教案是教學(xué)的橋梁,它能夠保證教學(xué)的系統(tǒng)性、連貫性和科學(xué)性,使教學(xué)過程更加有條不紊。教案的內(nèi)容要與教材緊密結(jié)合,注意培養(yǎng)學(xué)生的綜合能力和實際運用能力。通過學(xué)習(xí)范文,教師可以提高教案編寫和教學(xué)設(shè)計的水平。
多邊形的內(nèi)角教案篇一
上完這節(jié)課后,自我感覺良好,學(xué)生在課堂上也積極參與思考、大膽嘗試、主動探討、勇于創(chuàng)新。
首先我先復(fù)習(xí)相關(guān)知識,引出新的問題,明確指出雖然采用的分割方法不同,但是目標(biāo)是一致的,都是通過添加輔助線,把未知的多邊形的內(nèi)角和轉(zhuǎn)化為一些三角形的內(nèi)角和,向?qū)W生滲透了“轉(zhuǎn)化”這種數(shù)學(xué)思想方法。在此教學(xué)中,只須真正實施民主的開放式教學(xué),創(chuàng)設(shè)平等、民主、寬松的教學(xué)氛圍,使師生完全處于平等的地位,學(xué)生才能敞開思想,積極參與教學(xué)活動,才能最大限度地調(diào)動學(xué)生的積極性,激發(fā)他們的學(xué)習(xí)興趣,引導(dǎo)他們多角度、多方位、多層次地思考問題,使他們有足夠的機會顯示靈性,展現(xiàn)個性。在問題探究、合作交流、形成共識的基礎(chǔ)上,在課堂活動中經(jīng)歷、感悟知識的生成、發(fā)展與變化過程,也只有這樣,才能將創(chuàng)新教育的目標(biāo)落到實處,讓學(xué)生在自主參與學(xué)習(xí),解決問題、嘗試到一題多證的方法,體驗到參與的樂趣、合作的價值,并獲得成功的體驗。
六、案例點評。
陳老師在本節(jié)課的教學(xué)設(shè)計上,內(nèi)容豐富,過程非常具體,設(shè)計也較合理。整節(jié)課以推導(dǎo)多邊形的內(nèi)角和為線索,讓學(xué)生經(jīng)歷了提問題、畫圖、判斷、找規(guī)律、猜想出一般性的結(jié)論。另外,能夠體現(xiàn)了用新教材的思想,體現(xiàn)了學(xué)生的主體地位,體現(xiàn)了新的教學(xué)理念,也符合初中生的心理特點和年齡特征,因此在教學(xué)設(shè)計上是比較好的。
但是隨堂練習(xí)太少而不精,并且沒有梯度,能否可以設(shè)計一些具有一定難度的練習(xí),使不同的學(xué)生得到不同層次的發(fā)展,為學(xué)有余力的學(xué)生提供更大的學(xué)習(xí)和發(fā)展空間。另外,關(guān)于多邊形的內(nèi)角和的推導(dǎo)不必要一一講解,只要引導(dǎo)學(xué)生解決了探索方法1和探索方法2就可以了,對于探索方法3,可以讓學(xué)生課后思考。
多邊形的內(nèi)角教案篇二
《探索多邊形的內(nèi)角和》一課終于上完了,然而對這一課的思考才剛剛開始,正如周夢莉校長所說,我們的目標(biāo)不是這一課本身,而是對于這一課的研究給我們數(shù)學(xué)教學(xué)的一點啟發(fā)。
有幸與實驗小學(xué)趙麗老師同時選中《多邊形的內(nèi)角和》這一課,但我們從不同角度不同方式對它進行了解讀。20世紀(jì)90年代,因為農(nóng)村小學(xué)學(xué)生人數(shù)的急劇減少,我們學(xué)校在課堂上嘗試性的進行了分層異步教學(xué),在同一節(jié)課中,根據(jù)學(xué)生認(rèn)知水平差異,把學(xué)生分成a,b兩組,在組內(nèi)又依托知識水平相近原則,把3,4名學(xué)生分為一個小組,通常采用合——分——合的模式進行教學(xué),即,當(dāng)a組同學(xué)教學(xué)時,b組自學(xué),反之亦然,經(jīng)過與普通班的對比研究,發(fā)現(xiàn)復(fù)式班學(xué)生在學(xué)習(xí)效果上有著明顯的成效。基于這一基礎(chǔ),我采用分層的模式來進行多邊形的內(nèi)角和的教學(xué),這一嘗試,讓我對自己的.數(shù)學(xué)教學(xué)有了如下反思:
1,以經(jīng)驗為基礎(chǔ),讓學(xué)生得到不同的發(fā)展。
基于學(xué)生的認(rèn)知經(jīng)驗及活動經(jīng)驗,對學(xué)生進行分組,以期達到不同的學(xué)生在數(shù)學(xué)上得到不同程度的發(fā)展的目標(biāo),學(xué)習(xí)能力較強的同學(xué)要能吃飽,學(xué)習(xí)能力較弱的同學(xué)要在原有基礎(chǔ)上有所進步。在實際教學(xué)中,對于a組和b組的學(xué)生,除了在教學(xué)形式上有所區(qū)別外,a組教學(xué)為主,b組自學(xué)為主,我在教學(xué)時間的分配上對ab組并沒有顯著區(qū)分,在以后的嘗試探索中,我應(yīng)對a組加以更細(xì)致的教學(xué)指導(dǎo),對b組更大膽的放手,讓學(xué)生上臺說,做,教,減少b組的教學(xué)時間。
2,勇于放手,培養(yǎng)學(xué)生自學(xué)的能力。
在一開始設(shè)計b組的學(xué)習(xí)單時,即使b組同學(xué)學(xué)習(xí)能力較強,但出于對學(xué)生的擔(dān)憂,擔(dān)心學(xué)生想不到用分一分的方法,在學(xué)習(xí)單上,我引導(dǎo)學(xué)生,多邊形能夠分成幾個三角形,內(nèi)角和怎么算。而周校長建議我,是否能給學(xué)生更多的空間,把“小問題”變?yōu)椤按髥栴}”,直接提問學(xué)生,多邊形的內(nèi)角和是多少,讓學(xué)生去嘗試探索各種方法,而不僅局限于轉(zhuǎn)化為三角形內(nèi)角和的方法。在后來的實際教學(xué)中,采用了“大問題”的提問方式,我驚喜的發(fā)現(xiàn),學(xué)生的探究自學(xué)能力比我預(yù)想的出色許多。
3,細(xì)節(jié)入手,培養(yǎng)學(xué)生良好習(xí)慣。
小學(xué)數(shù)學(xué)良好習(xí)慣的培養(yǎng)不僅對學(xué)生自身的數(shù)學(xué)學(xué)習(xí)有所裨益,對課堂教效果的影響更是尤為明顯。在分層教學(xué)的模式中,為避免ab組互相間的干擾,必須在課堂上對每組學(xué)生提出明確的要求,課前乃至平時都要對學(xué)生的學(xué)習(xí)習(xí)慣進行培養(yǎng),這樣才能讓我們的數(shù)學(xué)老師對課堂全局的把握更加深刻,才能夠讓數(shù)學(xué)課堂井然有序,數(shù)學(xué)教學(xué)效果得到最大程度的保證。
“授人以魚,不如授人以漁。”我們的數(shù)學(xué)分層教學(xué)不光是為了學(xué)生掌握某一定的知識,而是讓學(xué)生在不同的學(xué)習(xí)方式中不斷感悟體會,尋找適合自己的學(xué)習(xí)方法,最終以得到不同程度的發(fā)展。
多邊形的內(nèi)角教案篇三
難點:探索多邊形內(nèi)角和時,如何把多邊形轉(zhuǎn)化成三角形。
四、教學(xué)方法:引導(dǎo)發(fā)現(xiàn)法、討論法。
五、教具、學(xué)具。
教具:多媒體課件。
學(xué)具:三角板、量角器。
六、教學(xué)媒體:大屏幕、實物投影。
七、教學(xué)過程:
(一)創(chuàng)設(shè)情境,設(shè)疑激思。
師:大家都知道三角形的內(nèi)角和是180?,那么四邊形的內(nèi)角和,你知道嗎?
在獨立探索的基礎(chǔ)上,學(xué)生分組交流與研討,并匯總解決問題的方法。
方法一:用量角器量出四個角的度數(shù),然后把四個角加起來,發(fā)現(xiàn)內(nèi)角和是360?。
方法二:把兩個三角形紙板拼在一起構(gòu)成四邊形,發(fā)現(xiàn)兩個三角形內(nèi)角和相加是360?。
接下來,教師在方法二的基礎(chǔ)上引導(dǎo)學(xué)生利用作輔助線的方法,連結(jié)四邊形的對角線,把一個四邊形轉(zhuǎn)化成兩個三角形。
師:你知道五邊形的內(nèi)角和嗎?六邊形呢?十邊形呢?你是怎樣得到的?
學(xué)生先獨立思考每個問題再分組討論。
關(guān)注:(1)學(xué)生能否類比四邊形的方式解決問題得出正確的結(jié)論。
(2)學(xué)生能否采用不同的方法。
方法1:把五邊形分成三個三角形,3個180?的和是540?。
方法2:從五邊形內(nèi)部一點出發(fā),把五邊形分成五個三角形,然后用5個180?的和減去一個周角360?。結(jié)果得540?。
方法3:從五邊形一邊上任意一點出發(fā)把五邊形分成四個三角形,然后用4個180?的和減去一個平角180?,結(jié)果得540?。
方法4:把五邊形分成一個三角形和一個四邊形,然后用180?加上360?,結(jié)果得540?。
師:你真聰明!做到了學(xué)以致用。
交流后,學(xué)生運用幾何畫板演示并驗證得到的方法。
得到五邊形的內(nèi)角和之后,同學(xué)們又認(rèn)真地討論起六邊形、十邊形的內(nèi)角和。類比四邊形、五邊形的討論方法最終得出,六邊形內(nèi)角和是720?,十邊形內(nèi)角和是1440?。
(二)引申思考,培養(yǎng)創(chuàng)新。
(3)從多邊形一個頂點引的對角線分三角形的個數(shù)與多邊形邊數(shù)的關(guān)系?
