教案應(yīng)根據(jù)教學(xué)大綱和教材要求進(jìn)行編寫。教案中的教學(xué)資源要多樣化,既可以利用教學(xué)課件、實(shí)驗(yàn)設(shè)備,也可以利用多媒體教學(xué)等手段。教案的實(shí)施需要教師具備豐富的教學(xué)經(jīng)驗(yàn)和專業(yè)知識(shí)。
二次根式數(shù)學(xué)教案篇一
重點(diǎn):化二次根式為最簡(jiǎn)二次根式的方法.
計(jì)算:
我們?cè)倏聪旅娴膯?wèn)題:
簡(jiǎn),得到。
從上面例子可以看出,如果把二次根式先進(jìn)行化簡(jiǎn),會(huì)對(duì)解決問(wèn)題帶來(lái)方便.
答:
1.被開方數(shù)的因數(shù)是整數(shù)或整式;
2.被開方數(shù)中不含能開得盡方的因數(shù)或因式.
滿足上面兩個(gè)條件的二次根式叫做最簡(jiǎn)二次根式.
(l)不是最簡(jiǎn)二次根式.因?yàn)閍3=a2·a,而a2可以開方,即被開方數(shù)中有開得盡方的因式.
整數(shù).
(3)是最簡(jiǎn)二次根式.因?yàn)楸婚_方數(shù)的因式x2+y2開不盡方,而且是整式.
(4)是最簡(jiǎn)二次根式.因?yàn)楸婚_方數(shù)的因式a-b開不盡方,而且是整式.
(5)是最簡(jiǎn)二次根式.因?yàn)楸婚_方數(shù)的因式5x開不盡方,而且是整式.
(6)不是最簡(jiǎn)二次根式.因?yàn)楸婚_方數(shù)中的因數(shù)8=22·2,含有開得盡的因數(shù)22.
指出:從(1),(2),(6)題可以看到如下兩個(gè)結(jié)論.
1.在二次根式的被開方數(shù)中,只要含有分?jǐn)?shù)或小數(shù),就不是最簡(jiǎn)二次根式;
2.在二次根式的被開方數(shù)中的每一個(gè)因式(或因數(shù)),如果冪的指數(shù)等于或大于2,也不是最簡(jiǎn)二次根式.
分析:把被開方數(shù)分解因式或因數(shù),再利用積的算術(shù)平方根的性質(zhì)。
分析:題(l)的被開方數(shù)是帶分?jǐn)?shù),應(yīng)把它變成假分?jǐn)?shù),然后將分母有理化,把原式化成最簡(jiǎn)二次根式.
題(2)及題(3)的被開方數(shù)是分式,先應(yīng)用商的算術(shù)平方根的性質(zhì)把原式表示為兩個(gè)根式的商的形式,再把分母有理化,把原式化成最簡(jiǎn)二次根式.
通過(guò)例2、例3,請(qǐng)同學(xué)們總結(jié)出把二次根式化成最簡(jiǎn)二次根式的方法.
答:如果被開方數(shù)是分式或分?jǐn)?shù)(包括小數(shù))先利用商的算術(shù)平方根的性質(zhì),把它寫成分式的形式,然后利用分母有理化化簡(jiǎn).
如果被開方數(shù)是整式或整數(shù),先把它分解因式或分解因數(shù),然后把開得盡方的因式或因數(shù)開出來(lái),從而將式子化簡(jiǎn).
的二次根式的式子有_____個(gè).[]。
a.2b.3。
c.1d.0。
答案:
1.b。
2.b。
(1)被開方數(shù)的因數(shù)是整數(shù),因式是整式;
(2)被開方數(shù)中不含能開得盡方的因數(shù)或因式.
(2)如果被開方數(shù)含有分母,應(yīng)去掉分母的根號(hào).
