教案可以幫助教師提前設(shè)計(jì)和組織教學(xué)內(nèi)容和活動(dòng)。引入一些互動(dòng)環(huán)節(jié),促進(jìn)學(xué)生的思考和互動(dòng),激發(fā)他們的學(xué)習(xí)潛力。接下來將為大家推薦一些教案范文,希望能對(duì)大家的教學(xué)工作有所啟發(fā)。
初二數(shù)學(xué)教案勾股定理篇一
本節(jié)將利用勾股定理及其逆定理解決一些具體的實(shí)際問題,其中需要學(xué)生了解空間圖形、對(duì)一些空間圖形進(jìn)行展開、折疊等活動(dòng).學(xué)生在學(xué)習(xí)七年級(jí)上第一章時(shí)對(duì)生活中的立體圖形已經(jīng)有了一定的認(rèn)識(shí),并從事過相應(yīng)的實(shí)踐活動(dòng),因而學(xué)生已經(jīng)具備解決本課問題所需的知識(shí)基礎(chǔ)和活動(dòng)經(jīng)驗(yàn)基礎(chǔ).
二、教學(xué)任務(wù)分析。
本節(jié)是義務(wù)教育課程標(biāo)準(zhǔn)北師大版實(shí)驗(yàn)教科書八年級(jí)(上)第一章《勾股定理》第3節(jié).具體內(nèi)容是運(yùn)用勾股定理及其逆定理解決簡(jiǎn)單的實(shí)際問題.當(dāng)然,在這些具體問題的解決過程中,需要經(jīng)歷幾何圖形的抽象過程,需要借助觀察、操作等實(shí)踐活動(dòng),這些都有助于發(fā)展學(xué)生的分析問題、解決問題能力和應(yīng)用意識(shí);一些探究活動(dòng)具體一定的難度,需要學(xué)生相互間的合作交流,有助于發(fā)展學(xué)生合作交流的能力.
本節(jié)課的教學(xué)目標(biāo)是:
1.通過觀察圖形,探索圖形間的關(guān)系,發(fā)展學(xué)生的空間觀念.
2.在將實(shí)際問題抽象成數(shù)學(xué)問題的過程中,提高分析問題、解決問題的能力及滲透數(shù)學(xué)建模的思想.
3.在利用勾股定理解決實(shí)際問題的過程中,體驗(yàn)數(shù)學(xué)學(xué)習(xí)的實(shí)用性.
利用數(shù)學(xué)中的建模思想構(gòu)造直角三角形,利用勾股定理及逆定理,解決實(shí)際問題是本節(jié)課的重點(diǎn)也是難點(diǎn).
四、教法學(xué)法。
1.教學(xué)方法。
引導(dǎo)—探究—?dú)w納。
本節(jié)課的教學(xué)對(duì)象是初二學(xué)生,他們的參與意識(shí)教強(qiáng),思維活躍,為了實(shí)現(xiàn)本節(jié)課的教學(xué)目標(biāo),我力求以下三個(gè)方面對(duì)學(xué)生進(jìn)行引導(dǎo):
(1)從創(chuàng)設(shè)問題情景入手,通過知識(shí)再現(xiàn),孕育教學(xué)過程;。
(2)從學(xué)生活動(dòng)出發(fā),順勢(shì)教學(xué)過程;。
(3)利用探索研究手段,通過思維深入,領(lǐng)悟教學(xué)過程.
2.課前準(zhǔn)備。
教具:教材、電腦、多媒體課件.
學(xué)具:用矩形紙片做成的圓柱、剪刀、教材、筆記本、課堂練習(xí)本、文具.
五、教學(xué)過程分析。
本節(jié)課設(shè)計(jì)了七個(gè)環(huán)節(jié).第一環(huán)節(jié):情境引入;第二環(huán)節(jié):合作探究;第三環(huán)節(jié):做一做;第四環(huán)節(jié):小試牛刀;第五環(huán)節(jié):舉一反三;第六環(huán)節(jié):交流小結(jié);第七環(huán)節(jié):布置作業(yè).
初二數(shù)學(xué)教案勾股定理篇二
理解并掌握勾股定理的逆定理,會(huì)應(yīng)用定理判定直角三角形;理解勾股定理與勾股定理逆定理的區(qū)別與聯(lián)系;理解原命題和逆命題的概念,知道二者的關(guān)系及二者真假性的關(guān)系。
【過程與方法】。
經(jīng)歷得出猜想、推理證明的過程,提升自主探究、分析問題、解決問題的能力。
【情感、態(tài)度與價(jià)值觀】。
體會(huì)事物之間的聯(lián)系,感受幾何的魅力。
【重點(diǎn)】勾股定理的逆定理及其證明。
【難點(diǎn)】勾股定理的逆定理的證明。
(一)導(dǎo)入新課。
復(fù)習(xí)勾股定理,分清其題設(shè)和結(jié)論。
提問學(xué)生畫直角三角形的方法(可用尺類工具),然后要求不能用繩子以外的工具。
出示古埃及人利用等長(zhǎng)的3、4、5個(gè)繩結(jié)間距畫直角三角形的方法,以其中蘊(yùn)含何道理為切入點(diǎn)引出課題。
(二)講解新知。
請(qǐng)學(xué)生思考3,4,5之間的關(guān)系,結(jié)合勾股定理的學(xué)習(xí)經(jīng)驗(yàn)明確。
出示數(shù)據(jù)2.5cm,6cm,6.5cm,請(qǐng)學(xué)生計(jì)算驗(yàn)證數(shù)據(jù)滿足上述平方和關(guān)系,并畫出相應(yīng)邊長(zhǎng)的三角形檢驗(yàn)是否為直角三角形。
學(xué)生活動(dòng):同桌兩人一組,將三邊換成其他滿足上述平方和關(guān)系的數(shù)據(jù),如4cm,7.5cm,8.5cm,畫出相應(yīng)邊長(zhǎng)的三角形檢驗(yàn)是否為直角三角形。
初二數(shù)學(xué)教案勾股定理篇三
一、學(xué)情分析:
知識(shí)技能基礎(chǔ):學(xué)生在小學(xué)已經(jīng)學(xué)過分?jǐn)?shù)的乘除法,掌握了分?jǐn)?shù)的乘除法法則,在學(xué)習(xí)分式的乘除法法則時(shí)可通過與分?jǐn)?shù)的乘除法法則進(jìn)行類比學(xué)習(xí)。在前面學(xué)習(xí)了整式乘法和因式分解,為分式的運(yùn)算和結(jié)果的化簡(jiǎn)奠定基礎(chǔ)。
能力基礎(chǔ):在過去的數(shù)學(xué)學(xué)習(xí)過程中,學(xué)生已初步具備觀察、分析、歸納的能力和類比的學(xué)習(xí)方法。
二、教學(xué)目標(biāo):
知識(shí)目標(biāo):1、分式的乘除運(yùn)算法則。
2、會(huì)進(jìn)行簡(jiǎn)單的分式的乘除法運(yùn)算。
能力目標(biāo):1、類比分?jǐn)?shù)的乘除運(yùn)算法則,探索分式的乘除運(yùn)算法則。
2、能解決一些與分式有關(guān)的簡(jiǎn)單的實(shí)際問題。
情感目標(biāo):1、通過師生討論、交流,培養(yǎng)學(xué)生合作探究的意識(shí)和能力。
2、培養(yǎng)學(xué)生的創(chuàng)新意識(shí)和應(yīng)用意識(shí)。
三、教學(xué)重點(diǎn)、難點(diǎn)。
重點(diǎn):分式乘除法的法則及應(yīng)用。
難點(diǎn):分子、分母是多項(xiàng)式的分式的乘除法的運(yùn)算。
三、教學(xué)過程:
第一環(huán)節(jié)復(fù)習(xí)舊知識(shí)。
復(fù)習(xí)小學(xué)學(xué)的分?jǐn)?shù)乘除法法則,
活動(dòng)目的:
復(fù)習(xí)小學(xué)學(xué)過的分?jǐn)?shù)的乘除法運(yùn)算,為學(xué)習(xí)分式乘除法的法則做準(zhǔn)備。
第二環(huán)節(jié)引入新課。
活動(dòng)內(nèi)容。
你能總結(jié)分式乘除法的法則嗎?與同伴交流。
分式的乘除法的法則:。
兩個(gè)分式相乘,把分子相乘的積作為積的分子,把分母相乘的積作為積的分母;。
兩個(gè)分式相除,把除式的分子和分母顛倒位置后再與被除式相乘.