學(xué)生結(jié)合思考題進行討論,并把討論后的結(jié)果進行交流。
發(fā)現(xiàn)1:四邊形內(nèi)角和是2個180?的和,五邊形內(nèi)角和是3個180?的'和,六邊形內(nèi)角和是4個180?的和,十邊形內(nèi)角和是8個180?的和。
發(fā)現(xiàn)3:一個n邊形從一個頂點引出的對角線分三角形的個數(shù)與邊數(shù)n存在(n-2)的關(guān)系。
(三)實際應(yīng)用,優(yōu)勢互補。
(2)一個多邊形的內(nèi)角和是1440?,且每個內(nèi)角都相等,則每個內(nèi)角的度數(shù)是()。
(四)概括存儲。
學(xué)生自己歸納總結(jié):
2、運用轉(zhuǎn)化思想解決數(shù)學(xué)問題。
3、用數(shù)形結(jié)合的思想解決問題。
(五)作業(yè):練習(xí)冊第93頁1、2、3。
八、教學(xué)反思:
1、教的轉(zhuǎn)變。
本節(jié)課教師的角色從知識的傳授者轉(zhuǎn)變?yōu)閷W(xué)生學(xué)習(xí)的組織者、引導(dǎo)者、合作者與共同研究者,在引導(dǎo)學(xué)生畫圖、測量發(fā)現(xiàn)結(jié)論后,利用幾何畫板直觀地展示,激發(fā)學(xué)生自覺探究數(shù)學(xué)問題,體驗發(fā)現(xiàn)的樂趣。
2、學(xué)的轉(zhuǎn)變。
學(xué)生的角色從學(xué)會轉(zhuǎn)變?yōu)闀W(xué)。本節(jié)課學(xué)生不是停留在學(xué)會課本知識層面,而是站在研究者的角度深入其境。
3、課堂氛圍的轉(zhuǎn)變。
整節(jié)課以“流暢、開放、合作、‘隱’導(dǎo)”為基本特征,教師對學(xué)生的思維減少干預(yù),教學(xué)過程呈現(xiàn)一種比較流暢的特征。整節(jié)課學(xué)生與學(xué)生,學(xué)生與教師之間以“對話”、“討論”為出發(fā)點,以互助合作為手段,以解決問題為目的,讓學(xué)生在一個比較寬松的環(huán)境中自主選擇獲得成功的方向,判斷發(fā)現(xiàn)的價值。
多邊形的內(nèi)角教案篇四
過程與方法目標(biāo):通過多邊形內(nèi)角和公式的推導(dǎo)過程,提高邏輯思維能力。
情感態(tài)度與價值觀目標(biāo):養(yǎng)成實事求是的科學(xué)態(tài)度。
講解法、練習(xí)法、分小組討論法。
結(jié)合新課程標(biāo)準(zhǔn)及以上的分析,我將我的教學(xué)過程設(shè)置為以下五個教學(xué)環(huán)節(jié):導(dǎo)入新知、
生成新知、深化新知、鞏固新知、小結(jié)作業(yè)。
1.導(dǎo)入新知。
首先是導(dǎo)入新知環(huán)節(jié),我會引導(dǎo)學(xué)生回顧三角形的內(nèi)角和,緊接著提出問題:四邊形的。
內(nèi)角和是多少?五邊形的內(nèi)角和是多少?六邊形的內(nèi)角和是多少?引發(fā)學(xué)生思考,由此引出本節(jié)課的課題:多邊形的內(nèi)角和(板書)。
通過提問的方式幫助學(xué)生回顧舊知識的同時,引導(dǎo)學(xué)生思考,也激發(fā)學(xué)生的求知欲,為本節(jié)課的多邊形內(nèi)角和的學(xué)習(xí)奠定了基礎(chǔ)。
2.生成新知。
接下來,進入生成新知環(huán)節(jié),我會引導(dǎo)學(xué)生將四邊形分成兩個三角形來求內(nèi)角和,由此。
得出四邊形的內(nèi)角和是2個三角形的內(nèi)角和,即2*180=360,那同樣的引導(dǎo)學(xué)生將五邊形,六邊形分別從同一個頂點出發(fā)劃分為3個4個三角形,從而得出五邊形的內(nèi)角和為3*180=540,然后,讓學(xué)生前后桌四個人為一個小組,五分鐘時間,歸納n變形的內(nèi)角和是多少,討論結(jié)束后,找一個小組來回答他們討論的結(jié)果。由此生成我們的新知識:多邊形的內(nèi)角和公式180*(n-2)。
驗證:七邊形驗證。
在本環(huán)節(jié)中通過學(xué)生自主學(xué)習(xí)歸納總結(jié)得出多邊形的內(nèi)角和公式,充分發(fā)揮了他們的自主探討能力,提升邏輯思維能力。
3.深化新知。
再次是深化新知環(huán)節(jié),在本環(huán)節(jié),我會引導(dǎo)學(xué)生思考一下有沒有其他的將多邊形分隔求。
內(nèi)角和的方法,引導(dǎo)學(xué)生思考,可不可以將六邊形從多個頂點出發(fā),然后用公式驗證一下我們這樣分割可行不可行。這時候會發(fā)現(xiàn)有的分割可行有的分割不可行,在這個時候給他們講解為什么不可行為什么可行,以此來引出分割時對角線不能相交,從而強調(diào)我們分隔的一個原則。
本環(huán)節(jié)的設(shè)計主要是對多變形內(nèi)角和的一個深入了解,給學(xué)生一個內(nèi)化的過程,同時引導(dǎo)學(xué)生不要將知識學(xué)死了,要活學(xué)活用,從多個角度來思考問題,解決問題。
4.鞏固提高。
我們說數(shù)學(xué)是來源于生活,服務(wù)于生活的一門學(xué)科,所以在接下來的鞏固提高環(huán)節(jié),
我講引領(lǐng)學(xué)生用我們所學(xué)過的多邊形的內(nèi)角和公式來解決生活中的實際問題。
我會在ppt上播放一個蜂巢的圖片,然后提出一個問題,蜂房是幾邊形?每個蜂房的內(nèi)角和是多少?由此來引發(fā)學(xué)生思考運用我們本節(jié)課所學(xué)習(xí)的知識來解決問題,對多邊形的內(nèi)角和公式進一步鞏固提高。
5.小結(jié)作業(yè)。
先讓學(xué)生思考一下我們本節(jié)課學(xué)習(xí)了什么知識點,然后找一位同學(xué)來總結(jié)一下我們本節(jié)課所學(xué)習(xí)的知識點。對本節(jié)課學(xué)習(xí)內(nèi)容有了一個回顧之后,讓學(xué)生做一下練習(xí)題1、2題,以此來進一步提升學(xué)生運用知識的能力。
多邊形的內(nèi)角教案篇五
(1)知識結(jié)構(gòu):
(2)重點和難點分析:
重點:四邊形的有關(guān)概念及內(nèi)角和定理。因為四邊形的有關(guān)概念及內(nèi)角和定理是本章的基礎(chǔ)知識,對后繼知識的學(xué)習(xí)起著重要的作用,數(shù)學(xué)教案-多邊形的內(nèi)角和。
難點:四邊形的概念及四邊形不穩(wěn)定性的理解和應(yīng)用。在前面講解三角形的概念時,因為三角形的三個頂點確定一個平面,所以三個頂點總是共面的,也就是說,三角形肯定是平面圖形,而四邊形就不是這樣,它的四個頂點有不共面的情況,又限于我們現(xiàn)在研究的是平面圖形,所以在四邊形的定義中加上“在同一平面內(nèi)”這個條件,這幾個字的意思學(xué)生不好理解,所以是難點。
2.教法建議。
(1)本節(jié)的引入最好使用我們提供的多媒體課件,通過這個課件,使學(xué)生認(rèn)識到這些四邊形都是常見圖形,研究它們具有實際應(yīng)用意義,從而激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
(2)本節(jié)的教學(xué),要以三角形為基礎(chǔ),可以仿照三角形,通過類比的方法建立四邊形的有關(guān)概念,如四邊形的邊、頂點、內(nèi)角、外角、內(nèi)角和、外角和、周長等都可同三角形類比,要結(jié)合三角形、四邊形的圖形,對比著指給學(xué)生看,讓學(xué)生明確這些概念。
(3)因為在三角形中沒有對角線,所以四邊形的對角線是一個新概念,它是解決四邊形問題時常用的輔助線,通過它可以把四邊形問題轉(zhuǎn)化為三角形問題來解決。結(jié)合圖形,讓學(xué)生自己動手作四邊形的一條對角線,并觀察四邊形的一條對角線把它分成幾個三角形?兩條對角線呢?使學(xué)生加深對對角線的作用的認(rèn)識。
(4)本節(jié)用到的數(shù)學(xué)思想方法是化歸轉(zhuǎn)化的思想和類比的思想,教師在講解本節(jié)知識時要滲透這兩種思想方法,并且在本節(jié)小結(jié)中對這兩種數(shù)學(xué)思想方法進行總結(jié),使學(xué)生明白碰到復(fù)雜的、未知的問題要轉(zhuǎn)化為簡單的、已知的問題,初中數(shù)學(xué)教案《數(shù)學(xué)教案-多邊形的內(nèi)角和》。
教學(xué)目標(biāo):
1.使學(xué)生掌握四邊形的有關(guān)概念及四邊形的內(nèi)角和定理;
2.通過引導(dǎo)學(xué)生觀察氣象站的實例,培養(yǎng)學(xué)生從具體事物中抽象出幾何圖形的能力;
3.通過推導(dǎo)四邊形內(nèi)角和定理,對學(xué)生滲透化歸轉(zhuǎn)化的數(shù)學(xué)思想;
4.講解四邊形的有關(guān)概念時,聯(lián)系三角形的有關(guān)概念向?qū)W生滲透類比思想。
教學(xué)重點:
教學(xué)難點:
四邊形的概念。
教學(xué)過程:
(一)復(fù)習(xí)。
在小學(xué)里,我們學(xué)過長方形、正方形、平行四邊形和梯形的有關(guān)知識。請同學(xué)們回憶一下這些圖形的概念。找學(xué)生說出四種幾何圖形的概念,教師作評價。
(二)提出問題,引入新課。
利用這些圖形的定義,你能在下圖中找出長方形、正方形、平行四邊形和梯形嗎?教師說完就打開多媒體課件。(先看畫面一)。
問題:你能類比三角形的概念,說出四邊形的概念嗎?
