是否一致。驗(yàn)算時(shí)用豎式。

分析:第一題:商中間為0

第二題:被除數(shù)末尾是0,前面能被除盡,0應(yīng)寫在8的下方。

第三題:1,被除數(shù)末尾0除以任何一個(gè)數(shù)=0,個(gè)位商0

2,被除數(shù)末尾0前面能被除盡,0應(yīng)寫在4的下方。

第四題:少了落的步驟。

p41/例3/38072被除數(shù)中間為0,被除數(shù)最高位能被除盡,中間的0不需要落下。

3.估商是幾位數(shù):

主要看被除數(shù)的最高位和除數(shù)的關(guān)系:

如果被除數(shù)最高位除數(shù)或者=除數(shù),被除數(shù)是幾位數(shù),商就是幾位數(shù)

如果被除數(shù)最高位除數(shù),被除數(shù)是幾位數(shù),商就比它小一位數(shù)

例:735□,要使商是兩位數(shù),除數(shù)可以填();要使商是三位數(shù),除數(shù)可以填()。

4.被除數(shù)、除數(shù)、商、余數(shù)之間關(guān)系

(1)余數(shù)必須比除數(shù)小

例:◎□=95,□里最小填();

在一道有余數(shù)的除法里,除數(shù)是8,商是25,那么被除數(shù)最大是()。

(2)被除數(shù)=除數(shù)商+余數(shù)

除數(shù)=(被除數(shù)-余數(shù))商

商=(被除數(shù)-余數(shù))除數(shù)

例:28□=□3,□=()

5.商中間或末尾有0的除法:

例:3□26,要使商的末尾是0,□里可以填()。

分析:商的末尾是0,被除數(shù)個(gè)位上的數(shù)比除數(shù)小,不夠商1

因此,除到被除數(shù)的十位必須除盡,沒有余數(shù)。

想:3□6沒有余數(shù)

例:□214,當(dāng)□里填()時(shí),商末尾有0。

分析:商的末尾是0,被除數(shù)個(gè)位上的數(shù)比除數(shù)小,不夠商1

因此,除到被除數(shù)的十位必須除盡,沒有余數(shù)

想:□24沒有余數(shù)分兩種情況:最高位比除數(shù)小時(shí):□填1、3

最高位比除數(shù)大時(shí):□填:5、7、9

例:6□43,要使商的中間是0,□里可以填()。

分析:商中間是0,則被除數(shù)的十位上的數(shù)比除數(shù)小,不夠商1

因此,除到被除數(shù)的百位必須除盡,63=2

例:□214,當(dāng)□里填()時(shí),商中間有0。

分析:商中間是0,則被除數(shù)的十位上的數(shù)比除數(shù)小,不夠商1

因此,除到被除數(shù)的百位必須除盡

想:□4沒有余數(shù)□可以填4或8

5.p43除法的估算

例:1386商在20到30之間

步驟;1,根據(jù)除數(shù)找小于被除數(shù)卻能被除數(shù)除盡的最大數(shù)

因此138估成1201206=20

2,另一個(gè)商比估算出的第一個(gè)商大十

因此20+10=30

(也可以根據(jù)除數(shù)找大于被除數(shù)卻能被除數(shù)除盡的最小數(shù)

1806=30)

常見錯(cuò)誤:例5255=105估算:商在104到114之間

分析:根據(jù)精確計(jì)算的結(jié)果寫出的估算答數(shù)

改正:商在100到110之間。

6.除法的應(yīng)用p44

做題時(shí)需要注意問題,一般情況下,余數(shù)要占一份的就加1,如講到坐船、坐車的題目。余數(shù)不夠一份的,就去尾。如講到做褲子、扎花等問題。

辨析:8個(gè)籃球裝一箱,767個(gè)籃球至少可以裝幾箱?

分析:7678=95箱7個(gè)

題中的至少說明余數(shù)也需要占一份7個(gè)也需要一個(gè)箱子裝,因此需要加1,共有96箱。

8個(gè)籃球裝一箱,767個(gè)籃球最多可以裝幾箱?

分析:題中的最多說明余數(shù)不需要占一份。7個(gè)沒有裝滿一箱,因此最多可以裝95箱。

7.單價(jià)、數(shù)量、總價(jià)p45、46

(1)能從題目中分析出單價(jià)、數(shù)量及總價(jià)

(2)能夠根據(jù)問題,靈活應(yīng)用單價(jià)數(shù)量=總價(jià)

總價(jià)數(shù)量=單價(jià)

總價(jià)單價(jià)=數(shù)量

(3)拓展:能用小數(shù)表示元、角分

例:3元:3.00元小數(shù)點(diǎn)左邊為元,小數(shù)點(diǎn)右邊第一位為角

第二位為分

1元5角:1.50元10元5分:10.05元

總結(jié):小編為大家整理的小學(xué)數(shù)學(xué)知識(shí)點(diǎn):三上第四單元知識(shí)點(diǎn)梳理相關(guān)內(nèi)容大家一定要牢記,以便不斷提高自己的數(shù)學(xué)成績(jī),祝大家學(xué)習(xí)愉快。

數(shù)學(xué)知識(shí)點(diǎn)手抄報(bào)篇四

什么叫做單項(xiàng)式和多項(xiàng)式?