活動(dòng)目的:
讓學(xué)生觀察運(yùn)算,通過小組討論交流,并與分?jǐn)?shù)的乘除法的法則類比,讓學(xué)生自己總結(jié)出分式的乘除法的法則。
第三環(huán)節(jié)知識(shí)運(yùn)用。
活動(dòng)內(nèi)容。
例題1:。
(1)(2)例題2。
(1)(2)活動(dòng)目的:
通過例題講解,使學(xué)生會(huì)根據(jù)法則,理解每一步的算理,從而進(jìn)行簡(jiǎn)單的分式的乘除法運(yùn)算,并能解決一些與分式有關(guān)的簡(jiǎn)單的實(shí)際問題,增強(qiáng)學(xué)生代數(shù)推理的能力與應(yīng)用意識(shí)。需要給學(xué)生強(qiáng)調(diào)的是分式運(yùn)算的結(jié)果通常要化成最簡(jiǎn)分式或整式,對(duì)于這一點(diǎn),很多學(xué)生在開始學(xué)習(xí)分式計(jì)算時(shí)往往沒有注意到結(jié)果要化簡(jiǎn)。
第四環(huán)節(jié)走進(jìn)中考。
(2012.漳州)第五環(huán)節(jié)課時(shí)小結(jié)。
活動(dòng)內(nèi)容:
1.分式的乘除法的法則。
2.分式運(yùn)算的結(jié)果通常要化成最簡(jiǎn)分式或整式.
3.學(xué)會(huì)類比的數(shù)學(xué)方法。
第六環(huán)節(jié)當(dāng)堂檢測(cè)。
初二數(shù)學(xué)教案勾股定理篇四
一、整個(gè)課堂設(shè)計(jì)完整、結(jié)構(gòu)緊湊、邏輯嚴(yán)密、前后呼應(yīng),準(zhǔn)備得比較充分,能引導(dǎo)學(xué)生循序漸進(jìn),思路很清晰,講解也很到位。
二、不搞題海戰(zhàn)術(shù),精講精練,舉一反三、觸類旁通。題型設(shè)計(jì)選題有針對(duì)性、典型性、層次性,亦有梯度,兩位老師都設(shè)計(jì)了分層練習(xí),作業(yè)分層設(shè)計(jì)精巧,適合滿足不同層次學(xué)生的要求。
三、兩位老師引入新課都很自然,兩位老師都能從學(xué)生的實(shí)際水平出發(fā),面向全體學(xué)生,因材施教,分層次開展教學(xué)工作,全面提高學(xué)習(xí)效率。
教師在整個(gè)教學(xué)過程中老師敢于讓學(xué)生探索、體驗(yàn),給了學(xué)生以最大的自由運(yùn)用和探索規(guī)律的開闊的地帶。特別是新塘三中的曾老師在教學(xué)中,通過教師有序的導(dǎo)、學(xué)生積極的學(xué)習(xí)參與、體驗(yàn)、討論與交流,培養(yǎng)學(xué)生具有主動(dòng)、負(fù)責(zé)、開拓、創(chuàng)新的個(gè)性特征和科學(xué)的思維方式。將知識(shí)與技能,過程與方法,情感態(tài)度和價(jià)值觀完美結(jié)合。在整個(gè)教學(xué)活動(dòng)中始終面對(duì)全體學(xué)生,讓每一個(gè)學(xué)生都有收獲,都得到成功的體驗(yàn),充分體現(xiàn)了全面育人的新課標(biāo)精神。建議新塘二中老師盡量少講,讓學(xué)生多思,多想,多做。......
初二數(shù)學(xué)教案勾股定理篇五
從知識(shí)結(jié)構(gòu)上看,勾股定理揭示了直角三角形三條邊之間的數(shù)量關(guān)系,為后續(xù)學(xué)習(xí)解直角三角形提供重要的理論依據(jù),在現(xiàn)實(shí)生活中有著廣泛的應(yīng)用。
從學(xué)生認(rèn)知結(jié)構(gòu)上看,它把形的特征轉(zhuǎn)化成數(shù)量關(guān)系,架起了幾何與代數(shù)之間的橋梁;
勾股定理又是對(duì)學(xué)生進(jìn)行愛國(guó)主義教育的良好素材,因此具有相當(dāng)重要的地位和作用。
根據(jù)數(shù)學(xué)新課程標(biāo)準(zhǔn)以及八年級(jí)學(xué)生的認(rèn)知水平我確定如下學(xué)習(xí)目標(biāo):知識(shí)技能、數(shù)學(xué)思考、問題解決、情感態(tài)度。其中【情感態(tài)度】方面,以我國(guó)數(shù)學(xué)文化為主線,激發(fā)學(xué)生熱愛祖國(guó)悠久文化的情感。
(二)重點(diǎn)與難點(diǎn)。
為變被動(dòng)接受為主動(dòng)探究,我確定本節(jié)課的重點(diǎn)為:勾股定理的探索過程。限于八年級(jí)學(xué)生的思維水平,我將面積法(拼圖法)發(fā)現(xiàn)勾股定理確定為本節(jié)課的難點(diǎn),我將引導(dǎo)學(xué)生動(dòng)手實(shí)驗(yàn)突出重點(diǎn),合作交流突破難點(diǎn)。
初二數(shù)學(xué)教案勾股定理篇六
本節(jié)課探究體驗(yàn)貫穿始終,展示交流貫穿始終,習(xí)慣養(yǎng)成貫穿始終,情感教育貫穿始終,文化育人貫穿始終。
采用“七巧板”代替教材中“畢達(dá)哥拉斯地板磚”利用我國(guó)傳統(tǒng)文化引入課題,趙爽弦圖證明定理,符合本節(jié)課以我國(guó)數(shù)學(xué)文化為主線這一設(shè)計(jì)理念,展現(xiàn)了我國(guó)古代數(shù)學(xué)璀璨的歷史,激發(fā)學(xué)生再創(chuàng)數(shù)學(xué)輝煌的愿望。
初二數(shù)學(xué)教案勾股定理篇七
勾股定理是揭示三角形三條邊數(shù)量關(guān)系的一條非常重要的性質(zhì),也是幾何中最重要的定理之一。它是解直角三角形的主要依據(jù)之一,同時(shí)在實(shí)際生活中具有廣泛的用途,“數(shù)學(xué)源于生活,又用于生活”正是這章書所體現(xiàn)的主要思想。教材在編寫時(shí)注意培養(yǎng)學(xué)生的動(dòng)手操作能力和分析問題的能力,通過實(shí)際操作,使學(xué)生獲得較為直觀的印象;通過聯(lián)系比較、探索、歸納,幫助學(xué)生理解勾股定理,以利于進(jìn)行正確的應(yīng)用。
本節(jié)教科書從畢達(dá)哥拉斯觀察地面發(fā)現(xiàn)勾股定理的傳說談起,讓學(xué)生通過觀察計(jì)算一些以直角三角形兩條直角邊為邊長(zhǎng)的小正方形的面積與以斜邊為邊長(zhǎng)的正方形的面積的關(guān)系,發(fā)現(xiàn)兩直角邊為邊長(zhǎng)的小正方形的面積的和,等于以斜邊為邊長(zhǎng)的正方形的面積,從而發(fā)現(xiàn)勾股定理,這時(shí)教科書以命題的形式呈現(xiàn)了勾股定理。關(guān)于勾股定理的證明方法有很多,教科書正文中介紹了我國(guó)古人趙爽的證法。之后,通過三個(gè)探究欄目,研究了勾股定理在解決實(shí)際問題和解決數(shù)學(xué)問題中的應(yīng)用,使學(xué)生對(duì)勾股定理的作用有一定的認(rèn)識(shí)。