(三)理解概念。
1.四邊形:在平面內(nèi),由不在同一條直線的四條線段首尾順次相接組成的圖形叫做四邊形。
在定義中要強調(diào)“在同一平面內(nèi)”這個條件,或為學(xué)生稍微說明一下。其次,要給學(xué)生講清楚“首尾”和“順次”的含義。
2.類比三角形的邊、頂點、內(nèi)角、外角的概念,找學(xué)生答出四邊形的邊、頂點、內(nèi)角、外交的概念。
3.四邊形的記法:對照圖形向?qū)W生講明四邊形的記法與三角形不同,表示四邊形必須按頂點的順序書寫,可以按順時針或逆時針的順序。
練習(xí):課本124頁1、2題。
4.四邊形的分類:凸四邊形、凹四邊形(不必向?qū)W生講它的概念),只要學(xué)生會辨認(rèn)一個四邊形是不是凸四邊形就可以了。
5.四邊形的對角線:
(四)四邊形的內(nèi)角和定理。
定理:四邊形的內(nèi)角和等于.
注意:在研究四邊形時,常常通過作它的對角線,把關(guān)于四邊形的問題化成關(guān)于三角形的問題來解決。
(五)應(yīng)用、反思。
例1已知:如圖,直線,垂足為b,直線,垂足為c.
求證:(1);(2)。
證明:(1)(四邊形的內(nèi)角和等于),
練習(xí):
1.課本124頁3題。
小結(jié):
知識:四邊形的有關(guān)概念及其內(nèi)角和定理。
能力:向?qū)W生滲透類比和轉(zhuǎn)化的思想方法。
作業(yè):課本130頁2、3、4題。
多邊形的內(nèi)角教案篇六
(1)知識結(jié)構(gòu):
(2)重點和難點分析:
重點:四邊形的有關(guān)概念及內(nèi)角和定理.因為四邊形的有關(guān)概念及內(nèi)角和定理是本章的基礎(chǔ)知識,對后繼知識的學(xué)習(xí)起著重要的作用,數(shù)學(xué)教案-多邊形的內(nèi)角和。
難點:四邊形的概念及四邊形不穩(wěn)定性的理解和應(yīng)用.在前面講解三角形的概念時,因為三角形的三個頂點確定一個平面,所以三個頂點總是共面的,也就是說,三角形肯定是平面圖形,而四邊形就不是這樣,它的四個頂點有不共面的情況,又限于我們現(xiàn)在研究的是平面圖形,所以在四邊形的定義中加上“在同一平面內(nèi)”這個條件,這幾個字的意思學(xué)生不好理解,所以是難點。
2.教法建議
(1)本節(jié)的引入最好使用我們提供的多媒體課件,通過這個課件,使學(xué)生認(rèn)識到這些四邊形都是常見圖形,研究它們具有實際應(yīng)用意義,從而激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
(2)本節(jié)的教學(xué),要以三角形為基礎(chǔ),可以仿照三角形,通過類比的方法建立四邊形的有關(guān)概念,如四邊形的邊、頂點、內(nèi)角、外角、內(nèi)角和、外角和、周長等都可同三角形類比,要結(jié)合三角形、四邊形的圖形,對比著指給學(xué)生看,讓學(xué)生明確這些概念。
(3)因為在三角形中沒有對角線,所以四邊形的對角線是一個新概念,它是解決四邊形問題時常用的輔助線,通過它可以把四邊形問題轉(zhuǎn)化為三角形問題來解決.結(jié)合圖形,讓學(xué)生自己動手作四邊形的一條對角線,并觀察四邊形的一條對角線把它分成幾個三角形?兩條對角線呢?使學(xué)生加深對對角線的作用的認(rèn)識。
(4)本節(jié)用到的數(shù)學(xué)思想方法是化歸轉(zhuǎn)化的思想和類比的思想,教師在講解本節(jié)知識時要滲透這兩種思想方法,并且在本節(jié)小結(jié)中對這兩種數(shù)學(xué)思想方法進行總結(jié),使學(xué)生明白碰到復(fù)雜的、未知的問題要轉(zhuǎn)化為簡單的、已知的問題,初中數(shù)學(xué)教案《數(shù)學(xué)教案-多邊形的內(nèi)角和》。
教學(xué)目標(biāo):
1.使學(xué)生掌握四邊形的有關(guān)概念及四邊形的內(nèi)角和定理;
2.通過引導(dǎo)學(xué)生觀察氣象站的實例,培養(yǎng)學(xué)生從具體事物中抽象出幾何圖形的能力;
3.通過推導(dǎo)四邊形內(nèi)角和定理,對學(xué)生滲透化歸轉(zhuǎn)化的數(shù)學(xué)思想;
4.講解四邊形的有關(guān)概念時,聯(lián)系三角形的有關(guān)概念向?qū)W生滲透類比思想.
教學(xué)重點:
四邊形的內(nèi)角和定理.
教學(xué)難點:
四邊形的概念
教學(xué)過程:
(一)復(fù)習(xí)
在小學(xué)里,我們學(xué)過長方形、正方形、平行四邊形和梯形的有關(guān)知識.請同學(xué)們回憶一下這些圖形的概念.找學(xué)生說出四種幾何圖形的概念,教師作評價.
(二)提出問題,引入新課
利用這些圖形的定義,你能在下圖中找出長方形、正方形、平行四邊形和梯形嗎?教師說完就打開多媒體課件.(先看畫面一)
問題:你能類比三角形的概念,說出四邊形的概念嗎?
(三)理解概念
1.四邊形:在平面內(nèi),由不在同一條直線的四條線段首尾順次相接組成的圖形叫做四邊形.
在定義中要強調(diào)“在同一平面內(nèi)”這個條件,或為學(xué)生稍微說明一下.其次,要給學(xué)生講清楚“首尾”和“順次”的含義.
2.類比三角形的邊、頂點、內(nèi)角、外角的概念,找學(xué)生答出四邊形的邊、頂點、內(nèi)角、外交的概念.
3.四邊形的記法:對照圖形向?qū)W生講明四邊形的記法與三角形不同,表示四邊形必須按頂點的順序書寫,可以按順時針或逆時針的順序.
練習(xí):課本124頁1、2題.
4.四邊形的分類:凸四邊形、凹四邊形(不必向?qū)W生講它的概念),只要學(xué)生會辨認(rèn)一個四邊形是不是凸四邊形就可以了.
5.四邊形的對角線:
(四)四邊形的內(nèi)角和定理
定理:四邊形的內(nèi)角和等于 .
注意:在研究四邊形時,常常通過作它的對角線,把關(guān)于四邊形的問題化成關(guān)于三角形的問題來解決.
(五)應(yīng)用、反思
例1 已知:如圖,直線 ,垂足為b, 直線 , 垂足為c.
求證:(1) ;(2)
證明:(1) (四邊形的內(nèi)角和等于 ),
練習(xí):
1.課本124頁3題.
小結(jié):
知識:四邊形的有關(guān)概念及其內(nèi)角和定理.
能力:向?qū)W生滲透類比和轉(zhuǎn)化的思想方法.
作業(yè): 課本130頁 2、3、4題.
多邊形的內(nèi)角教案篇七
(1)知識結(jié)構(gòu):
(2)重點和難點分析:
重點:四邊形的有關(guān)概念及內(nèi)角和定理.因為四邊形的有關(guān)概念及內(nèi)角和定理是本章的基礎(chǔ)知識,對后繼知識的學(xué)習(xí)起著重要的作用,數(shù)學(xué)教案-多邊形的內(nèi)角和。
難點:四邊形的概念及四邊形不穩(wěn)定性的理解和應(yīng)用.在前面講解三角形的概念時,因為三角形的三個頂點確定一個平面,所以三個頂點總是共面的,也就是說,三角形肯定是平面圖形,而四邊形就不是這樣,它的四個頂點有不共面的情況,又限于我們現(xiàn)在研究的是平面圖形,所以在四邊形的定義中加上“在同一平面內(nèi)”這個條件,這幾個字的意思學(xué)生不好理解,所以是難點。
2.教法建議。
(1)本節(jié)的引入最好使用我們提供的多媒體課件,通過這個課件,使學(xué)生認(rèn)識到這些四邊形都是常見圖形,研究它們具有實際應(yīng)用意義,從而激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
(2)本節(jié)的教學(xué),要以三角形為基礎(chǔ),可以仿照三角形,通過類比的方法建立四邊形的有關(guān)概念,如四邊形的邊、頂點、內(nèi)角、外角、內(nèi)角和、外角和、周長等都可同三角形類比,要結(jié)合三角形、四邊形的圖形,對比著指給學(xué)生看,讓學(xué)生明確這些概念。
(3)因為在三角形中沒有對角線,所以四邊形的對角線是一個新概念,它是解決四邊形問題時常用的輔助線,通過它可以把四邊形問題轉(zhuǎn)化為三角形問題來解決.結(jié)合圖形,讓學(xué)生自己動手作四邊形的一條對角線,并觀察四邊形的一條對角線把它分成幾個三角形?兩條對角線呢?使學(xué)生加深對對角線的作用的認(rèn)識。
(4)本節(jié)用到的數(shù)學(xué)思想方法是化歸轉(zhuǎn)化的思想和類比的思想,教師在講解本節(jié)知識時要滲透這兩種思想方法,并且在本節(jié)小結(jié)中對這兩種數(shù)學(xué)思想方法進行總結(jié),使學(xué)生明白碰到復(fù)雜的、未知的問題要轉(zhuǎn)化為簡單的、已知的問題,初中數(shù)學(xué)教案《數(shù)學(xué)教案-多邊形的內(nèi)角和》。
教學(xué)目標(biāo):
1.使學(xué)生掌握四邊形的有關(guān)概念及四邊形的內(nèi)角和定理;
2.通過引導(dǎo)學(xué)生觀察氣象站的實例,培養(yǎng)學(xué)生從具體事物中抽象出幾何圖形的能力;
3.通過推導(dǎo)四邊形內(nèi)角和定理,對學(xué)生滲透化歸轉(zhuǎn)化的數(shù)學(xué)思想;
4.講解四邊形的`有關(guān)概念時,聯(lián)系三角形的有關(guān)概念向?qū)W生滲透類比思想.