答案:
二次根式數(shù)學(xué)教案篇二
1、知識(shí)與技能:了解二次根式的概念,能求根號(hào)內(nèi)字母范圍,理解二次根式的雙重非負(fù)性,并能應(yīng)用它解決相關(guān)問(wèn)題。
2、過(guò)程與方法:進(jìn)一步體會(huì)分類討論的數(shù)學(xué)思想。
3、情感、態(tài)度與價(jià)值觀:通過(guò)小組合作學(xué)習(xí),體驗(yàn)在合作探索中學(xué)習(xí)數(shù)學(xué)的樂(lè)趣。
1、重點(diǎn):準(zhǔn)確理解二次根式的概念,并能進(jìn)行簡(jiǎn)單的計(jì)算。
2、難點(diǎn):準(zhǔn)確理解二次根式的雙重非負(fù)性。
課本第2—3頁(yè)。
學(xué)生在家中認(rèn)真閱讀理解課本中相關(guān)內(nèi)容的知識(shí),并根據(jù)自己的理解完成預(yù)習(xí)學(xué)案。
(一)合作學(xué)習(xí)階段。
教師出示課堂教學(xué)目標(biāo)及引導(dǎo)材料,各學(xué)習(xí)小組結(jié)合本節(jié)課學(xué)習(xí)目標(biāo),根據(jù)課堂引導(dǎo)材料中得內(nèi)容,以小組合作的形式,組內(nèi)交流、總結(jié),并記錄合作學(xué)習(xí)中碰到的問(wèn)題。組內(nèi)各成員根據(jù)課堂引導(dǎo)材料的要求在小組合作的前提下認(rèn)真完成課堂引導(dǎo)材料。教師在巡視中觀察各小組合作學(xué)習(xí)的情況,并進(jìn)行及時(shí)的引導(dǎo)、點(diǎn)撥,對(duì)普遍存在的問(wèn)題做好記錄。
(二)集體講授階段。(15分鐘左右)。
1、各小組推選代表依次對(duì)課堂引導(dǎo)材料中的問(wèn)題進(jìn)行解答,不足的本組成員可以補(bǔ)充。
2、教師對(duì)合作學(xué)習(xí)中存在的普遍的不能解決的'問(wèn)題進(jìn)行集體講解。
3、各小組提出本組學(xué)習(xí)中存在的困惑,并請(qǐng)其他小組幫助解答,解答不了的由教師進(jìn)行解答。
(三)當(dāng)堂檢測(cè)階段。
為了及時(shí)了解本節(jié)課學(xué)生的學(xué)習(xí)效果,及對(duì)本節(jié)課進(jìn)行及時(shí)的鞏固,對(duì)學(xué)生進(jìn)行當(dāng)堂檢測(cè),測(cè)試完試卷上交。
(注:合作學(xué)習(xí)階段與集體講授階段可以根據(jù)授課內(nèi)容進(jìn)行適當(dāng)調(diào)整次序或交叉進(jìn)行)。
教師發(fā)放根據(jù)本節(jié)課所學(xué)內(nèi)容制定的針對(duì)性作業(yè),以幫助學(xué)生進(jìn)一步鞏固提高課堂所學(xué)。
二次根式數(shù)學(xué)教案篇三
3.通過(guò)利用計(jì)算器求值體驗(yàn)現(xiàn)代科技產(chǎn)品迅速、精確的功能,激發(fā)學(xué)習(xí)知識(shí)的興趣。
教學(xué)重點(diǎn):用計(jì)算器求一個(gè)正數(shù)的平方根的程序。
教學(xué)難點(diǎn):準(zhǔn)確用計(jì)算器求解一個(gè)正數(shù)的平方根。
講練結(jié)合。
實(shí)物投影儀,計(jì)算器。
利用計(jì)算器求解既快又精確,操作時(shí)要嚴(yán)格按照步驟執(zhí)行。特別注意要用到第二功能鍵,首先要先按“2f”在按需要的鍵。由于各種計(jì)算器的鍵的功能各不相同,因此要注意操作順序,查看說(shuō)明書熟悉各鍵的具體功能。
教材a組1、2、3。
二次根式數(shù)學(xué)教案篇四
4.通過(guò)學(xué)習(xí)分母有理化與除法的關(guān)系,向?qū)W生滲透轉(zhuǎn)化的數(shù)學(xué)思想。
二、教學(xué)設(shè)計(jì)。
小結(jié)、歸納、提高。
三、重點(diǎn)、難點(diǎn)解決辦法。
1.教學(xué)重點(diǎn):分母有理化.。
2.教學(xué)難點(diǎn):分母有理化的技巧.。
四、課時(shí)安排。
1課時(shí)。
五、教具學(xué)具準(zhǔn)備。
投影儀、膠片、多媒體。
六、師生互動(dòng)活動(dòng)設(shè)計(jì)。
復(fù)習(xí)小結(jié),歸納整理,應(yīng)用提高,以學(xué)生活動(dòng)為主。
七、教學(xué)過(guò)程。
【復(fù)習(xí)提問(wèn)】。
例1說(shuō)出下列算式的運(yùn)算步驟和順序:
(1)(先乘除,后加減).。
(2)(有括號(hào),先去括號(hào);不宜先進(jìn)行括號(hào)內(nèi)的運(yùn)算).。
(3)辨別有理化因式:
有理化因式:與,與,與…。
不是有理化因式:與,與…。
例如,、、等式子的化簡(jiǎn),如果分母是兩個(gè)二次根式的和,應(yīng)該怎樣化簡(jiǎn)?
引入新課題.。
【引入新課】。
例2把下列各式的分母有理化:
(1);(2);(3)。
解:略.。
(二)隨堂練習(xí)。
1.把下列各式的分母有理化:
(1);(2);
(3);(4).。
解:(1).。
(2).。
另解:.。
(3)。
.
另解:.。
通過(guò)以上例題和練習(xí)題,可以看出,有關(guān)二次根式的.除法,可先寫成分式的形式,然后通過(guò)分母有理化進(jìn)行運(yùn)算,例如:
現(xiàn)將分母有理化就可以了.。
學(xué)生易發(fā)生如下錯(cuò)誤將式子變形為而正確的做法是.。
2.計(jì)算:
(1);
(2);
(3).。
解:(1)。
.
(2)。
.
(3)。
.