一、知識(shí)與技能。
1、探索直角三角形三邊關(guān)系,掌握勾股定理,發(fā)展幾何思維。
2、應(yīng)用勾股定理解決簡(jiǎn)單的實(shí)際問題。
3學(xué)會(huì)簡(jiǎn)單的合情推理與數(shù)學(xué)說理。
二、過程與方法。
引入兩段中西關(guān)于勾股定理的史料,激發(fā)同學(xué)們的興趣,引發(fā)同學(xué)們的思考。通過動(dòng)手操作探索與發(fā)現(xiàn)直角三角形三邊關(guān)系,經(jīng)歷小組協(xié)作與討論,進(jìn)一步發(fā)展合作交流能力和數(shù)學(xué)表達(dá)能力,并感受勾股定理的應(yīng)用知識(shí)。
三、情感與態(tài)度目標(biāo)。
通過對(duì)勾股定理歷史的了解,感受數(shù)學(xué)文化,激發(fā)學(xué)習(xí)興趣;在探究活動(dòng)中,學(xué)生親自動(dòng)手對(duì)勾股定理進(jìn)行探索與驗(yàn)證,培養(yǎng)學(xué)生的合作交流意識(shí)和探索精神,以及自主學(xué)習(xí)的能力。
四、重點(diǎn)與難點(diǎn)。
一、創(chuàng)設(shè)情景,揭示課題。
1、教師展示圖片并介紹第一情景。
以中國(guó)最早的一部數(shù)學(xué)著作——《周髀算經(jīng)》的開頭為引,介紹周公向商高請(qǐng)教數(shù)學(xué)知識(shí)時(shí)的對(duì)話,為勾股定理的出現(xiàn)埋下伏筆。
周公問:“竊聞乎大夫善數(shù)也,請(qǐng)問古者包犧立周天歷度.夫天不可階而升,地不可得尺寸而度,請(qǐng)問數(shù)安從出?”商高答:“數(shù)之法出于圓方,圓出于方,方出于矩,矩出九九八十一,故折矩以為勾廣三,股修四,徑隅五。既方其外,半之一矩,環(huán)而共盤.得成三、四、五,兩矩共長(zhǎng)二十有五,是謂積矩。故禹之所以治天下者,此數(shù)之所由生也。”
2、教師展示圖片并介紹第二情景。
畢達(dá)哥拉斯是古希臘著名的數(shù)學(xué)家。相傳在2500年以前,他在朋友家做客時(shí),發(fā)現(xiàn)朋友家用地磚鋪成的地面反映了直角三角形的某種特性。
二、師生協(xié)作,探究問題。
1、現(xiàn)在請(qǐng)你也動(dòng)手?jǐn)?shù)一下格子,你能有什么發(fā)現(xiàn)嗎?
2、等腰直角三角形是特殊的直角三角形,一般的直角三角形是否也有這樣的特點(diǎn)呢?
3、你能得到什么結(jié)論嗎?
三、得出命題。
勾股定理:如果直角三角形的兩直角邊長(zhǎng)分別為a、b,斜邊長(zhǎng)為c,那么,即直角三角形兩直角邊的平方和等于斜邊的平方。解釋:由于我國(guó)古代把直角三角形中較短的直角邊稱為勾,較長(zhǎng)的邊稱為股,斜邊稱為弦,所以,把它叫做勾股定理。
第一種方法:邊長(zhǎng)為的正方形可以看作是由4個(gè)直角邊分別為、,斜邊為的直角三角形圍在外面形成的。因?yàn)檫呴L(zhǎng)為的正方形面積加上4個(gè)直角三角形的面積等于外圍正方形的面積,所以可以列出等式,化簡(jiǎn)得。
第二種方法:邊長(zhǎng)為的正方形可以看作是由4個(gè)直角邊分別為、,斜邊為的。
角三角形拼接形成的(虛線表示),不過中間缺出一個(gè)邊長(zhǎng)為的正方形“小洞”。
因?yàn)檫呴L(zhǎng)為的正方形面積等于4個(gè)直角三角形的面積加上正方形“小洞”的面積,所以可以列出等式,化簡(jiǎn)得。
這種證明方法很簡(jiǎn)明,很直觀,它表現(xiàn)了我國(guó)古代數(shù)學(xué)家趙爽高超的證題思想和對(duì)數(shù)學(xué)的鉆研精神,是我們中華民族的驕傲。
五、應(yīng)用舉例,拓展訓(xùn)練,鞏固反饋。
勾股定理的靈活運(yùn)用勾股定理在實(shí)際的生產(chǎn)生活當(dāng)中有著廣泛的應(yīng)用。勾股定理的發(fā)現(xiàn)和使用解決了許多生活中的問題,今天我們就來運(yùn)用勾股定理解決一些問題,你可以嗎?試一試。
六、歸納總結(jié)。
2、方法歸納:數(shù)方格看圖找關(guān)系,利用面積不變的方法。用直角三角形三邊表示正方形的面積觀察歸納注意畫一個(gè)直角三角形表示正方形面積,再次驗(yàn)證自己的發(fā)現(xiàn)。
七、討論交流。
讓學(xué)生發(fā)表自己的意見,提出他們模糊不清的概念,給他們一個(gè)梳理知識(shí)的機(jī)會(huì),通過提示性的引導(dǎo),讓學(xué)生對(duì)勾股定理的概念豁然開朗,為后面勾股定理的應(yīng)用打下基礎(chǔ)。
我們班的同學(xué)很聰明。大家很快就通過數(shù)格子發(fā)現(xiàn)了勾股定理的規(guī)律。還有什么地方不懂的嗎?跟大家一起來交流一下。請(qǐng)同學(xué)們課后在反思天地中都發(fā)表一下自己的學(xué)習(xí)心得。
初二數(shù)學(xué)教案勾股定理篇八
教材分析:勾股定理是直角三角形的重要性質(zhì),它把三角形有一個(gè)直角的"形"的特點(diǎn),轉(zhuǎn)化為三邊之間的"數(shù)"的關(guān)系,它是數(shù)形結(jié)合的典范。它可以解決許多直角三角形中的計(jì)算問題,它是直角三角形特有的性質(zhì),是初中數(shù)學(xué)教學(xué)內(nèi)容重點(diǎn)之一。本節(jié)課的重點(diǎn)是發(fā)現(xiàn)勾股定理,難點(diǎn)是說明勾股定理的正確性。
學(xué)生分析:
1、考慮到三角尺學(xué)生天天在用,較為熟悉,但真正能仔細(xì)研究過三角尺的同學(xué)并不多,通過這樣的情景設(shè)計(jì),能非常簡(jiǎn)單地將學(xué)生的注意力引向本節(jié)課的本質(zhì)。
2、以與勾股定理有關(guān)的人文歷史知識(shí)為背景展開對(duì)直角三角形三邊關(guān)系的討論,能激發(fā)學(xué)生的學(xué)習(xí)興趣。