教學(xué)重點:
教學(xué)難點:
教學(xué)過程:
(一)復(fù)習(xí)。
在小學(xué)里,我們學(xué)過長方形、正方形、平行四邊形和梯形的有關(guān)知識.請同學(xué)們回憶一下這些圖形的概念.找學(xué)生說出四種幾何圖形的概念,教師作評價.
(二)提出問題,引入新課。
利用這些圖形的定義,你能在下圖中找出長方形、正方形、平行四邊形和梯形嗎?教師說完就打開多媒體課件.(先看畫面一)。
問題:你能類比三角形的概念,說出四邊形的概念嗎?
(三)理解概念。
1.四邊形:在平面內(nèi),由不在同一條直線的四條線段首尾順次相接組成的圖形叫做四邊形.
在定義中要強調(diào)“在同一平面內(nèi)”這個條件,或為學(xué)生稍微說明一下.其次,要給學(xué)生講清楚“首尾”和“順次”的含義.
2.類比三角形的邊、頂點、內(nèi)角、外角的概念,找學(xué)生答出四邊形的邊、頂點、內(nèi)角、外交的概念.
3.四邊形的記法:對照圖形向?qū)W生講明四邊形的記法與三角形不同,表示四邊形必須按頂點的順序書寫,可以按順時針或逆時針的順序.
練習(xí):課本124頁1、2題.
4.四邊形的分類:凸四邊形、凹四邊形(不必向?qū)W生講它的概念),只要學(xué)生會辨認(rèn)一個四邊形是不是凸四邊形就可以了.
注意:在研究四邊形時,常常通過作它的對角線,把關(guān)于四邊形的問題化成關(guān)于三角形的問題來解決.
(五)應(yīng)用、反思。
例1已知:如圖,直線,垂足為b,直線,垂足為c.
求證:(1);(2)。
練習(xí):
1.課本124頁3題.
小結(jié):
能力:向?qū)W生滲透類比和轉(zhuǎn)化的思想方法.
作業(yè):課本130頁2、3、4題.
多邊形的內(nèi)角教案篇八
完成《多邊形的內(nèi)角和》教學(xué)之后,學(xué)生很自然地就會想到對于多邊形的情況如何。為了體現(xiàn)課堂以學(xué)生為主,培養(yǎng)學(xué)生自主探究的能力,在課前的教學(xué)設(shè)計中盡量圍繞學(xué)生展開。如:采取了小組合作學(xué)習(xí)、組與組之間交流等形式。雖然想法上有此意圖,但在具體的實施過程中還是暴露出了很多問題,有事先沒預(yù)計到的,也有想體現(xiàn)但沒體現(xiàn)完整的。經(jīng)過課后反思及老教師們的指點,主要表現(xiàn)在:
(1)較多的著眼于課堂形式的多樣化及學(xué)生能力(如:合作、探究、交流等)的培養(yǎng),而忽視了教學(xué)中最重要的知識點的落實。學(xué)生練的機會不多,僅有編制習(xí)題解答這一部分,且對學(xué)生來說要求較高,教師在編題前可先讓學(xué)生解題,給學(xué)生搭好階梯,使其不至于感到突然。
(2)小組討論可以說是新教材框架中的一個重要部分,教師事先一定要有詳細(xì)的計劃。這也是本堂課暴露缺陷較多的環(huán)節(jié)。比如:組員的設(shè)置(七、八人一組加上發(fā)下的表格較少使得討論未能有效的開展),以4、5人為一組較為合適,且要分工明確,如誰記錄,誰發(fā)言等等,避免某些小組成員流離于合作之外。教師還應(yīng)精心策劃:討論如何有效地開展;時間多長;采取何種討論方法;教師在討論過程中又該擔(dān)當(dāng)何種角色等。
(3)在小組交流過程中學(xué)生的發(fā)言過分地注重于探索的結(jié)果,而忽視了學(xué)生探索過程的展示。同時教師有些總結(jié)性的話,限制了學(xué)生的思維,不能最大限度的'發(fā)揮學(xué)生自主探究的能力。
(4)教師在教學(xué)過程中對學(xué)生的評價較為單一,肯定不夠及時,表揚不夠熱情,比如當(dāng)最后一個平常表現(xiàn)較為一般的學(xué)生有此創(chuàng)意時,教師就應(yīng)大加贊揚,從而也能激發(fā)課堂氣氛。
將本文的word文檔下載到電腦,方便收藏和打印。
多邊形的內(nèi)角教案篇九
知識與技能:掌握多邊形內(nèi)角和定理,進一步了解轉(zhuǎn)化的數(shù)學(xué)思想。
重點:多邊形內(nèi)角和定理的探索和應(yīng)用。
教學(xué)難點:邊形定義的理解;多邊形內(nèi)角和公式的推導(dǎo);轉(zhuǎn)化的數(shù)學(xué)思維方法的滲透.。
教學(xué)過程。
第一環(huán)節(jié)創(chuàng)設(shè)現(xiàn)實情境,提出問題,引入新(3分鐘,學(xué)生思考問題,入)。
1.多媒體展示蜂窩,教師結(jié)合圖片讓學(xué)生發(fā)現(xiàn)生活中無處不在的多邊形.。
2.工人師傅鋸桌面:一個四邊形的桌面,用鋸子鋸掉一個角,還剩幾個角?
第二環(huán)節(jié)概念形成(5分鐘,學(xué)生理解定義)。
第三環(huán)節(jié)實驗探究(12分鐘,學(xué)生動手操作,探究內(nèi)角和)。
(以四人小組為單位展開探究活動)。
活動一:利用四邊形探索四邊形內(nèi)角和。
要求:先獨立思考再小組合作交流完成.)。
(師巡視,了解學(xué)生探索進程并適當(dāng)點撥.)。
(生思考后交流,把不同的方案在紙上完成.)。
……(組間交流,教師展示幾種方法)。
進而引導(dǎo)學(xué)生得出:我們是把四邊形的問題轉(zhuǎn)化成三角形,再由三角形內(nèi)角和為180°,求出四邊形內(nèi)角和為360°,從而使問題得到解決!進一步提出新的探索活動。
活動二:探索五邊形內(nèi)角和。
(要求:獨立思考,自主完成.)。
第四環(huán)節(jié)思維升華(5分鐘,教師引導(dǎo)學(xué)生進行推算)。
教學(xué)過程:
探索n邊形內(nèi)角和,并試著說明理由。
(結(jié)合出示的圖表從代數(shù)角度猜測公式,并從幾何意義加以解讀)。
n邊形的內(nèi)角和=(n—2)180°。
正n邊形的一個內(nèi)角==。
第五環(huán)節(jié)能力拓展(12分鐘,學(xué)生搶答)。
搶答題:
1.正八邊形的內(nèi)角和為_______.
3.一個多邊形每個內(nèi)角的度數(shù)是150°,則這個多邊形的邊數(shù)是_______.
應(yīng)用發(fā)散:
第六環(huán)節(jié)時小結(jié):(3分鐘,學(xué)生填表)。
第七環(huán)節(jié)布置作業(yè):習(xí)題4、10。
b組(中等生)1。
c組(后三分之一生)1。
教學(xué)反思:
多邊形的內(nèi)角教案篇十
我說課的內(nèi)容是人教版七年級(下)冊第七章第三節(jié)《多邊形及其內(nèi)角和》的第二課時。我將在新課程理念的指導(dǎo)下從以下七個方面進行說課。
多邊形的內(nèi)角和是在三角形內(nèi)角和知識基礎(chǔ)上的拓廣和發(fā)展,是從特殊到一般的深化,是后面學(xué)習(xí)多邊形鑲嵌的基礎(chǔ),也是今后學(xué)習(xí)空間幾何的基礎(chǔ),學(xué)好多邊形內(nèi)角和的內(nèi)容,為學(xué)生認(rèn)識探索客觀世界中不同形狀物體存在的一般規(guī)律打下基礎(chǔ),對發(fā)展學(xué)生的空間觀念和幾何直覺有很大的幫助。
1、我所任教的班級,大部分學(xué)生來自農(nóng)村,由于自小獨立性較強,具有較強的理解能力和應(yīng)用能力,喜歡合作討論,對數(shù)學(xué)學(xué)習(xí)有較濃厚的興趣。大部分學(xué)生學(xué)習(xí)習(xí)慣和學(xué)習(xí)方式較好。
2、本節(jié)課讓學(xué)生通過實驗探索多邊形內(nèi)角和公式。在此之前學(xué)生對三角形、特殊四邊形的內(nèi)角和已經(jīng)有了一定的理解和認(rèn)識。估計學(xué)生在探究任意四邊形內(nèi)角和時會想到量、拼、分的方法,但是分割“多邊形為三角形”這一過程會是學(xué)生學(xué)習(xí)的難點,在探究的過程中教師要想辦法把難點分散,有利于學(xué)生對本課知識的學(xué)習(xí)和掌握。
新的課程標(biāo)準(zhǔn)注重學(xué)生經(jīng)歷觀察、操作、猜想、歸納等探索過程。根據(jù)新課標(biāo)和本節(jié)課的內(nèi)容特點我確定以下教學(xué)目標(biāo)及重點、難點。
【知識與技能】。
【數(shù)學(xué)思考】。
(1)通過測量,類比,推理等教學(xué)活動,探索多邊形的內(nèi)角和公式,感受數(shù)學(xué)思考過程的條理性,發(fā)展推理能力和語言表達能力。
(2)通過把多邊形轉(zhuǎn)化成三角形體會轉(zhuǎn)化思想在幾何中的運用,同時讓學(xué)生體會從特殊到一般的認(rèn)識問題的方法。
【解決問題】。
通過探索多邊形內(nèi)角和公式,讓學(xué)生嘗試從不同的角度尋求解決問題的方法,并能有效的解決問題。
【情感態(tài)度】。
1、通過動手實踐、相互間的交流,進一步激發(fā)學(xué)習(xí)熱情和求知欲望。
2、體驗猜想得到證實的成就感,在解題中感受生活中數(shù)學(xué)的存在,體驗數(shù)學(xué)充滿探索。并在探索過程中激發(fā)、培養(yǎng)學(xué)生的愛國主義熱情。
基于以上教學(xué)目標(biāo),我確定以下教學(xué)重難點:
【教學(xué)難點】探究多邊形內(nèi)角和時,如何把多邊形轉(zhuǎn)化成三角形。
因此,本節(jié)課我借助課件輔助教學(xué),可以更好的突破重難點,增強直觀效果,豐富學(xué)生的感性認(rèn)識,提高課堂效率。
本節(jié)課借鑒了美國教育家杜威的“在做中學(xué)”的理論和葉圣陶先生所倡導(dǎo)的“解放學(xué)生的手,解放學(xué)生的大腦,解放學(xué)生的時間”的思想,我確定如下教法和學(xué)法:
1.教學(xué)方法:
根據(jù)本節(jié)課的教學(xué)目標(biāo)、教材內(nèi)容以及學(xué)生的認(rèn)知特點,我采用啟發(fā)式、探索式教學(xué)方法,意在幫助學(xué)生通過觀察,自己動手,從實踐中獲得知識。整個探究學(xué)習(xí)的過程充滿了師生之間、學(xué)生之間的交流和互動,體現(xiàn)了教師是教學(xué)活動的組織者、引導(dǎo)者,而學(xué)生才是學(xué)習(xí)的主體。
2.學(xué)習(xí)方法:
利用學(xué)生的好奇心設(shè)疑,解疑,組織活潑互動、有效的教學(xué)活動,鼓勵學(xué)生積極參與,大膽猜想,使學(xué)生在自主探索和合作交流中理解和掌握本節(jié)課的內(nèi)容。
1、環(huán)節(jié)一:創(chuàng)設(shè)情景、引入新課。
情景:請學(xué)生觀察“上海世博園”的宣傳視頻。
從“情境認(rèn)知理論”得知:圖文加情境能有效提高課堂教學(xué)效率,而圖文和情境并用可使效率提高到300%。通過觀看上海世博園視頻,能激發(fā)學(xué)生的愛國主義熱情,并引導(dǎo)學(xué)生大膽提出問題,對建筑物的外觀抽象成已知的三角形、長方形、正方形等多邊形。提出問題:三角形的內(nèi)角和是多少?設(shè)計這個問題的目的是因為探索多邊形內(nèi)角和與邊數(shù)關(guān)系的根本方法是把多邊形轉(zhuǎn)化為多個三角形,因此喚醒學(xué)生已有知識“三角形內(nèi)角和等于180°”有助于解決后面的問題。接下來提出問題,正方形、長方形的內(nèi)角和是多少?學(xué)生回答后進入新課內(nèi)容,根據(jù)三角形的內(nèi)角和是個確定值,引導(dǎo)學(xué)生猜想任意四邊形的內(nèi)角和是多少?喚醒學(xué)生已有知識,將有助于本堂課問題的解決,也為后面習(xí)題作鋪墊。
2、環(huán)節(jié)二:合作交流、探索新知。
活動1:
猜一猜:圍繞“任意四邊形的內(nèi)角和等于多少度?”這一問題引導(dǎo)學(xué)生從正方形、長方形這兩個特殊的多邊形的內(nèi)角和,很容易猜測出四邊形的內(nèi)角和等于360度。
議一議:你是怎樣得到的?你能找到幾種方法?這個環(huán)節(jié)學(xué)生可能出現(xiàn)“度量”、“剪拼”、“作輔助線”等等甚至更多的方法。為此我又拋出問題:五、六、七邊形的內(nèi)角和怎么求?你發(fā)現(xiàn)了什么?通過這個問題讓學(xué)生自然過渡到用作輔助線的方法求多邊形的內(nèi)角和,同時也要告訴學(xué)生在測量和剪拼活動中可能會產(chǎn)生誤差,由此感受到作輔助線在解決幾何問題中的必要性。這一環(huán)節(jié)要給予學(xué)生充分的探究時間,鼓勵學(xué)生積極參與,合作交流,用自己的語言表達解決問題的方式方法,發(fā)展學(xué)生的語言表達能力與推理能力。
針對不同層次的學(xué)生,要適當(dāng)?shù)囊龑?dǎo)學(xué)生利用作輔助線的方法把多邊形轉(zhuǎn)化為三角形,鼓勵學(xué)生尋找多種分割形式,深入領(lǐng)會轉(zhuǎn)化的本質(zhì)——將四邊形轉(zhuǎn)化為三角形問題來解決。然后讓學(xué)生表達自己解決問題的方法,并用電腦演示四邊形分割成三角形的多種方法讓學(xué)生體驗數(shù)學(xué)活動充滿探索,體驗解決問題策略的多樣性。
想一想:這些分法有什么異同點?學(xué)生積極思考,大膽發(fā)言,教師給予適當(dāng)?shù)脑u價和鼓勵。教師在學(xué)生回答的基礎(chǔ)上小結(jié):借助輔助線把四邊形分割成幾個三角形分割的關(guān)鍵在于公共點的選取,并演示公共點在圖形內(nèi)、外、頂點處。利用三角形內(nèi)角和求得四邊形內(nèi)角和,這是數(shù)學(xué)學(xué)習(xí)中的一種常用轉(zhuǎn)化的思想方法。
活動2:
做一做:選一種你喜歡的上述分割的方法,類比求四邊形的內(nèi)角和方法求五邊形、六邊形、七邊形等的內(nèi)角和,讓學(xué)生再一次經(jīng)歷轉(zhuǎn)化的過程,加深對轉(zhuǎn)化思想的理解,通過增加圖形的復(fù)雜性,再一次經(jīng)歷轉(zhuǎn)化的過程,加深對轉(zhuǎn)化思想方法的理解,體會由簡單到復(fù)雜,由特殊到一般的思想方法。
議一議:
問題1:對比上面探究四邊形內(nèi)角和的過程,你能得出五邊形的內(nèi)角和?六邊形的內(nèi)角和?
問題2:能否采用不同的分割方法來解決這些問題?
活動3:
嘗試完成第五列n邊形的探究。
但是學(xué)生有可能出現(xiàn)其它的解決問題的辦法,比如:由四邊形內(nèi)角和求五邊形內(nèi)角和,由五邊形內(nèi)角和再求六邊形內(nèi)角和,依次類推,邊數(shù)每增加1條內(nèi)角和就增加180°。但是這種方法給活動3公式的得出帶來困難。所以教師要因勢利導(dǎo),給學(xué)生正確的評價。在探索的過程中再一次培養(yǎng)學(xué)生的推理能力和表達能力,以及選擇解決問題的最佳方法的能力。
練一練:為了使學(xué)生達到對知識的鞏固與應(yīng)用,我特地設(shè)計了一組(5個)即時搶答題,通過這些題目學(xué)生當(dāng)堂訓(xùn)練、獨立計算,并根據(jù)學(xué)生都喜好競賽的特點,采用搶答式完成。運用所學(xué)公式解決問題并鞏固、理解、記憶公式。
搶答:
(1)過一個多邊形一個頂點有10條對角線,則這是邊形.
(2)過一個多邊形一個頂點的所有對角線將這個多邊形分成五個三角形,則這是邊形.
(3)多邊形的內(nèi)角和隨著邊數(shù)的增加而,邊數(shù)增加一條時它的內(nèi)角和增加度。
3、環(huán)節(jié)三:例題講解,知識鞏固。
在此,我設(shè)計了2個例題,并對教科書上的例題作了較小的改動,書上的例1簡略講解,這個例題就是對四邊形的內(nèi)角和的簡單應(yīng)用,對于學(xué)生來說比較簡單;對于例2我把書后面的85頁習(xí)題第9題變成例題,這一道題目具有較好的典型性,特別是知識間的融會貫通,主要要求學(xué)生掌握:三角形、五邊形的內(nèi)角和,正五邊形等相關(guān)知識。
4、環(huán)節(jié)四:分組競賽、情感升華。
(1)智慧大比拼。
內(nèi)容:p87的練習(xí)分成2類。
通過新穎的形式激發(fā)學(xué)生的競爭意識和主動參與活動的熱情。學(xué)生利用當(dāng)堂所學(xué)的知識解決問題,鞏固本節(jié)知識。
(2)拓展探究。
小組合作探究,引導(dǎo)學(xué)生分析可能的每一種截取情況,根據(jù)不同截法得出不同結(jié)論。鼓勵學(xué)生積極參與思考、大膽嘗試、主動探討、勇于創(chuàng)新。讓學(xué)生深刻的感受到合作交流的重要性,體會成功的喜悅。
(3)情系世博。
引導(dǎo)學(xué)生利用多邊形的內(nèi)角和公式解釋小明的設(shè)想能否實現(xiàn)。讓學(xué)生感受到數(shù)學(xué)的趣味性,以及與實際生活之間的密切聯(lián)系,并激發(fā)學(xué)生的愛國之情。
5、環(huán)節(jié)五:暢所欲言、分享成果。
請學(xué)生談自己學(xué)習(xí)過程中的收獲,并整理自己參與數(shù)學(xué)活動的經(jīng)驗,回味成功的喜悅,形成良好的學(xué)習(xí)習(xí)慣,同時也是給學(xué)生正確地評價自己和他人表現(xiàn)的機會,這也是給教者本身一個反思提高的機會。通過這個環(huán)節(jié)使學(xué)生這節(jié)課所學(xué)的知識系統(tǒng)化,從感性認(rèn)識上升為理性認(rèn)識。
6、環(huán)節(jié)六:布置作業(yè)、課后提升。
(1)習(xí)題7.3第2題、第4題。
(2)選做題:用另外兩種作輔助線的方法證明多邊形內(nèi)角和定理。
采用分層布置作業(yè),讓不同水平的學(xué)生得到不同的發(fā)展,培養(yǎng)學(xué)生的思維靈活性及成就感,從而貫徹因材施教的原則。
評價學(xué)生,不僅僅是一個手段和結(jié)果,它對學(xué)生的人格、個性的發(fā)展有著極其重要的作用。新課程對課程的評價應(yīng)把握形成性、發(fā)展性評價和終結(jié)性評價相結(jié)合,在實踐中我打算在課堂上從以下幾個方面進行評價:
1、評價在學(xué)習(xí)中各種能力〈如表達、想象、動手、思維、自學(xué)能力等〉的發(fā)展情況。
2、評價學(xué)習(xí)過程中的創(chuàng)新表現(xiàn)。
3、評價在學(xué)習(xí)過程中對身邊事物、社會現(xiàn)實的關(guān)注程度。
評價必須最大限度地考慮最終結(jié)果,要以培養(yǎng)學(xué)生的榮譽感、自尊心和進取心為目的,使其產(chǎn)生獲取成功的動力。
最后,我的板書設(shè)計力求簡潔明了,便于學(xué)生觀察比較、歸納總結(jié),并體現(xiàn)教師的示范作用,突出本堂課的重難點,及主要的思想方法。
多邊形的內(nèi)角教案篇十一
課件要具有可教性。制作多媒體課件的目的是優(yōu)化課堂教學(xué)結(jié)構(gòu),提高課堂教學(xué)效率,既要有利于教師的教,又要有利于學(xué)生的學(xué),所以制作的課件要與課堂內(nèi)容有密切聯(lián)系,具有教導(dǎo)積極向上意義。
[教學(xué)目標(biāo)]。
1.了解多邊形及有關(guān)概念,理解正多邊形及其有關(guān)概念.。
2.區(qū)別凸多邊形與凹多邊形.。
[教學(xué)重點、難點]。
1.重點:
(1)了解多邊形及其有關(guān)概念,理解正多邊形及其有關(guān)概念.。
(2)區(qū)別凸多邊形和凹多邊形.。
2.難點:
[教學(xué)過程]。
一、新課講授。
投影:圖形見課本p84圖7.3一l.。
你能從投影里找出幾個由一些線段圍成的圖形嗎?