(三)小結(jié)。
二次根式數(shù)學(xué)教案篇五
重難點(diǎn)分析。
本節(jié)課的重點(diǎn)是二次根式的加、減、乘、除、乘方、開方的混合運(yùn)算及分母有理化。它是以二次根式的概念和性質(zhì)為基礎(chǔ),同時(shí)又緊密地聯(lián)系著整式、分式的運(yùn)算,也可以說(shuō)它是運(yùn)算問(wèn)題在初中階段一次總結(jié)性,提高性綜合學(xué)習(xí);二次根式的運(yùn)算和有理化的方法與技巧,能夠進(jìn)一步開拓學(xué)生的解題思路,提高學(xué)生的解題能力。
本節(jié)課的難點(diǎn)是把分母中含有兩個(gè)二次根式的式子進(jìn)行分母有理化。分母有理化,實(shí)際上二次根式的除法與混合運(yùn)算的綜合運(yùn)用。分母有理化的過(guò)程,一般地,先確定分母的有理化因式,然后再根據(jù)分式的基本性質(zhì)把分子、分母都乘以這個(gè)有理化因式,就可使分母有理化。所以對(duì)初學(xué)者來(lái)說(shuō),這一過(guò)程容易出現(xiàn)找錯(cuò)有理化因式和計(jì)算出錯(cuò)的問(wèn)題。
教法建議。
1.在知識(shí)的引入上,可采取復(fù)習(xí)引入方式,比如復(fù)習(xí)有理數(shù)的混合運(yùn)算或整式的運(yùn)算。
2.在二次根式的加減、乘法混合運(yùn)算中,要注意由淺入深的層次安排,從單項(xiàng)式與多項(xiàng)式相乘、多項(xiàng)式與多項(xiàng)式到乘法公式的應(yīng)用,逐漸從數(shù)過(guò)渡到帶有字母的式。
3.在有理化因式教學(xué)中,要多出幾組題目從不同角度要求學(xué)生辨別,并及時(shí)總結(jié)。
學(xué)生特點(diǎn):實(shí)驗(yàn)班的a層學(xué)生(數(shù)學(xué)實(shí)施分層教學(xué)),主動(dòng)學(xué)習(xí)積極性高,基礎(chǔ)扎實(shí),思維活躍,,并具有一定的獨(dú)立分析問(wèn)題,探索問(wèn)題,歸納概括問(wèn)題的能力,有較好的思考、質(zhì)疑的習(xí)慣。
教材特點(diǎn):本節(jié)課是在學(xué)習(xí)了二次根式的三個(gè)重要概念(最簡(jiǎn)二次根式、同類二次根式、分母有理化)和二次根式的有關(guān)運(yùn)算(二次根式的乘法、二次根式的除法、二次根式的加減法)基礎(chǔ)上,將加、減、乘、除、乘方、開方運(yùn)算綜合在一起的混合運(yùn)算的學(xué)習(xí)。
鑒于學(xué)生的特點(diǎn)及教材的特點(diǎn),本節(jié)課主要采用“互動(dòng)式”的課堂教學(xué)模式及“談話式”的教學(xué)方法,以此實(shí)現(xiàn)生生互動(dòng)、師生互動(dòng)、學(xué)生與教材之間的互動(dòng)。具體說(shuō)明如下:
(一)在師生互動(dòng)方面,教師注重問(wèn)題設(shè)計(jì),注重引導(dǎo)、點(diǎn)撥及提高性總結(jié)。使學(xué)生學(xué)中有思、思中有獲。如本節(jié)課開始,出示書中例題1:
強(qiáng)調(diào):運(yùn)算順序及運(yùn)算律和有理數(shù)相同。
(二)在學(xué)生與學(xué)生的互動(dòng)上,教師注重活動(dòng)設(shè)計(jì),使學(xué)生學(xué)中有樂(lè),樂(lè)中悟道。教師設(shè)計(jì)一組題目,讓學(xué)生以競(jìng)賽的形式解答,然后以記成績(jī)的方法讓其它同學(xué)說(shuō)出優(yōu)點(diǎn)(簡(jiǎn)便方法及靈活之處)與錯(cuò)誤。由于本節(jié)課主要以計(jì)算為主,對(duì)運(yùn)算法則及規(guī)律性的基礎(chǔ)知識(shí),學(xué)生很容易掌握而且從意識(shí)上認(rèn)為本節(jié)課太簡(jiǎn)單,不會(huì)很感興趣,所以為了提高學(xué)生的學(xué)習(xí)興趣及更好的抓好基礎(chǔ),提高學(xué)生的運(yùn)算能力,如此這般設(shè)計(jì)。
(三)在個(gè)體與群體的互動(dòng)方式上,教師注重合作設(shè)計(jì),使學(xué)生學(xué)中有辯,辯中求同。如本節(jié)課中對(duì)重點(diǎn)問(wèn)題:“分母有理化”的教學(xué),出示一個(gè)題目,讓學(xué)生思考,找個(gè)別學(xué)生說(shuō)出自己的想法,然后其它同學(xué)補(bǔ)充完成。