不含加、減運(yùn)算的整式,叫做單項(xiàng)式。特殊的,單獨(dú)一個(gè)數(shù)或一個(gè)字母

多項(xiàng)式。例如:4x+7,3x2+5,6x2+7x+2等都是多項(xiàng)式。

約數(shù)倍數(shù):

(1)最大公約最小公倍數(shù)(2)約數(shù)個(gè)數(shù)決定法則 (??純?nèi)容)

質(zhì)數(shù)合數(shù):

(1)質(zhì)數(shù)、合數(shù)的概念和判斷(2)分解質(zhì)因數(shù)(重點(diǎn))

余數(shù)問題:

(1)帶余除式的理解和運(yùn)用;(2)同余的性質(zhì)和運(yùn)用;(3)中國剩余定理奇偶問題:(1)奇偶與四則運(yùn)算;(2)奇偶性質(zhì)在實(shí)際解題過程中的應(yīng)用完全平方數(shù):(1)完全平方數(shù)的判斷和性質(zhì)(2)完全平方數(shù)的運(yùn)用整數(shù)及分?jǐn)?shù)的分解與分拆(重點(diǎn)、難點(diǎn))

整除問題:

(1)數(shù)的整除的特征和性質(zhì) (新初一分班常考內(nèi)容)

(2)位值原理的應(yīng)用(用字母和數(shù)字混合表示多位數(shù))

這四個(gè)問題我們需要掌握到什么樣的程度?

從近幾年的來看,雖然一些重點(diǎn)中學(xué)對(duì)以上的幾個(gè)問題考察較多,但是難度通常不大,中等難度題目出現(xiàn)的頻率很高,通常在60%以上,因此我們的同學(xué)只要夯實(shí)基礎(chǔ),對(duì)于這樣的一張新初一分班試卷的完成應(yīng)該是能取得很好的成績(jī)的。對(duì)此,酷學(xué)網(wǎng)給出學(xué)生建議:如果我們的孩子不是要搞競(jìng)賽,只是為了進(jìn)入重點(diǎn)中學(xué),中等題的掌握絕對(duì)是我們的重點(diǎn),不能盲目追求難度,否則容易適得其反。

數(shù)學(xué)知識(shí)點(diǎn)手抄報(bào)篇五

一、角的定義

“靜態(tài)”概念:有公共端點(diǎn)的兩條射線組成的圖形叫做角。

“動(dòng)態(tài)”概念:角可以看作是一條射線繞其端點(diǎn)從一個(gè)位置旋轉(zhuǎn)到另一個(gè)位置所形成的圖形。

如果一個(gè)角的兩邊成一條直線,那么這個(gè)角叫做平角;平角的一半叫直角;大于直角小于平角的角叫做鈍角;大于0小于直角的角叫做銳角。

二、角的換算:1周角=2平角=4直角=360°;

1平角=2直角=180°;

1直角=90°;

1度=60分=3600秒(即:1°=60′=3600″);

1分=60秒(即:1′=60″).

三、余角、補(bǔ)角的概念和性質(zhì):

概念:如果兩個(gè)角的和是一個(gè)平角,那么這兩個(gè)角叫做互為補(bǔ)角。

如果兩個(gè)角的和是一個(gè)直角,那么這兩個(gè)角叫做互為余角。

說明:互補(bǔ)、互余是指兩個(gè)角的數(shù)量關(guān)系,沒有位置關(guān)系。

性質(zhì):同角(或等角)的余角相等;

同角(或等角)的補(bǔ)角相等。

四、角的比較方法:

角的大小比較,有兩種方法:

(1)度量法(利用量角器);

(2)疊合法(利用圓規(guī)和直尺)。

五、角平分線:從一個(gè)角的頂點(diǎn)引出的一條射線。把這個(gè)角分成相等的兩部分,這條射線叫做這個(gè)角的平分線。

常見考法

(1)考查與時(shí)鐘有關(guān)的問題;(2)角的計(jì)算與度量。

誤區(qū)提醒

角的度、分、秒單位的換算是60進(jìn)制,而不是10進(jìn)制,換算時(shí)易受10進(jìn)制影響而出錯(cuò)。

【典型例題】(20xx云南曲靖)從3時(shí)到6時(shí),鐘表的時(shí)針旋轉(zhuǎn)角的度數(shù)是( )

【答案】3時(shí)到6時(shí),時(shí)針旋轉(zhuǎn)的是一個(gè)周角的1/4,故是90度 ,本題選c.

數(shù)學(xué)知識(shí)點(diǎn)手抄報(bào)篇六

一、數(shù)學(xué)知識(shí)點(diǎn):方陣問題

1、概念和分類

學(xué)生排隊(duì),士兵列隊(duì),橫著排叫做行,豎著排叫做列。如果行數(shù)與列數(shù)都相等,則正好排成一個(gè)正方形,這種圖形就叫方隊(duì),也叫做方陣。

方陣包括實(shí)心方陣和空心方陣。如果方陣排滿物體,叫做實(shí)心方陣;如果方陣的中間不排物體,叫做空心方陣。而實(shí)心方陣的每一層又可以單獨(dú)看成一個(gè)空心方陣,因此空心方陣的規(guī)律對(duì)它也是適用的。

2、基本規(guī)律

(1)方陣不論哪一層,每邊上的人(或物)數(shù)量都相同,每向里一層,每邊上的人數(shù)就少2,

四周上的人數(shù)就少8。(可應(yīng)用等差數(shù)列相關(guān)知識(shí)進(jìn)行解題)

(2)每層總數(shù)=[每邊人(或物)數(shù)-1]×4

每邊人(或物)數(shù)=每層總數(shù)÷4+1

(3)實(shí)心方陣

總?cè)?或物)數(shù)=每邊人(或物)數(shù)×每邊人(或物)數(shù)

(4)空心方陣

總?cè)?或物)數(shù)=(最外層每邊人(或物)數(shù)-層數(shù))×層數(shù)×4

總?cè)?或物)數(shù)=(最外層人(或物)數(shù)+最內(nèi)層人(或物)數(shù))*層數(shù)/2

最外層每邊數(shù)=總?cè)?或物)數(shù)÷4÷層數(shù)+層數(shù)

二、數(shù)學(xué)知識(shí)點(diǎn):雞兔同籠

1、雞兔同籠問題的來歷

這個(gè)問題,是我國古代著名趣題之一.大約在1500年前,《孫子算經(jīng)》中就記載了這個(gè)有趣的問題.書中是這樣敘述的:“今有雞兔同籠,上有三十五頭,下有九十四足,問雞兔各幾何?這四句話的意思是:有若干只雞兔同在一個(gè)籠子里,從上面數(shù),有35個(gè)頭;從下面數(shù),有94只腳.求籠中各有幾只雞和兔?