上面三圖中讓同學(xué)邊看、邊議.。
在同學(xué)議論的基礎(chǔ)上,老師給以總結(jié),這些線段圍成的圖形有何特性?
(1)它們在同一平面內(nèi).。
(2)它們是由不在同一條直線上的幾條線段首尾順次相接組成的.。
這些圖形中有三角形、四邊形、五邊形、六邊形、八邊形,那么什么叫做多邊形呢?
提問:三角形的定義.。
你能仿照三角形的定義給多邊形定義嗎?
1.在平面內(nèi),由一些線段首位順次相接組成的圖形叫做多邊形.。
如果一個多邊形由n條線段組成,那么這個多邊形叫做n邊形.(一個多邊形由幾條線段組成,就叫做幾邊形.)。
2.多邊形的邊、頂點、內(nèi)角和外角.。
連接多邊形的不相鄰的兩個頂點的線段,叫做多邊形的對角線.。
讓學(xué)生畫出五邊形的所有對角線.。
4.凸多邊形與凹多邊形。
看投影:圖形見課本p85.7.3?6.。
5.正多邊形。
由正方形的特征出發(fā),得出正多邊形的概念.。
各個角都相等,各條邊都相等的多邊形叫做正多邊形.。
二、課堂練習(xí)。
課本p86練習(xí)1.2.。
三、課堂小結(jié)。
引導(dǎo)學(xué)生總結(jié)本節(jié)課的相關(guān)概念.。
四、課后作業(yè)。
課本p90第1題.。
備用題:
一、.。
1.由四條線段首尾順次相接組成的圖形叫四邊形.()。
2.由不在一直線上四條線段首尾次順次相接組成的圖形叫四邊形.()。
3.由不在一直線上四條線段首尾順次接組成的圖形,且其中任何一條線段所在的直線、使整個圖形都在這直線的同一側(cè),叫做四邊形.()。
4.在同一平面內(nèi),四條線段首尾順次連接組成的圖形叫四邊形.()。
多邊形的內(nèi)角教案篇十二
各位領(lǐng)導(dǎo),各位老師:
????大家下午好,很高興有機會參加這次教學(xué)研究活動。
我的教學(xué)設(shè)計是華師大版七年級數(shù)學(xué)(下)第八章第三節(jié)"多邊形的內(nèi)角和與外角和"。根據(jù)新的課程標(biāo)準(zhǔn),我從以下七個方面說一下本節(jié)課的教學(xué)設(shè)想:
從教材的編排上,本節(jié)課作為第八章的第三節(jié)是承上啟下的一節(jié),在內(nèi)容上,從三角形的內(nèi)角和到四邊形的內(nèi)角和到多邊形的內(nèi)角和環(huán)環(huán)相扣,前面的知識為后邊的知識做了鋪墊,知識聯(lián)系性比較強,特別是教材中設(shè)計了一些"想一想""試一試""做一做"等內(nèi)容,體現(xiàn)了課改的精神。在編寫意圖上,編者有意從簡單的幾何圖形入手,讓學(xué)生經(jīng)歷探索,猜想,歸納等過程,發(fā)展了學(xué)生的合情推理能力。
學(xué)生上節(jié)課剛剛學(xué)完三角形的內(nèi)角和,對內(nèi)角和的問題有了一定的認(rèn)識,加上七年級的學(xué)生具有好奇心,求知欲強,互相評價互相提問的積極性高。因此對于學(xué)習(xí)本節(jié)內(nèi)容的知識條件已經(jīng)成熟,學(xué)生參加探索活動的熱情已經(jīng)具備,因此把這節(jié)課設(shè)計成一節(jié)探索活動課是切實可行的。
新的課程標(biāo)準(zhǔn)注重學(xué)生所學(xué)內(nèi)容與現(xiàn)實生活的聯(lián)系,注重學(xué)生經(jīng)歷觀察,操作,推理,想象等探索過程。根據(jù)新課標(biāo)和本節(jié)課的內(nèi)容特點我確定以下教學(xué)目標(biāo)及重點,難點。
【知識與技能】掌握多邊形內(nèi)角和與外角和定理,進一步了解轉(zhuǎn)化的數(shù)學(xué)思想。
【過程與方法】經(jīng)歷質(zhì)疑,猜想,歸納等活動,發(fā)展學(xué)生的合情推理能力,積累數(shù)學(xué)活動的經(jīng)驗,在探索中學(xué)會與人合作,學(xué)會交流自己的思想和方法。
【情感態(tài)度與價值觀】讓學(xué)生體驗猜想得到證實的成功喜悅和成就感,在解題中感受生活中數(shù)學(xué)的存在,體驗數(shù)學(xué)充滿著探索和創(chuàng)造。
【教學(xué)難點】轉(zhuǎn)化的數(shù)學(xué)思維方法。
本次課改很大程度上借鑒了美國教育家杜威的"在做中學(xué)"的理論,突出學(xué)生獨立數(shù)學(xué)思考活動,希望通過活動使學(xué)生主動探索,實踐,交流,達到掌握知識的目的,尤其是本節(jié)課更是一節(jié)難得的探索活動課,按新的課程理論和葉圣陶先生所倡導(dǎo)的"解放學(xué)生的手,解放學(xué)生的大腦,解放學(xué)生的時間"及初一學(xué)生的特點,我確定如下教法和學(xué)法。
【課堂組織策略】利用學(xué)生的好奇心,設(shè)疑,解疑,組織活潑互動,有效的教學(xué)活動,鼓勵學(xué)生積極參與,大膽猜想,積極思考,使學(xué)生在自主探索和合作交流中理解和掌握本節(jié)課的有關(guān)內(nèi)容。
【學(xué)生學(xué)習(xí)策略】明確學(xué)習(xí)目標(biāo),在教師的組織,引導(dǎo),點撥下進行主動探索,實踐,交流等活動。
【輔助策略】利用多媒體課件展示三角形內(nèi)角和向多邊形內(nèi)角和轉(zhuǎn)化,突破這一教學(xué)難點,另外利用演示法,歸納法,討論法,分組竟賽法,使不同學(xué)生的知識水平得到恰當(dāng)?shù)陌l(fā)展和提高。
整個教學(xué)過程分五步完成。
1,創(chuàng)設(shè)情景,引入新課。
首先解決四邊形內(nèi)角的問題,通過轉(zhuǎn)化為三角形問題來解決。
2,合作交流,探索新知。
更進一步解決五邊形內(nèi)角和,乃至六邊形,七邊形直到n邊形的內(nèi)角和,都能用同樣的方法解決。學(xué)生分組討論。
3,歸納總結(jié),建構(gòu)體系。
多邊形內(nèi)角和已得出,對外角和更是水到渠成,這時要適當(dāng)?shù)目偨Y(jié),讓學(xué)生自己得到零散的知識體系。
4,實際應(yīng)用,提高能力。
"木工師傅可以用邊角余料鋪地板的原因是什么"這既是對本節(jié)所學(xué)知識在現(xiàn)實生活中的應(yīng)用,又是本章第一節(jié)的延伸,同時也為下節(jié)打下了一個鋪墊。
5,分組競賽,升華情感。
四組不同難度的電子試卷,既鞏固本節(jié)課所學(xué)的知識,又使學(xué)生本節(jié)課產(chǎn)生的激情得以釋放。
板書本節(jié)課學(xué)生所需掌握的知識目標(biāo):即多邊形內(nèi)角和與外角和定理。
本節(jié)課在知識上由簡單到復(fù)雜,學(xué)生經(jīng)歷質(zhì)疑,猜想,驗證的同時,在情感上,由好奇到疑惑,由解決單個問題的一點點快感,到解決整個問題串的極大興奮,產(chǎn)生了強烈的學(xué)習(xí)激情。這時,一次有效的教學(xué)競賽活動,使學(xué)生的學(xué)習(xí)激情得到釋放,學(xué)科個性得以張揚,教師稍加點撥,適可而止,把更多的思考空間留給學(xué)生。
多邊形的內(nèi)角教案篇十三
我說課的內(nèi)容是人教版七年級(下)冊第七章第三節(jié)《多邊形及其內(nèi)角和》的第二課時。我將在新課程理念的指導(dǎo)下從以下七個方面進行說課。