學(xué)生的主體意識(shí)和自主能力不是生來(lái)就有的,主要靠教師的激勵(lì)和主導(dǎo),才能達(dá)到彼此互動(dòng)。正是在這一教育思想的指導(dǎo)下,追求學(xué)生的認(rèn)知活動(dòng)與情感活動(dòng)的協(xié)調(diào)發(fā)展,有效地喚起學(xué)生的主體意識(shí),在和諧、愉快的情境中達(dá)到師生互動(dòng),生生互動(dòng)。互動(dòng)式教學(xué)模式的目的是讓教師樂(lè)教、會(huì)教、善教,促使學(xué)生樂(lè)學(xué)、會(huì)學(xué)、善學(xué),從而優(yōu)化課堂教學(xué)、提高教學(xué)質(zhì)量,在和諧、愉快的情景中實(shí)現(xiàn)教與學(xué)的共振。
二次根式數(shù)學(xué)教案篇六
上節(jié)課我們認(rèn)識(shí)了什么是二次根式,那么二次根式有什么性質(zhì)呢?本節(jié)課我們一起來(lái)學(xué)習(xí)。
二、展示目標(biāo),自主學(xué)習(xí):
自學(xué)指導(dǎo):認(rèn)真閱讀課本第3頁(yè)——4頁(yè)內(nèi)容,完成下列任務(wù):
1、請(qǐng)比較與0的大小,你得到的結(jié)論是:________________________。
2、完成3頁(yè)“探究”中的填空,你得到的結(jié)論是____________________。
3、看例2是怎樣利用性質(zhì)進(jìn)行計(jì)算的。
4、完成4頁(yè)“探究”中的填空,你得到的結(jié)論是:____________________。
5、看懂例3,有困難可與同伴交流或問(wèn)老師。
二次根式數(shù)學(xué)教案篇七
4.通過(guò)學(xué)習(xí)分母有理化與除法的關(guān)系,向?qū)W生滲透轉(zhuǎn)化的數(shù)學(xué)思想。
二、教學(xué)設(shè)計(jì)。
小結(jié)、歸納、提高。
三、重點(diǎn)、難點(diǎn)解決辦法。
1.教學(xué)重點(diǎn):分母有理化.。
2.教學(xué)難點(diǎn):分母有理化的技巧.。
四、課時(shí)安排。
1課時(shí)。
五、教具學(xué)具準(zhǔn)備。
投影儀、膠片、多媒體。
六、師生互動(dòng)活動(dòng)設(shè)計(jì)。
復(fù)習(xí)小結(jié),歸納整理,應(yīng)用提高,以學(xué)生活動(dòng)為主。
七、教學(xué)過(guò)程。
【復(fù)習(xí)提問(wèn)】。
例1說(shuō)出下列算式的運(yùn)算步驟和順序:
(1)(先乘除,后加減).。
(2)(有括號(hào),先去括號(hào);不宜先進(jìn)行括號(hào)內(nèi)的運(yùn)算).。
(3)辨別有理化因式:
有理化因式:與,與,與…。
不是有理化因式:與,與…。
例如,、、等式子的化簡(jiǎn),如果分母是兩個(gè)二次根式的和,應(yīng)該怎樣化簡(jiǎn)?
引入新課題.。
【引入新課】。
例2把下列各式的分母有理化:
(1);(2);(3)。
解:略.。
(二)隨堂練習(xí)。
1.把下列各式的分母有理化:
(1);(2);
(3);(4).。
解:(1).。
(2).。
另解:.。
(3)。
.
另解:.。
通過(guò)以上例題和練習(xí)題,可以看出,有關(guān)二次根式的除法,可先寫成分式的形式,然后通過(guò)分母有理化進(jìn)行運(yùn)算,例如:
現(xiàn)將分母有理化就可以了.。
學(xué)生易發(fā)生如下錯(cuò)誤將式子變形為而正確的做法是.。
2.計(jì)算:
(1);
(2);
(3).。
解:(1)。
.
(2)。
.
(3)。
.
(三)小結(jié)。
2.注意對(duì)有理化因式的概括并尋找出它的規(guī)律.。
(2)練習(xí):教材p202中1、2.。
(四)布置作業(yè)。
教材p205中4、5.。
(五)板書設(shè)計(jì)。
標(biāo)題。
1.復(fù)習(xí)內(nèi)容3.練習(xí)題一。
2.例44.練習(xí)題二。
二次根式數(shù)學(xué)教案篇八
重難點(diǎn)分析。
本節(jié)的重點(diǎn)是的化簡(jiǎn).本章自始至終圍繞著二次根式的化簡(jiǎn)與計(jì)算進(jìn)行,而的化簡(jiǎn)不但涉及到前面學(xué)習(xí)過(guò)的算術(shù)平方根、二次根式等概念與二次根式的運(yùn)算性質(zhì),還要牽涉到絕對(duì)值以及各種非負(fù)數(shù)、因式分解等知識(shí),在應(yīng)用中常常需要對(duì)字母進(jìn)行分類討論.
本節(jié)的難點(diǎn)是正確理解與應(yīng)用公式。
這個(gè)公式的表達(dá)形式對(duì)學(xué)生來(lái)說(shuō),比較生疏,而實(shí)際運(yùn)用時(shí),則要牽涉到對(duì)字母取值范圍的討論,學(xué)生往往容易出現(xiàn)錯(cuò)誤.
教法建議。
1.性質(zhì)的引入方法很多,以下2種比較常用:
(1)設(shè)計(jì)問(wèn)題引導(dǎo)啟發(fā):由設(shè)計(jì)的問(wèn)題。
1)、、各等于什么?