你會(huì)解答這個(gè)問題嗎?你想知道《孫子算經(jīng)》中是如何解答這個(gè)問題的嗎?

2、雞兔同籠的解題思路

(1)砍足法

解答思路是這樣的:假如砍去每只雞、每只兔一半的腳,則每只雞就變成了“獨(dú)腳雞”,每只兔就變成了“雙腳兔”.這樣,雞和兔的腳的總數(shù)就由94只變成了47只;如果籠子里有一只兔子,則腳的總數(shù)就比頭的總數(shù)多1.因此,腳的總只數(shù)47與總頭數(shù)35的差,就是兔子的只數(shù),即47-35=12(只).顯然,雞的只數(shù)就是35-12=23(只)了。

數(shù)學(xué)知識(shí)點(diǎn)手抄報(bào)篇七

小升初數(shù)學(xué)知識(shí)點(diǎn)定義定理公式:

小學(xué)數(shù)學(xué)定義定理公式

三角形的面積=底高2。公式s=ah2

正方形的面積=邊長邊長公式s=aa

長方形的面積=長寬公式s=ab

平行四邊形的面積=底高公式s=ah

梯形的面積=(上底+下底)高2公式s=(a+b)h2

內(nèi)角和:三角形的內(nèi)角和=180度。

長方體的體積=長寬高公式:v=abh

長方體(或正方體)的體積=底面積高公式:v=abh

正方體的體積=棱長棱長棱長公式:v=aaa

圓的周長=直徑公式:l=r

圓的面積=半徑半徑公式:s=r2

圓柱的表(側(cè))面積:圓柱的表(側(cè))面積等于底面的周長乘高。公式:s=ch=rh

圓柱的表面積:圓柱的表面積等于底面的周長乘高再加上兩頭的圓的面積。公式:s=ch+2s=ch+2r2

圓柱的體積:圓柱的體積等于底面積乘高。公式:v=sh

圓錐的體積=1/3底面積高。公式:v=1/3sh

分?jǐn)?shù)的加、減法則:同分母的分?jǐn)?shù)相加減,只把分子相加減,分母不變。異分母的分?jǐn)?shù)相加減,先通分,然后再加減。

分?jǐn)?shù)的乘法則:用分子的積做分子,用分母的積做分母。

分?jǐn)?shù)的除法則:除以一個(gè)數(shù)等于乘以這個(gè)數(shù)的倒數(shù)。

數(shù)學(xué)知識(shí)點(diǎn)手抄報(bào)篇八

不等式這部分知識(shí),滲透在中學(xué)數(shù)學(xué)各個(gè)分支中,有著十分廣泛的應(yīng)用。因此不等式應(yīng)用問題體現(xiàn)了一定的綜合性、靈活多樣性,對(duì)數(shù)學(xué)各部分知識(shí)融會(huì)貫通,起到了很好的促進(jìn)作用。在解決問題時(shí),要依據(jù)題設(shè)與結(jié)論的結(jié)構(gòu)特點(diǎn)、內(nèi)在聯(lián)系、選擇適當(dāng)?shù)慕鉀Q方案,最終歸結(jié)為不等式的求解或證明。不等式的應(yīng)用范圍十分廣泛,它始終貫串在整個(gè)中學(xué)數(shù)學(xué)之中。

諸如集合問題,方程(組)的解的討論,函數(shù)單調(diào)性的研究,函數(shù)定義域的確定,三角、數(shù)列、復(fù)數(shù)、立體幾何、解析幾何中的值、最小值問題,無一不與不等式有著密切的聯(lián)系,許多問題,最終都可歸結(jié)為不等式的求解或證明。

知識(shí)整合

1.解不等式的核心問題是不等式的同解變形,不等式的性質(zhì)則是不等式變形的理論依據(jù),方程的根、函數(shù)的性質(zhì)和圖象都與不等式的解法密切相關(guān),要善于把它們有機(jī)地聯(lián)系起來,互相轉(zhuǎn)化。在解不等式中,換元法和圖解法是常用的技巧之一。通過換元,可將較復(fù)雜的不等式化歸為較簡(jiǎn)單的或基本不等式,通過構(gòu)造函數(shù)、數(shù)形結(jié)合,則可將不等式的解化歸為直觀、形象的圖形關(guān)系,對(duì)含有參數(shù)的不等式,運(yùn)用圖解法可以使得分類標(biāo)準(zhǔn)明晰。

2.整式不等式(主要是一次、二次不等式)的解法是解不等式的基礎(chǔ),利用不等式的性質(zhì)及函數(shù)的單調(diào)性,將分式不等式、絕對(duì)值不等式等化歸為整式不等式(組)是解不等式的基本思想,分類、換元、數(shù)形結(jié)合是解不等式的常用方法。方程的根、函數(shù)的性質(zhì)和圖象都與不等式的解密切相關(guān),要善于把它們有機(jī)地聯(lián)系起來,相互轉(zhuǎn)化和相互變用。