多邊形的內(nèi)角和是在三角形內(nèi)角和知識基礎(chǔ)上的拓廣和發(fā)展,是從特殊到一般的深化,是后面學(xué)習(xí)多邊形鑲嵌的基礎(chǔ),也是今后學(xué)習(xí)空間幾何的基礎(chǔ),學(xué)好多邊形內(nèi)角和的內(nèi)容,為學(xué)生認(rèn)識探索客觀世界中不同形狀物體存在的一般規(guī)律打下基礎(chǔ),對發(fā)展學(xué)生的空間觀念和幾何直覺有很大的幫助。
1、我所任教的班級,大部分學(xué)生來自農(nóng)村,由于自小獨立性較強,具有較強的理解能力和應(yīng)用能力,喜歡合作討論,對數(shù)學(xué)學(xué)習(xí)有較濃厚的興趣。大部分學(xué)生學(xué)習(xí)習(xí)慣和學(xué)習(xí)方式較好。
2、本節(jié)課讓學(xué)生通過實驗探索多邊形內(nèi)角和公式。在此之前學(xué)生對三角形、特殊四邊形的內(nèi)角和已經(jīng)有了一定的理解和認(rèn)識。估計學(xué)生在探究任意四邊形內(nèi)角和時會想到量、拼、分的方法,但是分割“多邊形為三角形”這一過程會是學(xué)生學(xué)習(xí)的難點,在探究的過程中教師要想辦法把難點分散,有利于學(xué)生對本課知識的學(xué)習(xí)和掌握。
新的課程標(biāo)準(zhǔn)注重學(xué)生經(jīng)歷觀察、操作、猜想、歸納等探索過程。根據(jù)新課標(biāo)和本節(jié)課的內(nèi)容特點我確定以下教學(xué)目標(biāo)及重點、難點。
【知識與技能】。
【數(shù)學(xué)思考】。
(1)通過測量,類比,推理等教學(xué)活動,探索多邊形的內(nèi)角和公式,感受數(shù)學(xué)思考過程的條理性,發(fā)展推理能力和語言表達能力。
(2)通過把多邊形轉(zhuǎn)化成三角形體會轉(zhuǎn)化思想在幾何中的運用,同時讓學(xué)生體會從特殊到一般的認(rèn)識問題的方法。
【解決問題】。
通過探索多邊形內(nèi)角和公式,讓學(xué)生嘗試從不同的角度尋求解決問題的方法,并能有效的解決問題。
【情感態(tài)度】。
1、通過動手實踐、相互間的交流,進一步激發(fā)學(xué)習(xí)熱情和求知欲望。
2、體驗猜想得到證實的成就感,在解題中感受生活中數(shù)學(xué)的存在,體驗數(shù)學(xué)充滿探索。并在探索過程中激發(fā)、培養(yǎng)學(xué)生的愛國主義熱情。
基于以上教學(xué)目標(biāo),我確定以下教學(xué)重難點:
【教學(xué)重點】。
【教學(xué)難點】。
探究多邊形內(nèi)角和時,如何把多邊形轉(zhuǎn)化成三角形。
因此,本節(jié)課我借助課件輔助教學(xué),可以更好的突破重難點,增強直觀效果,豐富學(xué)生的感性認(rèn)識,提高課堂效率。
本節(jié)課借鑒了美國教育家杜威的“在做中學(xué)”的理論和葉圣陶先生所倡導(dǎo)的“解放學(xué)生的手,解放學(xué)生的大腦,解放學(xué)生的時間”的思想,我確定如下教法和學(xué)法:
1、教學(xué)方法:
根據(jù)本節(jié)課的教學(xué)目標(biāo)、教材內(nèi)容以及學(xué)生的認(rèn)知特點,我采用啟發(fā)式、探索式教學(xué)方法,意在幫助學(xué)生通過觀察,自己動手,從實踐中獲得知識。整個探究學(xué)習(xí)的過程充滿了師生之間、學(xué)生之間的交流和互動,體現(xiàn)了教師是教學(xué)活動的組織者、引導(dǎo)者,而學(xué)生才是學(xué)習(xí)的主體。
2、學(xué)習(xí)方法:
利用學(xué)生的好奇心設(shè)疑,解疑,組織活潑互動、有效的教學(xué)活動,鼓勵學(xué)生積極參與,大膽猜想,使學(xué)生在自主探索和合作交流中理解和掌握本節(jié)課的內(nèi)容。
1、環(huán)節(jié)一:創(chuàng)設(shè)情景、引入新課。
情景:請學(xué)生觀察“上海世博園”的宣傳視頻。
從“情境認(rèn)知理論”得知:圖文加情境能有效提高課堂教學(xué)效率,而圖文和情境并用可使效率提高到300%。通過觀看上海世博園視頻,能激發(fā)學(xué)生的愛國主義熱情,并引導(dǎo)學(xué)生大膽提出問題,對建筑物的外觀抽象成已知的三角形、長方形、正方形等多邊形。提出問題:三角形的內(nèi)角和是多少?設(shè)計這個問題的目的是因為探索多邊形內(nèi)角和與邊數(shù)關(guān)系的根本方法是把多邊形轉(zhuǎn)化為多個三角形,因此喚醒學(xué)生已有知識“三角形內(nèi)角和等于180°”有助于解決后面的問題。接下來提出問題,正方形、長方形的內(nèi)角和是多少?學(xué)生回答后進入新課內(nèi)容,根據(jù)三角形的內(nèi)角和是個確定值,引導(dǎo)學(xué)生猜想任意四邊形的內(nèi)角和是多少?喚醒學(xué)生已有知識,將有助于本堂課問題的解決,也為后面習(xí)題作鋪墊。
2、環(huán)節(jié)二:合作交流、探索新知。
活動1:
猜一猜:圍繞“任意四邊形的內(nèi)角和等于多少度?”這一問題引導(dǎo)學(xué)生從正方形、長方形這兩個特殊的多邊形的內(nèi)角和,很容易猜測出四邊形的內(nèi)角和等于360度。
議一議:你是怎樣得到的?你能找到幾種方法?這個環(huán)節(jié)學(xué)生可能出現(xiàn)“度量”、“剪拼”、“作輔助線”等等甚至更多的方法。為此我又拋出問題:五、六、七邊形的內(nèi)角和怎么求?你發(fā)現(xiàn)了什么?通過這個問題讓學(xué)生自然過渡到用作輔助線的方法求多邊形的內(nèi)角和,同時也要告訴學(xué)生在測量和剪拼活動中可能會產(chǎn)生誤差,由此感受到作輔助線在解決幾何問題中的必要性。這一環(huán)節(jié)要給予學(xué)生充分的探究時間,鼓勵學(xué)生積極參與,合作交流,用自己的語言表達解決問題的方式方法,發(fā)展學(xué)生的語言表達能力與推理能力。
針對不同層次的學(xué)生,要適當(dāng)?shù)囊龑?dǎo)學(xué)生利用作輔助線的方法把多邊形轉(zhuǎn)化為三角形,鼓勵學(xué)生尋找多種分割形式,深入領(lǐng)會轉(zhuǎn)化的本質(zhì)——將四邊形轉(zhuǎn)化為三角形問題來解決。然后讓學(xué)生表達自己解決問題的方法,并用電腦演示四邊形分割成三角形的多種方法讓學(xué)生體驗數(shù)學(xué)活動充滿探索,體驗解決問題策略的多樣性。
想一想:這些分法有什么異同點?學(xué)生積極思考,大膽發(fā)言,教師給予適當(dāng)?shù)脑u價和鼓勵。教師在學(xué)生回答的基礎(chǔ)上小結(jié):借助輔助線把四邊形分割成幾個三角形分割的關(guān)鍵在于公共點的選取,并演示公共點在圖形內(nèi)、外、頂點處。利用三角形內(nèi)角和求得四邊形內(nèi)角和,這是數(shù)學(xué)學(xué)習(xí)中的一種常用轉(zhuǎn)化的思想方法。
活動2:
做一做:選一種你喜歡的上述分割的方法,類比求四邊形的內(nèi)角和方法求五邊形、六邊形、七邊形等的內(nèi)角和,讓學(xué)生再一次經(jīng)歷轉(zhuǎn)化的過程,加深對轉(zhuǎn)化思想的理解,通過增加圖形的復(fù)雜性,再一次經(jīng)歷轉(zhuǎn)化的過程,加深對轉(zhuǎn)化思想方法的.理解,體會由簡單到復(fù)雜,由特殊到一般的思想方法。
議一議:
問題1:對比上面探究四邊形內(nèi)角和的過程,你能得出五邊形的內(nèi)角和?六邊形的內(nèi)角和?
問題2:能否采用不同的分割方法來解決這些問題?