2)、、各等于什么?
啟發(fā)、引導(dǎo)學(xué)生猜想出。
(2)從算術(shù)平方根的意義引入.。
2.性質(zhì)的鞏固有兩個(gè)方面需要注意:
(1)注意與性質(zhì)進(jìn)行對(duì)比,可出幾道類型不同的題進(jìn)行比較;
(第1課時(shí))。
一、教學(xué)目標(biāo)。
3.通過(guò)本節(jié)的學(xué)習(xí)滲透分類討論的數(shù)學(xué)思想和方法。
二、教學(xué)設(shè)計(jì)。
對(duì)比、歸納、總結(jié)。
三、重點(diǎn)和難點(diǎn)。
四、課時(shí)安排。
1課時(shí)。
五、教具學(xué)具準(zhǔn)備。
投影儀、膠片、多媒體。
六、師生互動(dòng)活動(dòng)設(shè)計(jì)。
復(fù)習(xí)對(duì)比,歸納整理,應(yīng)用提高,以學(xué)生活動(dòng)為主。
七、教學(xué)過(guò)程。
一、導(dǎo)入新課。
我們知道,式子()表示非負(fù)數(shù)的算術(shù)平方根.。
問(wèn):式子的意義是什么?被開方數(shù)中的表示的是什么數(shù)?
答:式子表示非負(fù)數(shù)的算術(shù)平方根,即,且,從而可以取任意實(shí)數(shù).。
二、新課。
計(jì)算下列各題,并回答以下問(wèn)題:
(1);(2);(3);
(4);(5);(6)。
(7);(8)。
1.各小題中被開方數(shù)的冪的底數(shù)都是什么數(shù)?
2.各小題的結(jié)果和相應(yīng)的被開方數(shù)的冪的底數(shù)有什么關(guān)系?
3.用字母表示被開方數(shù)的冪的底數(shù),將有怎樣的結(jié)論?并用語(yǔ)言敘述你的結(jié)論.。
答:
(1);(2);(3);
(4);(5);(6)。
(7);(8).。
3.用字母表示(1),(2),(3),(8)各題中被開方數(shù)的冪的底數(shù),有。
(),
用字母表示(4),(5),(6),(7)各題中被開方數(shù)的冪的底數(shù),有。
().。
問(wèn):請(qǐng)把上述討論結(jié)論,用一個(gè)式子表示.(注意表示條件和結(jié)論)。
答:
請(qǐng)同學(xué)回憶實(shí)數(shù)的絕對(duì)值的代數(shù)意義,它和上述二次根式的性質(zhì)有什么聯(lián)系?
答:
填空:
1.當(dāng)_________時(shí),;
2.當(dāng)時(shí),,當(dāng)時(shí),;
3.若,則________;
4.當(dāng)時(shí),.。
答:
1.當(dāng)時(shí),;
2.當(dāng)時(shí),,
當(dāng)時(shí),;
3.若,則;
4.當(dāng)時(shí),.。
例1化簡(jiǎn)().。
分析:可以利用積的算術(shù)平方根的性質(zhì)及二次根式的性質(zhì)化簡(jiǎn).。
解,因?yàn)?,所以,所以?/p>
.
指出:在化簡(jiǎn)和運(yùn)算過(guò)程中,把先寫成,再根據(jù)已知條件中的取值范圍,確定其結(jié)果.。
例2化簡(jiǎn)().。
解.。
例3化簡(jiǎn):(1)();(2)().。
解(1).。
(2).。
注意:(1)題中的被開方數(shù),因?yàn)?,所以.?/p>
(2)題中的被開方數(shù),因?yàn)?,所以.?/p>
這里的取值范圍,在已知條件中沒(méi)有直接給出,但可以由已知條件分析而得出.。
例4化簡(jiǎn).。
.
所以要比較與3及1與的大小以確定及的符號(hào),然后再進(jìn)行化簡(jiǎn).。
解因?yàn)?,,所以?/p>
.
所以。
.
三、課堂練習(xí)。
1.求下列各式的值:
(1);(2).。
2.化簡(jiǎn):
(1);(2);
(3)();(4)().。
3.化簡(jiǎn):
(1);(2);
(3);(4);
(5);(6)().。
答案:
1.(1)0.1;(2).。
2.(1);(2);(3);(4).。
3.(1)4;(2)1.5;(3)0.09;(4)-1;(5)4;(6)-1.。
四、小結(jié)。
1.二次根式的意義是,所以,因此,其中可以取任意實(shí)數(shù).。
五、作業(yè)。
1.化簡(jiǎn):
(1);(2);
(3)();(4)();
(5);(6)(,);
(7)().。
2.化簡(jiǎn):
(1);
(2)();
(3)(,).。
答案:
1.(1)-30;(2);(3);
(4);(5);(6);(7).。
2.(1)2;(2)0;(3).。
二次根式數(shù)學(xué)教案篇九
1.知識(shí)技能:
(1).會(huì)進(jìn)行簡(jiǎn)單的二次根式的除法運(yùn)算.