3.在不等式的求解中,換元法和圖解法是常用的技巧之一,通過換元,可將較復(fù)雜的不等式化歸為較簡(jiǎn)單的或基本不等式,通過構(gòu)造函數(shù),將不等式的解化歸為直觀、形象的圖象關(guān)系,對(duì)含有參數(shù)的不等式,運(yùn)用圖解法,可以使分類標(biāo)準(zhǔn)更加明晰。

4.證明不等式的方法靈活多樣,但比較法、綜合法、分析法仍是證明不等式的最基本方法。要依據(jù)題設(shè)、題斷的結(jié)構(gòu)特點(diǎn)、內(nèi)在聯(lián)系,選擇適當(dāng)?shù)淖C明方法,要熟悉各種證法中的推理思維,并掌握相應(yīng)的步驟,技巧和語言特點(diǎn)。比較法的一般步驟是:作差(商)→變形→判斷符號(hào)(值)。

數(shù)學(xué)知識(shí)點(diǎn)手抄報(bào)篇九

(1)兩個(gè)平面互相平行的定義:空間兩平面沒有公共點(diǎn)

(2)兩個(gè)平面的位置關(guān)系:

兩個(gè)平面平行——沒有公共點(diǎn);兩個(gè)平面相交——有一條公共直線。

a、平行

兩個(gè)平面平行的判定定理:如果一個(gè)平面內(nèi)有兩條相交直線都平行于另一個(gè)平面,那么這兩個(gè)平面平行。

兩個(gè)平面平行的性質(zhì)定理:如果兩個(gè)平行平面同時(shí)和第三個(gè)平面相交,那么交線平行。

b、相交

(1)半平面:平面內(nèi)的一條直線把這個(gè)平面分成兩個(gè)部分,其中每一個(gè)部分叫做半平面。

(2)二面角:從一條直線出發(fā)的兩個(gè)半平面所組成的圖形叫做二面角。二面角的取值范圍為[0°,180°]

(3)二面角的棱:這一條直線叫做二面角的棱。

(4)二面角的面:這兩個(gè)半平面叫做二面角的面。

(5)二面角的平面角:以二面角的棱上任意一點(diǎn)為端點(diǎn),在兩個(gè)面內(nèi)分別作垂直于棱的兩條射線,這兩條射線所成的角叫做二面角的平面角。

(6)直二面角:平面角是直角的二面角叫做直二面角。

兩平面垂直的定義:兩平面相交,如果所成的角是直二面角,就說這兩個(gè)平面互相垂直。記為⊥

兩平面垂直的判定定理:如果一個(gè)平面經(jīng)過另一個(gè)平面的一條垂線,那么這兩個(gè)平面互相垂直

兩個(gè)平面垂直的性質(zhì)定理:如果兩個(gè)平面互相垂直,那么在一個(gè)平面內(nèi)垂直于交線的直線垂直于另一個(gè)平面。

二面角求法:直接法(作出平面角)、三垂線定理及逆定理、面積射影定理、空間向量之法向量法(注意求出的角與所需要求的角之間的等補(bǔ)關(guān)系)

棱錐的定義:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形,這些面圍成的幾何體叫做棱錐。

棱錐的性質(zhì):

(1)側(cè)棱交于一點(diǎn)。側(cè)面都是三角形

(2)平行于底面的截面與底面是相似的多邊形。且其面積比等于截得的棱錐的高與遠(yuǎn)棱錐高的比的平方

正棱錐的定義:如果一個(gè)棱錐底面是正多邊形,并且頂點(diǎn)在底面內(nèi)的射影是底面的中心,這樣的棱錐叫做正棱錐。

正棱錐的性質(zhì):

(1)各側(cè)棱交于一點(diǎn)且相等,各側(cè)面都是全等的等腰三角形。各等腰三角形底邊上的高相等,它叫做正棱錐的斜高。

(3)多個(gè)特殊的直角三角形

a、相鄰兩側(cè)棱互相垂直的正三棱錐,由三垂線定理可得頂點(diǎn)在底面的射影為底面三角形的垂心。

b、四面體中有三對(duì)異面直線,若有兩對(duì)互相垂直,則可得第三對(duì)也互相垂直。且頂點(diǎn)在底面的射影為底面三角形的垂心。

集合具有某種特定性質(zhì)的事物的總體。這里的“事物”可以是人,物品,也可以是數(shù)學(xué)元素。例如:

1、分散的人或事物聚集到一起;使聚集:緊急~。

2、數(shù)學(xué)名詞。一組具有某種共同性質(zhì)的數(shù)學(xué)元素:有理數(shù)的~。

3、口號(hào)等等。集合在數(shù)學(xué)概念中有好多概念,如集合論:集合是現(xiàn)代數(shù)學(xué)的基本概念,專門研究集合的理論叫做集合論。康托(cantor,g、f、p、,1845年—1918年,德國數(shù)學(xué)家先驅(qū),是集合論的創(chuàng)始者,目前集合論的基本思想已經(jīng)滲透到現(xiàn)代數(shù)學(xué)的所有領(lǐng)域。

集合,在數(shù)學(xué)上是一個(gè)基礎(chǔ)概念。什么叫基礎(chǔ)概念?基礎(chǔ)概念是不能用其他概念加以定義的概念。集合的概念,可通過直觀、公理的方法來下“定義”。集合

集合是把人們的直觀的或思維中的某些確定的能夠區(qū)分的對(duì)象匯合在一起,使之成為一個(gè)整體(或稱為單體),這一整體就是集合。組成一集合的那些對(duì)象稱為這一集合的元素(或簡(jiǎn)稱為元)。

集合與集合之間的關(guān)系

某些指定的對(duì)象集在一起就成為一個(gè)集合集合符號(hào),含有有限個(gè)元素叫有限集,含有無限個(gè)元素叫無限集,空集是不含任何元素的集,記做φ??占侨魏渭系淖蛹?,是任何非空集的真子集。任何集合是它本身的子集。子集,真子集都具有傳遞性。