設(shè)計(jì)理念:本教案以學(xué)生手中舞動(dòng)的三角尺為知識(shí)背景展開,以勾股定理在古今中外的發(fā)展史為主線貫穿課堂始終,讓學(xué)生對(duì)勾股定理的發(fā)展過程有所了解,讓他們感受勾股定理的豐富文化內(nèi)涵,體驗(yàn)勾股定理的探索和運(yùn)用過程,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,特別是通過向?qū)W生介紹我國(guó)古代在勾股定理研究和運(yùn)用方面的成就,激發(fā)學(xué)生熱愛祖國(guó),熱愛祖國(guó)悠久文化的思想感情,培養(yǎng)他們的民族自豪感和探究創(chuàng)新的精神。
教學(xué)目標(biāo):
1、經(jīng)歷用面積割、補(bǔ)法探索勾股定理的過程,培養(yǎng)學(xué)生主動(dòng)探究意識(shí),發(fā)展合理推理能力,體現(xiàn)數(shù)形結(jié)合思想。
2、經(jīng)歷用多種割、補(bǔ)圖形的方法驗(yàn)證勾股定理的過程,發(fā)展用數(shù)學(xué)的眼光觀察現(xiàn)實(shí)世界和有條理地思考能力以及語言表達(dá)能力等,感受勾股定理的文化價(jià)值。
3、培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和愛國(guó)熱情。
4、欣賞設(shè)計(jì)圖形美。
教學(xué)準(zhǔn)備階段:
學(xué)生準(zhǔn)備:正方形網(wǎng)格紙若干,全等的直角三角形紙片若干,彩筆、直角三角尺、鉛筆等。
老師準(zhǔn)備:畢達(dá)哥拉斯、趙爽、劉徽等證明勾股定理的圖片以及其它有關(guān)人物歷史資料等投影圖片。
(一)引入。
同學(xué)們,當(dāng)你每天手握三角尺繪制自己的宏偉藍(lán)圖時(shí),你是否想過:他們的邊有什么關(guān)系呢?今天我們來探索這一小秘密。(板書課題:探索直角三角形三邊關(guān)系)。
(二)實(shí)驗(yàn)探究。
設(shè)網(wǎng)格正方形的邊長(zhǎng)為1,直角三角形的直角邊分別為a、b,斜邊為c,觀察并計(jì)算每個(gè)正方形的面積,以四人小組為單位填寫下表:
(討論難點(diǎn):以斜邊為邊的正方形的面積找法)。
交流后得出一般結(jié)論:(用關(guān)于a、b、c的式子表示)。
(三)探索所得結(jié)論的正確性。
當(dāng)直角三角形的直角邊分別為a、b,斜邊為c時(shí),是否一定成立?
1、指導(dǎo)學(xué)生運(yùn)用拼圖、或正方形網(wǎng)格紙構(gòu)造或設(shè)計(jì)合理分割(或補(bǔ)全)圖形,去探索本結(jié)論的正確性:(以四人小組為單位進(jìn)行)。
在學(xué)生所創(chuàng)作圖形中選擇有代表性的割、補(bǔ)圖,展示出來交流講解,并引導(dǎo)學(xué)生進(jìn)行說理:
如圖2(用補(bǔ)的方法說明)。
師介紹:(出示圖片)畢達(dá)哥拉斯,公元前約500年左右,古西臘一位哲學(xué)家、數(shù)學(xué)家。一天,他應(yīng)邀到一位朋友家做客,他一進(jìn)朋友家門就被朋友家的豪華的方形大理石地磚的形狀深深吸引住了,于是他立刻找來尺子和筆又量又畫,他發(fā)現(xiàn)以每塊大理石地磚的相鄰兩直角邊向三角形外作正方形,它們的面積和等于以這塊大理石地磚的對(duì)角線為邊向形外作正方形的面積。于是他回到家里立刻對(duì)他的這一發(fā)現(xiàn)進(jìn)行了探究證明……,終獲成功。后來西方人們?yōu)榱思o(jì)念他的這一發(fā)現(xiàn),將這一定理命名為"畢達(dá)哥拉斯定理"。1952年,希臘政府為了紀(jì)念這位偉大的數(shù)學(xué)家,特別選用他設(shè)計(jì)的這種圖形為主圖發(fā)行了一枚紀(jì)念郵票。(見課本52頁彩圖2—1,欣賞圖片)。
如圖3(用割的方法去探索)。
師介紹:(出示圖片)中國(guó)古代數(shù)學(xué)家們很早就發(fā)現(xiàn)并運(yùn)用這個(gè)結(jié)論。早在公元前2000年左右,大禹治水時(shí)期,就曾經(jīng)用過此方法測(cè)量土地的`等高差,公元前1100年左右,西周的數(shù)學(xué)家商高就曾用"勾三、股四、弦五"測(cè)量土地,他們對(duì)這一結(jié)論的運(yùn)用至少比古希臘人早500多年。公元200年左右,三國(guó)時(shí)期吳國(guó)數(shù)學(xué)家趙爽曾構(gòu)造此圖驗(yàn)證了這一結(jié)論的正確性。他的這個(gè)證明,可謂別具匠心,極富創(chuàng)新意識(shí),他用幾何圖形的割、來證明代數(shù)式之間的相等關(guān)系,既嚴(yán)密,又直觀,為中國(guó)古代以"形"證"數(shù)",形、數(shù)統(tǒng)一的獨(dú)特風(fēng)格樹立了一個(gè)典范。他是我國(guó)有記載以來第一個(gè)證明這一結(jié)論的數(shù)學(xué)家。我國(guó)數(shù)學(xué)家們?yōu)榱思o(jì)念我國(guó)在這方面的數(shù)學(xué)成就,將這一結(jié)論命名為"勾股定理"。(點(diǎn)題)。
20xx年,世界數(shù)學(xué)家大會(huì)在中國(guó)北京召開,當(dāng)時(shí)選用這個(gè)圖案作為會(huì)場(chǎng)主圖,它標(biāo)志著我國(guó)古代數(shù)學(xué)的輝煌成就。(見課本50頁彩圖,欣賞圖片)。
如圖4(構(gòu)造新圖形的方法去探索)。
1、繼續(xù)收集、整理有關(guān)勾股定理的證明方的探索問題并交流。
初二數(shù)學(xué)教案勾股定理篇九
教學(xué)方法葉圣陶說過“教師之為教,不在全盤授予,而在相機(jī)誘導(dǎo)。”因此教師利用幾何直觀提出問題,引導(dǎo)學(xué)生由淺入深的探索,設(shè)計(jì)實(shí)驗(yàn)讓學(xué)生進(jìn)行驗(yàn)證,感悟其中所蘊(yùn)涵的思想方法。
學(xué)法指導(dǎo)為把學(xué)習(xí)的主動(dòng)權(quán)還給學(xué)生,教師鼓勵(lì)學(xué)生采用動(dòng)手實(shí)踐,自主探索、合作交流的學(xué)習(xí)方法,讓學(xué)生親自感知體驗(yàn)知識(shí)的形成過程。
初二數(shù)學(xué)教案勾股定理篇十
例1 某數(shù)的3倍減2等于某數(shù)與4的和,求某數(shù)、
(首先,用算術(shù)方法解,由學(xué)生回答,教師板書)
解法1:(4+2)÷(3-1)=3、
答:某數(shù)為3、
(其次,用代數(shù)方法來解,教師引導(dǎo),學(xué)生口述完成)
解法2:設(shè)某數(shù)為x,則有3x-2=x+4、
解之,得x=3、
答:某數(shù)為3、
師生共同分析:
1、本題中給出的已知量和未知量各是什么?