(2).使學(xué)生能利用商的算術(shù)平方根的性質(zhì)進(jìn)行二次根式的化簡(jiǎn)與運(yùn)算.
2.數(shù)學(xué)思考:在學(xué)習(xí)了二次根式乘法的基礎(chǔ)上進(jìn)行總結(jié)對(duì)比,得出除法的運(yùn)算法則.
3.解決問(wèn)題:引導(dǎo)學(xué)生從特殊到一般總結(jié)歸納的方法以及類比的方法,解決數(shù)學(xué)問(wèn)題.
4.情感態(tài)度:通過(guò)本節(jié)課的學(xué)習(xí)使學(xué)生認(rèn)識(shí)到事物之間是相互聯(lián)系的,相互作用的.
二次根式數(shù)學(xué)教案篇十
教法:
2、講練結(jié)合法:在例題教學(xué)中,引導(dǎo)學(xué)生閱讀,與平方根進(jìn)行類比,獲得解決問(wèn)題的方法后配以精講,并進(jìn)行分層練習(xí),培養(yǎng)學(xué)生的閱讀習(xí)慣和規(guī)范的解題格式。
學(xué)法:
1、類比的方法通過(guò)觀察、類比,使學(xué)生感悟二次根式的模型,形成有效的學(xué)習(xí)策略。
2、閱讀的方法讓學(xué)生閱讀教材及材料,體驗(yàn)一定的閱讀方法,提高閱讀能力。
3、分組討論法將自己的意見在小組內(nèi)交換,達(dá)到取長(zhǎng)補(bǔ)短,體驗(yàn)學(xué)習(xí)活動(dòng)中的交流與合作。
4、練習(xí)法采用不同的練習(xí)法,鞏固所學(xué)的知識(shí);利用教材進(jìn)行自檢,小組內(nèi)進(jìn)行他檢,提高學(xué)生的素質(zhì)。
二次根式數(shù)學(xué)教案篇十一
本節(jié)是九年級(jí)上學(xué)期數(shù)學(xué)的起始課。二次根式的學(xué)習(xí),是對(duì)代數(shù)式的進(jìn)一步學(xué)習(xí)。本節(jié)主要經(jīng)歷二次根式的發(fā)生過(guò)程及對(duì)二次根式的理解。掌握求二次根式的值和二次根式根號(hào)內(nèi)字母的取值范圍。為以后的運(yùn)用二次根式的運(yùn)算解決實(shí)際問(wèn)題打好基礎(chǔ)。
1、學(xué)習(xí)任務(wù)分析:
通過(guò)對(duì)數(shù)和平方根、算術(shù)平方根的復(fù)習(xí),鼓勵(lì)學(xué)生經(jīng)歷觀察、歸納、類比等方法理解二次根式的概念。在解決實(shí)際問(wèn)題的時(shí)候,注意轉(zhuǎn)化思想的滲透。體會(huì)分析問(wèn)題、解決問(wèn)題的方法,積累數(shù)學(xué)活動(dòng)經(jīng)驗(yàn)。比如求二次根式根號(hào)內(nèi)的字母的取值范圍,就是將問(wèn)題轉(zhuǎn)化為不等式來(lái)解決。注意學(xué)生數(shù)學(xué)書寫格式的規(guī)范,為以后的學(xué)習(xí)打好基礎(chǔ)。為了使學(xué)生更好地掌握這一部分內(nèi)容,遵循啟發(fā)式教學(xué)原則,用復(fù)習(xí)以前學(xué)過(guò)的知識(shí)導(dǎo)入新課。設(shè)計(jì)合作學(xué)習(xí)活動(dòng),引導(dǎo)學(xué)生操作、觀察、探索、交流、發(fā)現(xiàn)、思維,解決實(shí)際問(wèn)題的過(guò)程,真正把學(xué)生放到主體位置。
2、學(xué)生的認(rèn)知起點(diǎn)分析:
學(xué)生已掌握數(shù)的平方根和算術(shù)平方根。這為經(jīng)歷二次根式概念的發(fā)生過(guò)程做好準(zhǔn)備。另外,學(xué)生對(duì)數(shù)的算術(shù)平方根的理解作為基礎(chǔ),經(jīng)歷跟此根式概念的發(fā)生過(guò)程,引導(dǎo)學(xué)生對(duì)二次根式概念的理解。
案例反思:
以往對(duì)這類問(wèn)題的回答都是全班回答,有些學(xué)生反面信息不能體現(xiàn)出來(lái)。采取的措施是全班舉手勢(shì)回答,可以做二次根式的被開方數(shù)舉“布”,若不能舉“拳頭”。使班級(jí)能夠全面參與,避免集體回答所體現(xiàn)不出的問(wèn)題。
2.合作活動(dòng):
第一位同學(xué)――出題者:請(qǐng)你按表中的要求寫完后,按順時(shí)針?lè)较蚪唤o下一位同學(xué);
第二位同學(xué)――解題者:請(qǐng)你按表中的`要求解完后,按順時(shí)針?lè)较蚪唤o下一位同學(xué);
第四位同學(xué)――復(fù)查者:請(qǐng)你一定要把好關(guān)哦!
出題者姓名:
解題者姓名:
第一個(gè)二次根式:
1. 要使式子的值為實(shí)數(shù),求x的取值范圍.