數(shù)學(xué)知識(shí)點(diǎn)手抄報(bào)篇十

1.通過現(xiàn)實(shí)的數(shù)學(xué)活動(dòng),培養(yǎng)學(xué)生辨認(rèn)方向的意識(shí),進(jìn)一步發(fā)展空間觀念。

2.結(jié)合具體情境,使學(xué)生認(rèn)識(shí)東、南、西、北、東北、西北、東南和西南八個(gè)方向,能夠用給定的一個(gè)方向(東、南、西或北)辨認(rèn)其余的七個(gè)方向,并能用這些詞語描述物體所在的方向。

3.使學(xué)生會(huì)看簡(jiǎn)單的路線圖,并能描述行走的路線。

《測(cè)量》單元備課

知識(shí)點(diǎn) 我的例子 提醒注意

認(rèn)識(shí)東、南、西、北四個(gè)方向,能夠用給定的一個(gè)方向辯認(rèn)其余的三個(gè)方向,并能用這些詞語描述物體所在的方向。 站在操場(chǎng)上,前面是東、后右是西,左面是北,右面是南。站在操場(chǎng)上,東面是旗臺(tái),南是書店,西面是大門,北面是體育館。 東和西相對(duì),南和北相對(duì),而且東南西北是按順時(shí)針的方向的。

知道地圖上的方向 在地圖上,通常是上北,下南,左西,右東。

注意方向的相對(duì)性,和順時(shí)針。

學(xué)會(huì)看簡(jiǎn)單的路線圖,并能描述行走的路線。 從課室去洗手間,先向東走20米,再向北走10 米。 注意把方向和路程相結(jié)合來說。

認(rèn)識(shí)東北、東南、西北、西南四個(gè)方向,能夠用給定的一個(gè)方向辯認(rèn)其它七個(gè)方向,并能用這些詞語打描述物體所在的方向。 西北 北 東北

西 東

西南 南 東南 注意記住方向的順時(shí)針方向和相對(duì)性。

學(xué)會(huì)看簡(jiǎn)單的路線圖(八個(gè)方向),并能打描述行走的路線。

如:郵局在火車站的東南方向,從火車站出發(fā),向東南方向走,先到站前街,再到郵局。

注意每個(gè)地方,可以先通過十字路線確定方向,再觀察。

數(shù)學(xué)知識(shí)點(diǎn)手抄報(bào)篇十一

三角形的重心

已知:△abc中,d為bc中點(diǎn),e為ac中點(diǎn),ad與be交于o,co延長線交ab于f。求證:f為ab中點(diǎn)。

證明:根據(jù)燕尾定理,s(△aob)=s(△aoc),又s(△aob)=s(△boc),∴s(△aoc)=s(△boc),再應(yīng)用燕尾定理即得af=bf,命題得證。

重心的幾條性質(zhì):

1.重心和三角形3個(gè)頂點(diǎn)組成的3個(gè)三角形面積相等。

2.重心到三角形3個(gè)頂點(diǎn)距離的平方和最小。

3.在平面直角坐標(biāo)系中,重心的坐標(biāo)是頂點(diǎn)坐標(biāo)的算術(shù)平均,即其坐標(biāo)為((x1+x2+x3)/3,(y1+y2+y3)/3);空間直角坐標(biāo)系——橫坐標(biāo):(x1+x2+x3)/3 縱坐標(biāo):(y1+y2+y3)/3 豎坐標(biāo):(z1+z2+z3)/3

4.重心到頂點(diǎn)的距離與重心到對(duì)邊中點(diǎn)的距離之比為2:1。

5.重心是三角形內(nèi)到三邊距離之積最大的點(diǎn)。

如果用塞瓦定理證,則極易證三條中線交于一點(diǎn)。

數(shù)學(xué)知識(shí)點(diǎn)手抄報(bào)篇十二

一、高考數(shù)學(xué)中有函數(shù)、數(shù)列、三角函數(shù)、平面向量、不等式、立體幾何等九大章節(jié)

主要是考函數(shù)和導(dǎo)數(shù),因?yàn)檫@是整個(gè)高中階段中最核心的部分,這部分里還重點(diǎn)考察兩個(gè)方面:第一個(gè)函數(shù)的性質(zhì),包括函數(shù)的單調(diào)性、奇偶性;第二是函數(shù)的解答題,重點(diǎn)考察的是二次函數(shù)和高次函數(shù),分函數(shù)和它的一些分布問題,但是這個(gè)分布重點(diǎn)還包含兩個(gè)分析。

二、平面向量和三角函數(shù)

對(duì)于這部分知識(shí)重點(diǎn)考察三個(gè)方面:是劃減與求值,第一,重點(diǎn)掌握公式和五組基本公式;第二,掌握三角函數(shù)的圖像和性質(zhì),這里重點(diǎn)掌握正弦函數(shù)和余弦函數(shù)的性質(zhì);第三,正弦定理和余弦定理來解三角形,這方面難度并不大。

三、數(shù)列

數(shù)列這個(gè)板塊,重點(diǎn)考兩個(gè)方面:一個(gè)通項(xiàng);一個(gè)是求和。

四、空間向量和立體幾何

在里面重點(diǎn)考察兩個(gè)方面:一個(gè)是證明;一個(gè)是計(jì)算。

五、概率和統(tǒng)計(jì)

概率和統(tǒng)計(jì)主要屬于數(shù)學(xué)應(yīng)用問題的范疇,需要掌握幾個(gè)方面:……等可能的概率;……事件;獨(dú)立事件和獨(dú)立重復(fù)事件發(fā)生的概率。