2、已知量與未知量之間存在著怎樣的相等關(guān)系?(原來重量-運(yùn)出重量=剩余重量)
上述分析過程可列表如下:
解:設(shè)原來有x千克面粉,那么運(yùn)出了15%x千克,由題意,得
x-15%x=42 500,
所以 x=50 000、
答:原來有 50 000千克面粉、
(還有,原來重量=運(yùn)出重量+剩余重量;原來重量-剩余重量=運(yùn)出重量)
教師應(yīng)指出:
(2)例2的解方程過程較為簡(jiǎn)捷,同學(xué)應(yīng)注意模仿、
依據(jù)例2的分析與解答過程,首先請(qǐng)同學(xué)們思考列一元一次方程解應(yīng)用題的方法和步驟;然后,采取提問的方式,進(jìn)行反饋;最后,根據(jù)學(xué)生總結(jié)的情況,教師總結(jié)如下:
(2)根據(jù)題意找出能夠表示應(yīng)用題全部含義的一個(gè)相等關(guān)系、(這是關(guān)鍵一步);
(4)求出所列方程的解;
(仿照例2的分析方法分析本題,如學(xué)生在某處感到困難,教師應(yīng)做適當(dāng)點(diǎn)撥、解答過程請(qǐng)一名學(xué)生板演,教師巡視,及時(shí)糾正學(xué)生在書寫本題時(shí)可能出現(xiàn)的各種錯(cuò)誤、并嚴(yán)格規(guī)范書寫格式)
解:設(shè)第一小組有x個(gè)學(xué)生,依題意,得
3x+9=5x-(5-4),
解這個(gè)方程: 2x=10,
所以 x=5、
其蘋果數(shù)為 3× 5+9=24、
答:第一小組有5名同學(xué),共摘蘋果24個(gè)、
學(xué)生板演后,引導(dǎo)學(xué)生探討此題是否可有其他解法,并列出方程、
(設(shè)第一小組共摘了x個(gè)蘋果,則依題意,得 )
3、某工廠女工人占全廠總?cè)藬?shù)的 35%,男工比女工多 252人,求全廠總?cè)藬?shù)、
首先,讓學(xué)生回答如下問題:
1、本節(jié)課學(xué)習(xí)了哪些內(nèi)容?
2、列一元一次方程解應(yīng)用題的方法和步驟是什么?
3、在運(yùn)用上述方法和步驟時(shí)應(yīng)注意什么?
依據(jù)學(xué)生的回答情況,教師總結(jié)如下:
(2)以上步驟同學(xué)應(yīng)在理解的基礎(chǔ)上記憶、
1、買3千克蘋果,付出10元,找回3角4分、問每千克蘋果多少錢?
2、用76厘米長(zhǎng)的鐵絲做一個(gè)長(zhǎng)方形的教具,要使寬是16厘米,那么長(zhǎng)是多少厘米?
初二數(shù)學(xué)教案勾股定理篇十一
1.勾股定理內(nèi)容:如果直角三角形的兩直角邊長(zhǎng)分別為a,斜邊長(zhǎng)為c,那么a2+b2=c2,即直角三角形兩直角邊的平方和等于斜邊的平方。
勾股定理的'證明方法很多,常見的是拼圖的方法。
(1)圖形進(jìn)過割補(bǔ)拼接后,只要沒有重疊,沒有空隙,面積不會(huì)改變;
(2)根據(jù)同一種圖形的面積不同的表示方法,列出等式,推導(dǎo)出勾股定理。
勾股定理揭示了直角三角形三條邊之間所存在的數(shù)量關(guān)系,它只適用于直角三角形,對(duì)于銳角三角形和鈍角三角形的三邊就不具有這一特征。
初二數(shù)學(xué)教案勾股定理篇十二
本節(jié)課在教材處理上,先讓學(xué)生帶著三個(gè)問題預(yù)習(xí)完成網(wǎng)上作業(yè),自制4個(gè)兩條直角邊不等的全等的直角三角形,準(zhǔn)備一張坐標(biāo)紙。從而初步了解勾股定理的歷史和內(nèi)容以及證法,并制作成課件或打印資料,為課上活動(dòng)做了充分的準(zhǔn)備。為突破本課重、難點(diǎn)起到了至關(guān)重要的作用。勾股定理這部分內(nèi)容共計(jì)兩課時(shí),本節(jié)課是第一課時(shí)。教學(xué)重點(diǎn)定位為勾股定理的探索過程及簡(jiǎn)單應(yīng)用。教學(xué)難點(diǎn)是勾股定理的證明。把勾股定理的應(yīng)用放在第二課時(shí)進(jìn)行專題訓(xùn)練。
自主探索、合作交流、引導(dǎo)點(diǎn)撥。
初二數(shù)學(xué)教案勾股定理篇十三
勾股定理能夠幫助我們解決直角三角形中的邊長(zhǎng)的計(jì)算或直角三角形中線段之間的關(guān)系的證明問題。在使用勾股定理時(shí),必須把握直角三角形的前提條件,了解直角三角形中,斜邊和直角邊各是什么,以便運(yùn)用勾股定理進(jìn)行計(jì)算,應(yīng)設(shè)法添加輔助線(通常作垂線),構(gòu)造直角三角形,以便正確使用勾股定理進(jìn)行求解。
初二數(shù)學(xué)教案勾股定理篇十四
1.逆定理的內(nèi)容:如果三角形三邊長(zhǎng)a,b,c滿足a2+b2=c2,那么這個(gè)三角形是直角三角形,其中c為斜邊。
(2)定理中a,b,c及a2+b2=c2只是一種表現(xiàn)形式,不可認(rèn)為是唯一的,如若三角形三邊長(zhǎng)a,b,c滿足a2+b2=c,那么以a,b,c為三邊的三角形是直角三角形,但此時(shí)的斜邊是b.