2. 寫出x的一個(gè)值,使式子的值為有理數(shù),并求出這個(gè)有理數(shù)。
3. 寫出x的一個(gè)值,使式子的值為無(wú)理數(shù),并求出這個(gè)無(wú)理數(shù)。
第二個(gè)二次根式:
1. 要使式子的值為實(shí)數(shù),求x的取值范圍。
2. 寫出x的一個(gè)值,使式子的值為有理數(shù),并求出這個(gè)有理數(shù)。
3. 寫出x的一個(gè)值,使式子的值為無(wú)理數(shù),并求出這個(gè)無(wú)理數(shù)。
批改者姓名:
復(fù)查者姓名:
《課程標(biāo)準(zhǔn)》突出了學(xué)生在學(xué)習(xí)中的地位 -- 學(xué)生是學(xué)習(xí)的主人,同時(shí),教師的地位、角色發(fā)生了變化,從 “ 主導(dǎo) ” 變成了 “學(xué)生學(xué)習(xí)活動(dòng)的組織者、引導(dǎo)者和合作者 ”。合作活動(dòng)的安排就是對(duì)這一課程標(biāo)準(zhǔn)的體現(xiàn)。
二次根式數(shù)學(xué)教案篇十二
3.進(jìn)一步體驗(yàn)二次根式及其運(yùn)算的實(shí)際意義和應(yīng)用價(jià)值。
本節(jié)課的重點(diǎn)是:二次根式及其運(yùn)算的實(shí)際應(yīng)用;難點(diǎn)是:例7涉及多方面的知識(shí)和綜合運(yùn)用,思路比較復(fù)雜。
1.解決節(jié)前問(wèn)題:
歸納:
在日常生活和生產(chǎn)實(shí)際中,我們?cè)诮鉀Q一些問(wèn)題,尤其是涉及直角三角形邊長(zhǎng)計(jì)算的問(wèn)題時(shí)經(jīng)常用到二次根式及其運(yùn)算。
1、:如圖,扶梯ab的坡比(be與ae的長(zhǎng)度之比)為1:0.8,滑梯cd的坡比為1:1.6,ae=米,bc=cd。一男孩從扶梯走到滑梯的頂部,然后從滑梯滑下,他經(jīng)過(guò)了多少路程(結(jié)果要求先化簡(jiǎn),再取近似值,精確到0.01米)。
教學(xué)程序與策略。
完成課本p17、1,組長(zhǎng)檢查反饋;
1:如圖是一張等腰三角形彩色紙,ac=bc=40cm,將斜邊上的高cd四等分,然后裁出3張寬度相等的長(zhǎng)方形紙條。(1)分別求出3張長(zhǎng)方形紙條的長(zhǎng)度。(2)若用這些紙條為一幅正方形美術(shù)作品鑲邊(紙條不重疊),如右圖,正方形美術(shù)作品的面積最大不能超過(guò)多少cm。
師生共同分析解題思路,請(qǐng)學(xué)生寫出解題過(guò)程。
1.談一談:本節(jié)課你有什么收獲?
2.運(yùn)用二次根式解決簡(jiǎn)單的實(shí)際問(wèn)題時(shí)應(yīng)注意的的問(wèn)題。
1:作業(yè)本(2)。
2:課本p17頁(yè):第4、5題選做。
二次根式數(shù)學(xué)教案篇十三
教學(xué)過(guò)程。
一、復(fù)習(xí)引入。
1.把下列各根式化簡(jiǎn),并說(shuō)出化簡(jiǎn)的根據(jù):
2.引導(dǎo)學(xué)生觀察考慮:
化簡(jiǎn)前后的根式,被開方數(shù)有什么不同?
化簡(jiǎn)前的被開方數(shù)有分?jǐn)?shù),分式;化簡(jiǎn)后的被開方數(shù)都是整數(shù)或整式,且被開方數(shù)中開得盡方的因數(shù)或因式,被移到根號(hào)外。
3.啟發(fā)學(xué)生回答:
二次根式,請(qǐng)同學(xué)們考慮一下被開方數(shù)符合什么條件的二次根式叫做最簡(jiǎn)二次根式?
二、講解新課。
1.總結(jié)學(xué)生回答的內(nèi)容后,給出最簡(jiǎn)二次根式定義:
滿足下列兩個(gè)條件的二次根式叫做最簡(jiǎn)二次根式:
(1)被開方數(shù)的因數(shù)是整數(shù),因式是整式;
(2)被開方數(shù)中不含能開得盡的因數(shù)或因式。
最簡(jiǎn)二次根式定義中第(1)條說(shuō)明被開方數(shù)不含有分母;分母是1的例外。第(2)條說(shuō)明被開方數(shù)中每個(gè)因式的指數(shù)小于2;特別注意被開方數(shù)應(yīng)化為因式連乘積的形式。
2.練習(xí):
下列各根式是否為最簡(jiǎn)二次根式,不是最簡(jiǎn)二次根式的說(shuō)明原因:
3.例題:
4.總結(jié)。
把二次根式化成最簡(jiǎn)二次根式的根據(jù)是什么?應(yīng)用了什么方法?