六、解析幾何

這部分內(nèi)容說起來容易做起來難,需要掌握幾類問題,第一類直線和曲線的位置關(guān)系,要掌握它的通法;第二類動(dòng)點(diǎn)問題;第三類是弦長問題;第四類是對(duì)稱問題;第五類重點(diǎn)問題,這類題往往覺得有思路卻沒有一個(gè)清晰的答案,但需要要掌握比較好的算法,來提高做題的準(zhǔn)確度。

七、壓軸題

同學(xué)們?cè)谧詈蟮膫淇紡?fù)習(xí)中,還應(yīng)該把重點(diǎn)放在不等式計(jì)算的方法中,難度雖然很大,但是也切忌在試卷中留空白,平時(shí)多做些壓軸題真題,爭(zhēng)取能解題就解題,能思考就思考。

數(shù)學(xué)知識(shí)點(diǎn)手抄報(bào)篇十三

重點(diǎn)考查極限的計(jì)算、已知極限確定原式中的未知參數(shù)、函數(shù)連續(xù)性的討論、間斷點(diǎn)類型的判斷、無窮小階的比較、討論連續(xù)函數(shù)在給定區(qū)間上零點(diǎn)的個(gè)數(shù)、確定方程在給定區(qū)間上有無實(shí)根。

重點(diǎn)考查導(dǎo)數(shù)與微分的定義、函數(shù)導(dǎo)數(shù)與微分的計(jì)算(包括隱函數(shù)求導(dǎo))、利用洛比達(dá)法則求不定式極限、函數(shù)極值與最值、方程根的個(gè)數(shù)、函數(shù)不等式的證明、與中值定理相關(guān)的證明、在物理和經(jīng)濟(jì)等方面的實(shí)際應(yīng)用、曲線漸近線的求法。

重點(diǎn)考查不定積分的計(jì)算、定積分的計(jì)算、廣義積分的計(jì)算及判斂、變上限函數(shù)的求導(dǎo)和極限、利用積分中值定理和積分性質(zhì)的`證明、定積分的幾何應(yīng)用和物理應(yīng)用。

主要考查向量的運(yùn)算、平面方程和直線方程及其求法、平面與平面、平面與直線、直線與直線之間的夾角,并會(huì)利用平面、直線的相互關(guān)系(平行、垂直、相交等))解決有關(guān)問題等,該部分一般不單獨(dú)考查,主要作為曲線積分和曲面積分的基礎(chǔ)。

重點(diǎn)考查多元函數(shù)極限存在、連續(xù)性、偏導(dǎo)數(shù)存在、可微分及偏導(dǎo)連續(xù)等問題、多元函數(shù)和隱函數(shù)的一階、二階偏導(dǎo)數(shù)求法、有條件極值和無條件極值。另外,數(shù)一還要求掌握方向?qū)?shù)、梯度、曲線的切線與法平面、曲面的切平面與法線。

重點(diǎn)考查二重積分在直角坐標(biāo)和極坐標(biāo)下的計(jì)算、累次積分、積分換序。此外,數(shù)一還要求掌握三重積分的計(jì)算、兩類曲線積分和兩種曲面積分的計(jì)算、格林公式、高斯公式及斯托克斯公式。

重點(diǎn)考查正項(xiàng)級(jí)數(shù)的基本性質(zhì)和斂散性判別、一般項(xiàng)級(jí)數(shù)絕對(duì)收斂和條件收斂的判別、冪級(jí)數(shù)收斂半徑、收斂域及和函數(shù)的求法以及冪級(jí)數(shù)在特定點(diǎn)的展開問題。

重點(diǎn)考查一階微分方程的通解或特解、二階線性常系數(shù)齊次和非齊次方程的特解或通解、微分方程的建立與求解。此外,數(shù)三考查差分方程的基本概念與一介常系數(shù)線形方程求解方法。數(shù)一還要求會(huì)伯努利方程、歐拉公式等。

規(guī)律記憶:即根據(jù)事物的內(nèi)在聯(lián)系,找出規(guī)律性的東西來進(jìn)行記憶。比如,識(shí)記長度單位、面積單位、體積單位的化法和聚法?;ê途鄯ㄊ腔ツ媛?lián)系,即高級(jí)單位的數(shù)值率=低級(jí)單位的數(shù)值,低級(jí)單位的數(shù)值÷進(jìn)率=高級(jí)單位的數(shù)值。掌握了這兩條規(guī)律,化聚問題就迎刃而解了。規(guī)律記憶,需要學(xué)生開動(dòng)腦筋對(duì)所學(xué)的有關(guān)材料進(jìn)行加工和組織,因而記憶牢固。

列表記憶:就是把某些容易混淆的識(shí)記材料列成表格,達(dá)到記憶之目的。這種方法具有明顯性、直觀性和對(duì)比性。比如,要識(shí)記質(zhì)數(shù)、質(zhì)因數(shù)、互質(zhì)數(shù)這三個(gè)概念的區(qū)別,就可列成表來幫助學(xué)生記憶。

養(yǎng)成良好的學(xué)習(xí)數(shù)學(xué)習(xí)慣,多質(zhì)疑、勤思考、好動(dòng)手、重歸納、注意應(yīng)用。學(xué)生在學(xué)習(xí)數(shù)學(xué)的過程中,要把教師所傳授的知識(shí)翻譯成為自己的特殊語言,并永久記憶在自己的腦海中。良好的學(xué)習(xí)數(shù)學(xué)習(xí)慣包括課前自學(xué)、專心上課、及時(shí)復(fù)習(xí)、獨(dú)立作業(yè)、解決疑難、系統(tǒng)小結(jié)和課外學(xué)習(xí)幾個(gè)方面。