2.利用勾股定理的逆定理判斷一個(gè)三角形是否為直角三角形的一般步驟:
(1)確定最大邊;
(2)算出最大邊的平方與另兩邊的平方和;
(3)比較最大邊的平方與別兩邊的平方和是否相等,若相等,則說明是直角三角形。
初二數(shù)學(xué)教案勾股定理篇十五
隨著社會(huì)的發(fā)展,新課程改革的不斷深入,數(shù)學(xué)課已不僅是一些數(shù)學(xué)知識(shí)的學(xué)習(xí),更重要的是體現(xiàn)知識(shí)的認(rèn)知發(fā)展過程。教育的目的是培養(yǎng)具有獨(dú)立思考能力、具有實(shí)踐精神和創(chuàng)新能力的人。一堂好課應(yīng)該是學(xué)生最大限度參與的課?!稊?shù)學(xué)課程標(biāo)準(zhǔn)》中指出學(xué)生的數(shù)學(xué)學(xué)習(xí)應(yīng)當(dāng)是現(xiàn)實(shí)的、有意義的、富有挑戰(zhàn)性的,內(nèi)容要有利與學(xué)生主動(dòng)進(jìn)行觀察、實(shí)驗(yàn)、猜想、驗(yàn)證、推理與交流。內(nèi)容的呈現(xiàn)應(yīng)采取不同的表達(dá)方式,以滿足多樣化的學(xué)習(xí)需求。數(shù)學(xué)活動(dòng)不能單純的依賴模仿與記憶,動(dòng)手實(shí)踐、自主探索與合作交流是學(xué)生學(xué)習(xí)數(shù)學(xué)的重要方式。
本節(jié)知識(shí)是在學(xué)生掌握了直角三角形的三個(gè)性質(zhì):直角三角形兩銳角互余和30°所對(duì)的直角邊等于斜邊的一半以及在直角三角形中,如果一條直角邊等于斜邊的一半,那么這條直角邊所對(duì)的角為30°的基礎(chǔ)上展開的。勾股定理是直角三角形的一個(gè)非常重要的性質(zhì),它揭示了一個(gè)直角三角形三邊的數(shù)量關(guān)系,可解決直角三角形的許多有關(guān)的計(jì)算,是初三解直角三角形的主要依據(jù)之一,中考中的四邊形和圓等綜合題中也經(jīng)常出現(xiàn)。貫穿了整個(gè)幾何學(xué)習(xí),更是數(shù)形結(jié)合的重要典范。更重要的是學(xué)生在探索定理的過程中,無論是課前準(zhǔn)備和課上交流以及課下活動(dòng)都讓學(xué)生充分感受到學(xué)習(xí)、思考的重要性,與人合作的重要性以及數(shù)學(xué)在實(shí)際生活中的重要作用,是進(jìn)行愛國(guó)教育的重要題材!
本節(jié)課的教育對(duì)象是初二下的學(xué)生,共性是思維活躍,參與意識(shí)較強(qiáng)。而且一般家庭都有電腦,對(duì)教師布置的網(wǎng)上作業(yè)也頗感興趣,并能制作簡(jiǎn)單課件。形成了一定的數(shù)學(xué)學(xué)習(xí)習(xí)慣。
初二數(shù)學(xué)教案勾股定理篇十六
如果直角三角形的兩直角邊長(zhǎng)分別為a,斜邊長(zhǎng)為c,那么a2+b2=c2,即直角三角形兩直角邊的平方和等于斜邊的平方。
勾股定理的證明方法很多,常見的是拼圖的方法
用拼圖的方法驗(yàn)證勾股定理的思路是:
(1)圖形進(jìn)過割補(bǔ)拼接后,只要沒有重疊,沒有空隙,面積不會(huì)改變;
(2)根據(jù)同一種圖形的面積不同的表示方法,列出等式,推導(dǎo)出勾股定理。
勾股定理揭示了直角三角形三條邊之間所存在的數(shù)量關(guān)系,它只適用于直角三角形,對(duì)于銳角三角形和鈍角三角形的三邊就不具有這一特征。
如果三角形三邊長(zhǎng)a,b,c滿足a2+b2=c2,那么這個(gè)三角形是直角三角形,其中c為斜邊。
(2)定理中a,b,c及a2+b2=c2只是一種表現(xiàn)形式,不可認(rèn)為是唯一的,如若三角形三邊長(zhǎng)a,b,c滿足a2+b2=c,那么以a,b,c為三邊的三角形是直角三角形,但此時(shí)的斜邊是b.
(1)確定最大邊;
(2)算出最大邊的平方與另兩邊的平方和;
(3)比較最大邊的平方與別兩邊的平方和是否相等,若相等,則說明是直角三角形。
能夠構(gòu)成直角三角形的三邊長(zhǎng)的三個(gè)正整數(shù)稱為勾股數(shù).
由直角三角形三邊為邊長(zhǎng)所構(gòu)成的三個(gè)正方形滿足“兩個(gè)較小面積和等于較大面積”。
解決圓柱側(cè)面兩點(diǎn)間的距離問題、航海問題,折疊問題、梯子下滑問題等,常直接間接運(yùn)用勾股定理及其逆定理的應(yīng)用。
初二數(shù)學(xué)教案勾股定理篇十七
1、學(xué)生的認(rèn)知基礎(chǔ):學(xué)生已學(xué)過三角形的內(nèi)角和定理,以及三角形的邊、頂點(diǎn)、內(nèi)角等概念,并且已初步了解四邊形可分成兩個(gè)三角形來求內(nèi)角和,這為本節(jié)課的學(xué)習(xí)打下了基礎(chǔ)。因而學(xué)生在探索多邊形內(nèi)角和時(shí),便會(huì)很容易想到“拼”和“量”和把多邊形轉(zhuǎn)化成三角形等方法。另外,在以往的學(xué)習(xí)中,學(xué)生的動(dòng)手實(shí)踐、自主探索及合作探究能力都得到一定的訓(xùn)練,本節(jié)將進(jìn)一步培養(yǎng)學(xué)生這些方面的能力。
2、學(xué)生的年齡心理特點(diǎn):八年級(jí)的學(xué)生具有很強(qiáng)的感性認(rèn)知基礎(chǔ),對(duì)一些具體的實(shí)踐活動(dòng)十分感興趣?;顫姾脛?dòng),思維敏捷,表現(xiàn)欲強(qiáng),但思考問題不全面。
二、教學(xué)目標(biāo)。
1、知識(shí)與技能目標(biāo):
(1)理解多邊形及正多邊形的定義。
(2)掌握多邊形內(nèi)角和公式。
2、過程與方法目標(biāo):
(1)掌握類比歸納、轉(zhuǎn)化的學(xué)習(xí)方法;。
(2)培養(yǎng)學(xué)生說理和簡(jiǎn)單推理的意識(shí)及能力。
3、情感、態(tài)度與價(jià)值觀目標(biāo):
讓學(xué)生經(jīng)歷探索多邊形內(nèi)角和的過程,進(jìn)一步發(fā)展學(xué)生的合情推理意識(shí)、主動(dòng)探究的學(xué)習(xí)習(xí)慣;通過實(shí)際情景的引入,讓學(xué)生進(jìn)一步體會(huì)數(shù)學(xué)與現(xiàn)實(shí)生活的緊密聯(lián)系。
三、教學(xué)重、難點(diǎn)。
教學(xué)重點(diǎn):(1)多邊形內(nèi)角和公式。
(2)計(jì)算多邊形的內(nèi)角和及依據(jù)內(nèi)角和確定多邊形邊數(shù)。
教學(xué)難點(diǎn):多邊形內(nèi)角和公式的推導(dǎo)。
四、方法和手段:
方法:綜合運(yùn)用自主探究、合作交流、問題解決及研究式學(xué)習(xí)等方法。
手段:本節(jié)課采用多媒體與學(xué)科教學(xué)整和,以增大課堂信息量,加強(qiáng)直觀性及趣味性,有利于學(xué)生觀察、探究能力的提高。
五、教具、學(xué)具。
多媒體課件、三角板。
六、教學(xué)過程。
教師活動(dòng)學(xué)生活動(dòng)。
教學(xué)說明。
(一)創(chuàng)設(shè)情境。
1、在現(xiàn)實(shí)生活中,蘊(yùn)含著豐富的幾何圖形。
2、觀察圖片找學(xué)過的幾何圖形?