活動3:
嘗試完成第五列n邊形的探究。
但是學(xué)生有可能出現(xiàn)其它的解決問題的辦法,比如:由四邊形內(nèi)角和求五邊形內(nèi)角和,由五邊形內(nèi)角和再求六邊形內(nèi)角和,依次類推,邊數(shù)每增加1條內(nèi)角和就增加180°。但是這種方法給活動3公式的得出帶來困難。所以教師要因勢利導(dǎo),給學(xué)生正確的評價。在探索的過程中再一次培養(yǎng)學(xué)生的推理能力和表達能力,以及選擇解決問題的最佳方法的能力。
練一練:為了使學(xué)生達到對知識的鞏固與應(yīng)用,我特地設(shè)計了一組(5個)即時搶答題,通過這些題目學(xué)生當(dāng)堂訓(xùn)練、獨立計算,并根據(jù)學(xué)生都喜好競賽的特點,采用搶答式完成。運用所學(xué)公式解決問題并鞏固、理解、記憶公式。
搶答:
(1)過一個多邊形一個頂點有10條對角線,則這是邊形。
(2)過一個多邊形一個頂點的所有對角線將這個多邊形分成五個三角形,則這是邊形。
(5)一個多邊形的內(nèi)角和等于720度,那么這個多邊形是邊形。
3、環(huán)節(jié)三:例題講解,知識鞏固。
在此,我設(shè)計了2個例題,并對教科書上的例題作了較小的改動,書上的例1簡略講解,這個例題就是對四邊形的內(nèi)角和的簡單應(yīng)用,對于學(xué)生來說比較簡單;對于例2我把書后面的85頁習(xí)題第9題變成例題,這一道題目具有較好的典型性,特別是知識間的融會貫通,主要要求學(xué)生掌握:三角形、五邊形的內(nèi)角和,正五邊形等相關(guān)知識。
4、環(huán)節(jié)四:分組競賽、情感升華。
(1)智慧大比拼。
內(nèi)容:p87的練習(xí)分成2類。
通過新穎的形式激發(fā)學(xué)生的競爭意識和主動參與活動的熱情。學(xué)生利用當(dāng)堂所學(xué)的知識解決問題,鞏固本節(jié)知識。
(2)拓展探究。
小組合作探究,引導(dǎo)學(xué)生分析可能的每一種截取情況,根據(jù)不同截法得出不同結(jié)論。鼓勵學(xué)生積極參與思考、大膽嘗試、主動探討、勇于創(chuàng)新。讓學(xué)生深刻的感受到合作交流的重要性,體會成功的喜悅。
(3)情系世博。
引導(dǎo)學(xué)生利用多邊形的內(nèi)角和公式解釋小明的設(shè)想能否實現(xiàn)。讓學(xué)生感受到數(shù)學(xué)的趣味性,以及與實際生活之間的密切聯(lián)系,并激發(fā)學(xué)生的愛國之情。
5、環(huán)節(jié)五:暢所欲言、分享成果。
請學(xué)生談自己學(xué)習(xí)過程中的收獲,并整理自己參與數(shù)學(xué)活動的經(jīng)驗,回味成功的喜悅,形成良好的學(xué)習(xí)習(xí)慣,同時也是給學(xué)生正確地評價自己和他人表現(xiàn)的機會,這也是給教者本身一個反思提高的機會。通過這個環(huán)節(jié)使學(xué)生這節(jié)課所學(xué)的知識系統(tǒng)化,從感性認(rèn)識上升為理性認(rèn)識。
6、環(huán)節(jié)六:布置作業(yè)、課后提升。
(1)習(xí)題7。3第2題、第4題。
(2)選做題:用另外兩種作輔助線的方法證明多邊形內(nèi)角和定理。
采用分層布置作業(yè),讓不同水平的學(xué)生得到不同的發(fā)展,培養(yǎng)學(xué)生的思維靈活性及成就感,從而貫徹因材施教的原則。
評價學(xué)生,不僅僅是一個手段和結(jié)果,它對學(xué)生的人格、個性的發(fā)展有著極其重要的作用。新課程對課程的評價應(yīng)把握形成性、發(fā)展性評價和終結(jié)性評價相結(jié)合,在實踐中我打算在課堂上從以下幾個方面進行評價:
1、評價在學(xué)習(xí)中各種能力〈如表達、想象、動手、思維、自學(xué)能力等〉的發(fā)展情況。
2、評價學(xué)習(xí)過程中的創(chuàng)新表現(xiàn)。
3、評價在學(xué)習(xí)過程中對身邊事物、社會現(xiàn)實的關(guān)注程度。
評價必須最大限度地考慮最終結(jié)果,要以培養(yǎng)學(xué)生的榮譽感、自尊心和進取心為目的,使其產(chǎn)生獲取成功的動力。
最后,我的板書設(shè)計力求簡潔明了,便于學(xué)生觀察比較、歸納總結(jié),并體現(xiàn)教師的示范作用,突出本堂課的重難點,及主要的思想方法。
板書設(shè)計:
以上是我對本節(jié)課的設(shè)計說明,從說教材、說學(xué)情、說教法、說學(xué)法、說教學(xué)程序上說明這節(jié)課“教什么”和“怎么教”,并且闡明了“為什么要這樣教。我的說課到此結(jié)束,謝謝大家。
多邊形的內(nèi)角教案篇十四
教學(xué)內(nèi)容:
教學(xué)目標(biāo):
1、通過觀察、比較等方法,初步認(rèn)識四邊形、五邊形、六邊形等平面圖形。
2.參與對圖形的描、圍、折等實踐活動,體會圖形的變換,發(fā)展空間觀念。
3.在學(xué)習(xí)活動中積累對數(shù)學(xué)的興趣,培養(yǎng)交往、合作意識。
教學(xué)重點:
教學(xué)難點:
理解邊的概念明白圖形按邊的數(shù)量分類、命名的意義。
學(xué)生準(zhǔn)備:
文具、釘子板、橡皮筋、正方形紙。
教師準(zhǔn)備:
多媒體課件、釘子板、橡皮筋、多邊形卡片。
教學(xué)過程:
一、創(chuàng)設(shè)情境,導(dǎo)入新課。
今天我們繼續(xù)來研究圖形。
二、操作活動,探索新知。
(1)師指一個三角形,放大,瞧,這個是?你怎么知道的?
預(yù)設(shè)一:生:它有三個角。師:怪不得叫三角形的呢?除了三個角,還有什么?生:還有三個(條)邊。什么樣的邊?你能來指一指嗎?(學(xué)生點1、2、3)師:這條邊從哪里到哪里?你能完整地指一指嗎?師師范指(從這里開始,一條邊,兩條邊,三條邊),這三條邊緊緊地_____?(連在一起)師:連,這個字用得十分貼切,在數(shù)學(xué)上,可以換一個字,圍,讓我們一起伸出手指圍一個三角形。
預(yù)設(shè)二:生:它有三個(條)邊,你能指一指嗎?(1)同預(yù)設(shè)一。
(2)三角形是由幾條邊圍成的圖形?(三條邊)對,也可以叫它三邊形。
(3)機器人身上還有三角形嗎?在哪?師:對了,它們都是三角形???,這是他們的家,走,一起送他們回家吧!
(1)師:兩只小手真可愛!它們還是三角形嗎?為什么?像這樣由四條邊圍成的圖形是四邊形。
那一只手是什么圖形?為什么?讓我們一起來數(shù)一數(shù)。師:哦,他們都是有四條邊圍成的圖形,就是四邊形。讓我們一起把他們送回四邊形的家吧。
多邊形的內(nèi)角教案篇十五
教學(xué)目標(biāo)?。
知識技能。
通過探究,歸納出???。
數(shù)學(xué)思考。
1、?通過測量、類比、推理等數(shù)學(xué)活動,探索的公式,感受數(shù)學(xué)思考過程的條理性,發(fā)展推理能力和語言表達能力。
2、?通過把多邊形轉(zhuǎn)化成三角形體會轉(zhuǎn)化思想在幾何中的應(yīng)用,同時。
時讓學(xué)生體會從特殊到一般的認(rèn)識問題的方法。
3、?通過探索多邊形內(nèi)角和公式,讓學(xué)生逐步從實驗幾何過度到。
論證幾何。
解決問題。
通過探索多邊形內(nèi)角和公式,嘗試從不同角度尋求解決問題的方法并能有效的解決問題。
情感態(tài)度。
通過對生活中數(shù)學(xué)問題的探究,進一步提高學(xué)數(shù)學(xué)、用數(shù)學(xué)的意識,在自主探究、合作交流的過程中,體會數(shù)學(xué)的重要作用,感受數(shù)學(xué)活動的重要意義和合作成功的喜悅,提高學(xué)生學(xué)習(xí)的熱情。
重點。
難點。
在探索時,如何把多邊形轉(zhuǎn)化成三角形。
知識聯(lián)系。
多邊形的對角線和三角形的內(nèi)角和為本節(jié)課的知識做了鋪墊,本節(jié)課的內(nèi)容為多邊形的外角和做知識上的準(zhǔn)備。
知識背景。
對多邊形在生活中有所認(rèn)識。
學(xué)習(xí)興趣。
通過探究過程更能激發(fā)學(xué)生學(xué)習(xí)的興趣。
教學(xué)工具。
三角板和幾何畫板。
教學(xué)流程設(shè)計。
活動流程圖。
活動內(nèi)容和目的。
活動一,教師和學(xué)生任意畫幾個多邊形,用量角器測其內(nèi)角和。
活動四、探索任意公式。
活動六、小結(jié)和布置作業(yè)?。
通過分組測量,得出這幾個。
通過用不同方法分割四邊形為三角形,探索四邊形的內(nèi)角和。
通過類比四邊形內(nèi)角和的得出方法,探索其他,發(fā)展學(xué)生的推理能力。
通過畫正八邊形體會和應(yīng)用。
梳理所學(xué)知識,達到鞏固發(fā)展和提高的目的。
教學(xué)過程?設(shè)計。
問題與情景。
師生行為。
設(shè)計意圖。
設(shè)計情景:什么是正多邊形?
正八邊形有什么特點?
你會畫邊長為3cm的正八邊形嗎?
學(xué)生思考并回答問題。
學(xué)生不會畫八邊形,畫八邊形需要知道它的每一個內(nèi)角,怎么就能知道八邊形的每一個內(nèi)角,就是今天要解決的問題,以此來激發(fā)學(xué)生的學(xué)習(xí)興趣和求知欲。
活動1、
在練習(xí)本畫出任意四邊形,五邊星,六邊形,七邊形。
通過測量猜想每一個,感受數(shù)學(xué)的可實驗性,感受數(shù)學(xué)由特殊到一般的研究思想。
活動2(重點)(難點)。
學(xué)生在練習(xí)本上把一個四邊形分割成幾個三角形,教師在黑板上畫幾個四邊形,叫幾個學(xué)生來分割,從而用推理求四邊形的內(nèi)角和,師生共同討論比較那一種分割方法比較合理有優(yōu)點。
通過分割及推理,培養(yǎng)學(xué)生用推理論證來說明數(shù)學(xué)結(jié)論的能力,同時也培養(yǎng)學(xué)生比較和歸納的能力。
通過分割及推理,進一步培養(yǎng)學(xué)生的解決問題和推理的能力。
活動4、探索任意。
把活動2和3中的結(jié)論寫下來,進行對比分析,進一步猜想和推導(dǎo)任意,教師作總結(jié)性的結(jié)論,并且用動畫演示多邊形隨著邊數(shù)的增加其內(nèi)角和的變化過程。
活動5、畫一個邊長為3cm的八邊形。
讓學(xué)生在練習(xí)本上畫一個邊長為3cm的八邊形,教師進行評價和展示。
活動6、小結(jié)和布置作業(yè)?。
師生共同回顧本節(jié)所學(xué)過的內(nèi)容。
【本文地址:http://www.aiweibaby.com/zuowen/17713764.html】