及時(shí)了解、掌握常用的數(shù)學(xué)思想和方法,中學(xué)數(shù)學(xué)學(xué)習(xí)要重點(diǎn)掌握的的數(shù)學(xué)思想有以上幾個(gè):集合與對(duì)應(yīng)思想,分類討論思想,數(shù)形結(jié)合思想,運(yùn)動(dòng)思想,轉(zhuǎn)化思想,變換思想。

有了數(shù)學(xué)思想以后,還要掌握具體的方法,比如:換元、待定系數(shù)、數(shù)學(xué)歸納法、分析法、綜合法、反證法等等。在具體的方法中,常用的有:觀察與實(shí)驗(yàn),聯(lián)想與類比,比較與分類,分析與綜合,歸納與演繹,一般與特殊,有限與無限,抽象與概括等。

逐步形成“以我為主”的學(xué)習(xí)模式,數(shù)學(xué)不是靠老師教會(huì)的,而是在老師的引導(dǎo)下,靠自己主動(dòng)的思維活動(dòng)去獲取的。學(xué)習(xí)數(shù)學(xué)一定要講究“活”,只看書不做題不行,只埋頭做題不總結(jié)積累也不行。記數(shù)學(xué)筆記,特別是對(duì)概念理解的不同側(cè)面和數(shù)學(xué)規(guī)律,教師在課堂中拓展的課外知識(shí)。記錄下來本章你覺得最有價(jià)值的思想方法或例題,以及你還存在的未解決的問題,以便今后將其補(bǔ)上。

要建立數(shù)學(xué)糾錯(cuò)本。把平時(shí)容易出現(xiàn)錯(cuò)誤的知識(shí)或推理記載下來,以防再犯。爭(zhēng)取做到:找錯(cuò)、析錯(cuò)、改錯(cuò)、防錯(cuò)。達(dá)到:能從反面入手深入理解正確東西;能由果朔因把錯(cuò)誤原因弄個(gè)水落石出、以便對(duì)癥下藥;解答問題完整、推理嚴(yán)密。

數(shù)學(xué)知識(shí)點(diǎn)手抄報(bào)篇十四

由于空集是任何非空集合的真子集,因此b=?時(shí)也滿足b?a。解含有參數(shù)的集合問題時(shí),要特別注意當(dāng)參數(shù)在某個(gè)范圍內(nèi)取值時(shí)所給的集合可能是空集這種情況。

忽視集合元素的三性致誤

集合中的元素具有確定性、無序性、互異性,集合元素的三性中互異性對(duì)解題的影響最大,特別是帶有字母參數(shù)的集合,實(shí)際上就隱含著對(duì)字母參數(shù)的一些要求。

混淆命題的否定與否命題

命題的“否定”與命題的“否命題”是兩個(gè)不同的概念,命題p的否定是否定命題所作的判斷,而“否命題”是對(duì)“若p,則q”形式的命題而言,既要否定條件也要否定結(jié)論。

充分條件、必要條件顛倒致誤

對(duì)于兩個(gè)條件a,b,如果a?b成立,則a是b的充分條件,b是a的必要條件;如果b?a成立,則a是b的必要條件,b是a的充分條件;如果a?b,則a,b互為充分必要條件。解題時(shí)最容易出錯(cuò)的就是顛倒了充分性與必要性,所以在解決這類問題時(shí)一定要根據(jù)充分條件和必要條件的概念作出準(zhǔn)確的判斷。

“或”“且”“非”理解不準(zhǔn)致誤

命題p∨q真?p真或q真,命題p∨q假?p假且q假(概括為一真即真);命題p∧q真?p真且q真,命題p∧q假?p假或q假(概括為一假即假);綈p真?p假,綈p假?p真(概括為一真一假)。求參數(shù)取值范圍的題目,也可以把“或”“且”“非”與集合的“并”“交”“補(bǔ)”對(duì)應(yīng)起來進(jìn)行理解,通過集合的運(yùn)算求解。

函數(shù)的單調(diào)區(qū)間理解不準(zhǔn)致誤

在研究函數(shù)問題時(shí)要時(shí)時(shí)刻刻想到“函數(shù)的圖像”,學(xué)會(huì)從函數(shù)圖像上去分析問題、尋找解決問題的方法。對(duì)于函數(shù)的幾個(gè)不同的單調(diào)遞增(減)區(qū)間,切忌使用并集,只要指明這幾個(gè)區(qū)間是該函數(shù)的單調(diào)遞增(減)區(qū)間即可。

判斷函數(shù)奇偶性忽略定義域致誤

判斷函數(shù)的奇偶性,首先要考慮函數(shù)的定義域,一個(gè)函數(shù)具備奇偶性的必要條件是這個(gè)函數(shù)的定義域關(guān)于原點(diǎn)對(duì)稱,如果不具備這個(gè)條件,函數(shù)一定是非奇非偶函數(shù)。

函數(shù)零點(diǎn)定理使用不當(dāng)致誤

如果函數(shù)y=f(x)在區(qū)間[a,b]上的圖像是一條連續(xù)的曲線,并且有f(a)f(b)<0,那么,函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)有零點(diǎn),但f(a)f(b)>0時(shí),不能否定函數(shù)y=f(x)在(a,b)內(nèi)有零點(diǎn)。函數(shù)的零點(diǎn)有“變號(hào)零點(diǎn)”和“不變號(hào)零點(diǎn)”,對(duì)于“不變號(hào)零點(diǎn)”函數(shù)的零點(diǎn)定理是“無能為力”的,在解決函數(shù)的零點(diǎn)問題時(shí)要注意這個(gè)問題。