(二)多邊形的概念。
1、那么什么樣的圖形是三角形呢?怎樣的圖形叫做四邊形呢?
3、多邊形的相關(guān)概念:多邊形的對(duì)角線、邊、頂點(diǎn)、內(nèi)角、內(nèi)角和等。
教師邊畫圖邊說明。
4、凸多邊形和凹多邊形的概念。
(三)探究活動(dòng):公式的推導(dǎo)。
1、提出問題。
(1)、我們學(xué)過的三角形的內(nèi)角和是多少呢?
(2)、那么四邊形的內(nèi)角和又是多少呢?你是怎么得到的?
(3)、那么五邊形、常見的六邊形。
的螺帽的內(nèi)角和有沒有計(jì)算方法呢?
今天我們就來探索多邊形的內(nèi)角和(板書課題)。
2、動(dòng)手操作實(shí)踐,自己探索。
歸納為以下幾種方法:
方法1、過四邊形的一個(gè)頂點(diǎn)連對(duì)角線,把四邊形分割成兩個(gè)三角形。
方法2、過四邊形內(nèi)任意一點(diǎn)與四邊形的各頂點(diǎn)連結(jié),把四邊形分成三角形。
方法3、在四邊形的任一邊上取一點(diǎn),與不相鄰的各頂點(diǎn)連結(jié),把四邊形分成四個(gè)三角形。
方法4、在四邊形外任取一點(diǎn),把這點(diǎn)與各頂點(diǎn)連結(jié)。
3、觀察、尋找規(guī)律。
五、六、七邊形內(nèi)角和之間有何規(guī)律?
3、猜想。
那么對(duì)于n邊形猜想一下內(nèi)角和計(jì)算公式是什么?
4、驗(yàn)證。
就我們已求出的特殊多邊形的內(nèi)角和,通過公式再求一次是否相符?
5、小結(jié)歸納。
(四)課堂練習(xí)。
1、求12邊形的內(nèi)角和度數(shù)。
2、如果n邊形的內(nèi)角和為1080°,求這個(gè)多邊形的邊數(shù)。
3、從一個(gè)多邊形一個(gè)頂點(diǎn)的所有對(duì)角線,將這個(gè)多邊形分成7個(gè)三角形,這個(gè)多邊形是__________邊形,它的內(nèi)角和是____________________.
(五)正多邊形的概念。
1、正多邊形的概念:
(1)、一個(gè)多邊形的每一個(gè)內(nèi)角都相等,它的邊一定相等嗎?
(2)、一個(gè)多邊形的邊相等,它的內(nèi)角一定相等嗎?
(3)正多邊形的概念:在平面內(nèi),內(nèi)角都相等,邊也都相等的多邊形叫做正多邊形。
2、鞏固練習(xí)。
(1)正三角形、正四邊形、正五邊形、正六邊形的內(nèi)角分別是多少度?
(2)正多邊形在自然界中也常見,如蜜蜂的蜂房就是一個(gè)正六邊形的形狀,
(五)課堂小結(jié)。
今天你學(xué)到了什么知識(shí)?要求用自己的話說出來?
(六)課外作業(yè):
教科書第110頁習(xí)題1、2、3。
讓學(xué)生說說自己的想法。
學(xué)生通過觀察發(fā)現(xiàn):
三角形、四邊形、五邊形。
由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。
在平面內(nèi),由不在同一直線上的四條線段首尾順次相接所組成的圖形叫做四邊形。
三角形的內(nèi)角和為180°。
四邊形的內(nèi)角和為360°。
學(xué)生口述得到四邊形內(nèi)角和為360°的方法。
1、正方形、矩形的內(nèi)角和為4×90°。
一般的四邊形呢?
學(xué)生思考、討論得到解法。
完成表格。
學(xué)生分組根據(jù)自己所找到的求四邊形的內(nèi)角和度數(shù)的方法,分別求出五邊形、六邊形、七邊形的內(nèi)角和,并歸納得出:
n邊形的內(nèi)角和的計(jì)算公式:。
(n-2)·180°。
讓學(xué)生獨(dú)立完成。
不一定,如矩形。
不一定,如菱形。
等邊三角形、正方形。
1、多邊形內(nèi)角和公式。
2、探索多邊形內(nèi)角和公式的方法。
從現(xiàn)實(shí)生活中引入,讓學(xué)生感受生活中處處有數(shù)學(xué)。(通過課件展示圖片,讓學(xué)生直觀感受。)。
學(xué)生利用三角形、四邊形的定義進(jìn)行知識(shí)的遷移,獲得多邊形的概念。
學(xué)生自己動(dòng)手畫圖,有助于幫助理解概念。
從學(xué)生感興趣的問題出發(fā),設(shè)置懸念,引入課題。
要給學(xué)生一定的思考、交流的時(shí)間,鼓勵(lì)學(xué)生大膽的發(fā)言,尋找多種方法求得五邊形內(nèi)角和的度數(shù)。(利用在課件中設(shè)置觸發(fā)器的方法,可以靈活的演示學(xué)生的分割方法。)。
鼓勵(lì)學(xué)生大膽猜想、大膽發(fā)現(xiàn)。
通過類比、歸納,完成從特殊到一般的認(rèn)識(shí),體現(xiàn)數(shù)學(xué)認(rèn)識(shí)的一般過程。
培養(yǎng)學(xué)生解決問題的能力,鞏固對(duì)n邊形的內(nèi)角和公式的掌握:。
讓學(xué)生理解一個(gè)多邊形的邊相等,但角并不一定相等;。
角相等,但邊也并不。
一定相等。
鞏固學(xué)生對(duì)n邊形的內(nèi)角和的公式的掌握,培養(yǎng)學(xué)生的解題能力:。
鞏固推導(dǎo)公式的方法和多邊形公式的掌握。
七、教學(xué)反思。
本節(jié)課從實(shí)際問題入手,在引課時(shí)出示了多幅日常生活用品和建筑的圖片,加強(qiáng)了數(shù)學(xué)與實(shí)際生活的聯(lián)系,讓學(xué)生感到數(shù)學(xué)離自己很近,激發(fā)了學(xué)生的求知欲。創(chuàng)設(shè)了良好的教學(xué)氛圍。其次注重讓學(xué)生在學(xué)習(xí)活動(dòng)中領(lǐng)悟數(shù)學(xué)思想方法。數(shù)學(xué)的思想方法比有限的數(shù)學(xué)知識(shí)更為重要。學(xué)生在探索多邊形內(nèi)角和的過程中先把五邊形轉(zhuǎn)化成三角形.進(jìn)而求出內(nèi)角和,這體現(xiàn)了由未知轉(zhuǎn)化為已知的思想。特別是在課堂教學(xué)中適時(shí)的利用問題加以引導(dǎo),使學(xué)生領(lǐng)會(huì)數(shù)學(xué)思想方法,真正理解和掌握數(shù)學(xué)的知識(shí)、技能,增強(qiáng)空間觀念及數(shù)學(xué)思考能力培養(yǎng),并獲得數(shù)學(xué)活動(dòng)經(jīng)驗(yàn)。同時(shí),恰當(dāng)?shù)氖褂谜n件擴(kuò)大了課堂容量,使課堂教學(xué)的深度和廣度都有所提高。課件的使用提高了課堂效率,為學(xué)生的探索討論贏得了時(shí)間。同時(shí)也加大了練習(xí)量,有助于學(xué)生知識(shí)可鞏固和提高。