三角函數(shù)的單調(diào)性判斷致誤

對(duì)于函數(shù)y=asin(ωx+φ)的單調(diào)性,當(dāng)ω>0時(shí),由于內(nèi)層函數(shù)u=ωx+φ是單調(diào)遞增的,所以該函數(shù)的單調(diào)性和y=sin x的單調(diào)性相同,故可完全按照函數(shù)y=sin x的單調(diào)區(qū)間解決;但當(dāng)ω<0時(shí),內(nèi)層函數(shù)u=ωx+φ是單調(diào)遞減的,此時(shí)該函數(shù)的單調(diào)性和函數(shù)y=sinx的單調(diào)性相反,就不能再按照函數(shù)y=sinx的單調(diào)性解決,一般是根據(jù)三角函數(shù)的奇偶性將內(nèi)層函數(shù)的系數(shù)變?yōu)檎龜?shù)后再加以解決。對(duì)于帶有絕對(duì)值的三角函數(shù)應(yīng)該根據(jù)圖像,從直觀上進(jìn)行判斷。

忽視零向量致誤

零向量是向量中最特殊的向量,規(guī)定零向量的長度為0,其方向是任意的,零向量與任意向量都共線。它在向量中的位置正如實(shí)數(shù)中0的位置一樣,但有了它容易引起一些混淆,稍微考慮不到就會(huì)出錯(cuò),考生應(yīng)給予足夠的重視。

向量夾角范圍不清致誤

解題時(shí)要全面考慮問題。數(shù)學(xué)試題中往往隱含著一些容易被考生所忽視的因素,能不能在解題時(shí)把這些因素考慮到,是解題成功的關(guān)鍵,如當(dāng)a·b<0時(shí),a與b的夾角不一定為鈍角,要注意θ=π的情況。

an與sn關(guān)系不清致誤

在數(shù)列問題中,數(shù)列的通項(xiàng)an與其前n項(xiàng)和sn之間存在下列關(guān)系:an=s1,n=1,sn-sn-1,n≥2。這個(gè)關(guān)系對(duì)任意數(shù)列都是成立的,但要注意的是這個(gè)關(guān)系式是分段的,在n=1和n≥2時(shí)這個(gè)關(guān)系式具有完全不同的表現(xiàn)形式,這也是解題中經(jīng)常出錯(cuò)的一個(gè)地方,在使用這個(gè)關(guān)系式時(shí)要牢牢記住其“分段”的特點(diǎn)。

對(duì)數(shù)列的定義、性質(zhì)理解錯(cuò)誤

等差數(shù)列的前n項(xiàng)和在公差不為零時(shí)是關(guān)于n的常數(shù)項(xiàng)為零的二次函數(shù);一般地,有結(jié)論“若數(shù)列{an}的前n項(xiàng)和sn=an2+bn+c(a,b,c∈r),則數(shù)列{an}為等差數(shù)列的充要條件是c=0”;在等差數(shù)列中,sm,s2m-sm,s3m-s2m(m∈nx)是等差數(shù)列。

數(shù)列中的最值錯(cuò)誤

數(shù)列問題中其通項(xiàng)公式、前n項(xiàng)和公式都是關(guān)于正整數(shù)n的函數(shù),要善于從函數(shù)的觀點(diǎn)認(rèn)識(shí)和理解數(shù)列問題。數(shù)列的通項(xiàng)an與前n項(xiàng)和sn的關(guān)系是高考的命題重點(diǎn),解題時(shí)要注意把n=1和n≥2分開討論,再看能不能統(tǒng)一。在關(guān)于正整數(shù)n的二次函數(shù)中其取最值的點(diǎn)要根據(jù)正整數(shù)距離二次函數(shù)的對(duì)稱軸的遠(yuǎn)近而定。

錯(cuò)位相減求和項(xiàng)處理不當(dāng)致誤

錯(cuò)位相減求和法的適用條件:數(shù)列是由一個(gè)等差數(shù)列和一個(gè)等比數(shù)列對(duì)應(yīng)項(xiàng)的乘積所組成的,求其前n項(xiàng)和?;痉椒ㄊ窃O(shè)這個(gè)和式為sn,在這個(gè)和式兩端同時(shí)乘以等比數(shù)列的公比得到另一個(gè)和式,這兩個(gè)和式錯(cuò)一位相減,就把問題轉(zhuǎn)化為以求一個(gè)等比數(shù)列的前n項(xiàng)和或前n-1項(xiàng)和為主的求和問題.這里最容易出現(xiàn)問題的就是錯(cuò)位相減后對(duì)剩余項(xiàng)的處理。

不等式性質(zhì)應(yīng)用不當(dāng)致誤

在使用不等式的基本性質(zhì)進(jìn)行推理論證時(shí)一定要準(zhǔn)確,特別是不等式兩端同時(shí)乘以或同時(shí)除以一個(gè)數(shù)式、兩個(gè)不等式相乘、一個(gè)不等式兩端同時(shí)n次方時(shí),一定要注意使其能夠這樣做的條件,如果忽視了不等式性質(zhì)成立的前提條件就會(huì)出現(xiàn)錯(cuò)誤。

忽視基本不等式應(yīng)用條件致誤

利用基本不等式a+b≥2ab以及變式ab≤a+b22等求函數(shù)的最值時(shí),務(wù)必注意a,b為正數(shù)(或a,b非負(fù)),ab或a+b其中之一應(yīng)是定值,特別要注意等號(hào)成立的條件。對(duì)形如y=ax+bx(a,b>0)的函數(shù),在應(yīng)用基本不等式求函數(shù)最值時(shí),一定要注意ax,bx的'符號(hào),必要時(shí)要進(jìn)行分類討論,另外要注意自變量x的取值范圍,在此范圍內(nèi)等號(hào)能否取到。

【本文地址:http://www.aiweibaby.com/zuowen/1721410.html】

全文閱讀已結(jié)束,如果需要下載本文請(qǐng)點(diǎn)擊

下載此文檔