整節(jié)課學(xué)生的情緒飽滿,思維活躍,在教師適當(dāng)?shù)囊龑?dǎo)下,學(xué)生能夠合作交流和自主探究,成功的利用四種方法探索出了多邊形的內(nèi)角和公式,較好的完成了本節(jié)課的教學(xué)目標(biāo)。
初二數(shù)學(xué)教案勾股定理篇十八
教學(xué)目標(biāo):
1、知識(shí)與技能目標(biāo):理解和掌握勾股定理的內(nèi)容,能夠靈活運(yùn)用勾股定理進(jìn)行計(jì)算,并解決一些簡(jiǎn)單的實(shí)際問題。
2、過程與方法目標(biāo):通過觀察分析,大膽猜想,并探索勾股定理,培養(yǎng)學(xué)生動(dòng)手操作、合作交流、邏輯推理的能力。
3、情感、態(tài)度與價(jià)值觀目標(biāo):了解中國(guó)古代的數(shù)學(xué)成就,激發(fā)學(xué)生愛國(guó)熱情;學(xué)生通過自己的努力探索出結(jié)論獲得成就感,培養(yǎng)探索熱情和鉆研精神;同時(shí)體驗(yàn)數(shù)學(xué)的美感,從而了解數(shù)學(xué),喜歡幾何。
教學(xué)重點(diǎn):
引導(dǎo)學(xué)生經(jīng)歷探索及驗(yàn)證勾股定理的過程,并能運(yùn)用勾股定理解決一些簡(jiǎn)單的實(shí)際問題。
教學(xué)難點(diǎn):
課前準(zhǔn)備:
多媒體ppt,相關(guān)圖片。
教學(xué)過程:
(一)情境導(dǎo)入。
1、多媒體課件放映圖片欣賞:勾股定理數(shù)形圖,1955年希臘發(fā)行的一枚紀(jì)念郵票,美麗的勾股樹,20國(guó)際數(shù)學(xué)大會(huì)會(huì)標(biāo)等。通過圖形欣賞,感受數(shù)學(xué)之美,感受勾股定理的文化價(jià)值。
初二數(shù)學(xué)教案勾股定理篇十九
教學(xué)目標(biāo):
1、知識(shí)與技能目標(biāo):理解和掌握勾股定理的內(nèi)容,能夠靈活運(yùn)用勾股定理進(jìn)行計(jì)算,并解決一些簡(jiǎn)單的實(shí)際問題。
2、過程與方法目標(biāo):通過觀察分析,大膽猜想,并探索勾股定理,培養(yǎng)學(xué)生動(dòng)手操作、合作交流、邏輯推理的能力。
3、情感、態(tài)度與價(jià)值觀目標(biāo):了解中國(guó)古代的數(shù)學(xué)成就,激發(fā)學(xué)生愛國(guó)熱情;學(xué)生通過自己的努力探索出結(jié)論獲得成就感,培養(yǎng)探索熱情和鉆研精神;同時(shí)體驗(yàn)數(shù)學(xué)的美感,從而了解數(shù)學(xué),喜歡幾何。
教學(xué)重點(diǎn):
引導(dǎo)學(xué)生經(jīng)歷探索及驗(yàn)證勾股定理的過程,并能運(yùn)用勾股定理解決一些簡(jiǎn)單的實(shí)際問題。
教學(xué)難點(diǎn):
課前準(zhǔn)備:
多媒體ppt,相關(guān)圖片。
教學(xué)過程:
(一)情境導(dǎo)入。
1、多媒體課件放映圖片欣賞:勾股定理數(shù)形圖,1955年希臘發(fā)行的一枚紀(jì)念郵票,美麗的勾股樹,國(guó)際數(shù)學(xué)大會(huì)會(huì)標(biāo)等。通過圖形欣賞,感受數(shù)學(xué)之美,感受勾股定理的文化價(jià)值。
已知一直角三角形的兩邊,如何求第三邊?
學(xué)習(xí)了今天的這節(jié)課后,同學(xué)們就會(huì)有辦法解決了。
(二)學(xué)習(xí)新課。
初二數(shù)學(xué)教案勾股定理篇二十
教學(xué)目標(biāo):
1、知識(shí)與技能目標(biāo):理解和掌握勾股定理的內(nèi)容,能夠靈活運(yùn)用勾股定理進(jìn)行計(jì)算,并解決一些簡(jiǎn)單的實(shí)際問題。
2、過程與方法目標(biāo):通過觀察分析,大膽猜想,并探索勾股定理,培養(yǎng)學(xué)生動(dòng)手操作、合作交流、邏輯推理的能力。
3、情感、態(tài)度與價(jià)值觀目標(biāo):了解中國(guó)古代的數(shù)學(xué)成就,激發(fā)學(xué)生愛國(guó)熱情;學(xué)生通過自己的努力探索出結(jié)論獲得成就感,培養(yǎng)探索熱情和鉆研精神;同時(shí)體驗(yàn)數(shù)學(xué)的美感,從而了解數(shù)學(xué),喜歡幾何。
教學(xué)重點(diǎn):
引導(dǎo)學(xué)生經(jīng)歷探索及驗(yàn)證勾股定理的過程,并能運(yùn)用勾股定理解決一些簡(jiǎn)單的實(shí)際問題。
教學(xué)難點(diǎn):
課前準(zhǔn)備:
多媒體ppt,相關(guān)圖片。
教學(xué)過程:
(一)情境導(dǎo)入。
1、多媒體課件放映圖片欣賞:勾股定理數(shù)形圖,1955年希臘發(fā)行的一枚紀(jì)念郵票,美麗的勾股樹,國(guó)際數(shù)學(xué)大會(huì)會(huì)標(biāo)等。通過圖形欣賞,感受數(shù)學(xué)之美,感受勾股定理的文化價(jià)值。
【本文地址:http://www.aiweibaby.com/zuowen/17762236.html】