當(dāng)被開方數(shù)為整數(shù)或整式時(shí),把被開方數(shù)進(jìn)行因數(shù)或因式分解,根據(jù)積的算術(shù)平方根的性質(zhì),把開得盡方的因數(shù)或因式用它的算術(shù)平方根代替移到根號(hào)外面去。
當(dāng)被開方數(shù)是分?jǐn)?shù)或分式時(shí),根據(jù)分式的'基本性質(zhì)和商的算術(shù)平方根的性質(zhì)化去分母。
此方法是先根據(jù)分式的基本性質(zhì)把被開方數(shù)的分母化成能開得盡方的因式,然后分子、分母再分別化簡(jiǎn)。
三、鞏固練習(xí)。
2.判斷下列各根式,哪些是最簡(jiǎn)二次根式?哪些不是最簡(jiǎn)二次根式?如果不是,把它化成最簡(jiǎn)二次根式。
四、小結(jié)。
本節(jié)課學(xué)習(xí)了最簡(jiǎn)二次根式的定義及化簡(jiǎn)二次根式的方法。同學(xué)們掌握用最簡(jiǎn)二次根式的定義判斷一個(gè)根式是否為最簡(jiǎn)二次根式,要根據(jù)積的算術(shù)平方根和商的算術(shù)平方根的性質(zhì)把一個(gè)根式化成最簡(jiǎn)二次根式,特別注意當(dāng)被開方數(shù)為多項(xiàng)式時(shí)要進(jìn)行因式分解,被開方數(shù)為兩個(gè)分?jǐn)?shù)的和則要先通分,再化簡(jiǎn)。
五、布置作業(yè)。
二次根式數(shù)學(xué)教案篇十四
本節(jié)是九年級(jí)上學(xué)期數(shù)學(xué)的起始課。二次根式的學(xué)習(xí),是對(duì)代數(shù)式的進(jìn)一步學(xué)習(xí)。本節(jié)主要經(jīng)歷二次根式的發(fā)生過(guò)程及對(duì)二次根式的理解。掌握求二次根式的值和二次根式根號(hào)內(nèi)字母的取值范圍。為以后的運(yùn)用二次根式的運(yùn)算解決實(shí)際問(wèn)題打好基礎(chǔ)。
1、學(xué)習(xí)任務(wù)分析:
通過(guò)對(duì)數(shù)和平方根、算術(shù)平方根的復(fù)習(xí),鼓勵(lì)學(xué)生經(jīng)歷觀察、歸納、類比等方法理解二次根式的概念。在解決實(shí)際問(wèn)題的時(shí)候,注意轉(zhuǎn)化思想的滲透。體會(huì)分析問(wèn)題、解決問(wèn)題的方法,積累數(shù)學(xué)活動(dòng)經(jīng)驗(yàn)。比如求二次根式根號(hào)內(nèi)的字母的取值范圍,就是將問(wèn)題轉(zhuǎn)化為不等式來(lái)解決。注意學(xué)生數(shù)學(xué)書寫格式的規(guī)范,為以后的學(xué)習(xí)打好基礎(chǔ)。為了使學(xué)生更好地掌握這一部分內(nèi)容,遵循啟發(fā)式教學(xué)原則,用復(fù)習(xí)以前學(xué)過(guò)的知識(shí)導(dǎo)入新課。設(shè)計(jì)合作學(xué)習(xí)活動(dòng),引導(dǎo)學(xué)生操作、觀察、探索、交流、發(fā)現(xiàn)、思維,解決實(shí)際問(wèn)題的過(guò)程,真正把學(xué)生放到主體位置。
2、學(xué)生的認(rèn)知起點(diǎn)分析:
學(xué)生已掌握數(shù)的平方根和算術(shù)平方根。這為經(jīng)歷二次根式概念的發(fā)生過(guò)程做好準(zhǔn)備。另外,學(xué)生對(duì)數(shù)的算術(shù)平方根的理解作為基礎(chǔ),經(jīng)歷跟此根式概念的發(fā)生過(guò)程,引導(dǎo)學(xué)生對(duì)二次根式概念的理解。
案例反思:
以往對(duì)這類問(wèn)題的回答都是全班回答,有些學(xué)生反面信息不能體現(xiàn)出來(lái)。采取的`措施是全班舉手勢(shì)回答,可以做二次根式的被開方數(shù)舉“布”,若不能舉“拳頭”。使班級(jí)能夠全面參與,避免集體回答所體現(xiàn)不出的問(wèn)題。
2、合作活動(dòng):
第一位同學(xué)——出題者:請(qǐng)你按表中的要求寫完后,按順時(shí)針?lè)较蚪唤o下一位同學(xué);
第二位同學(xué)——解題者:請(qǐng)你按表中的要求解完后,按順時(shí)針?lè)较蚪唤o下一位同學(xué);
第四位同學(xué)——復(fù)查者:請(qǐng)你一定要把好關(guān)哦!
出題者姓名:
解題者姓名:
1、要使式子的值為實(shí)數(shù),求x的取值范圍。
2、寫出x的一個(gè)值,使式子的值為有理數(shù),并求出這個(gè)有理數(shù)。
3、寫出x的一個(gè)值,使式子的值為無(wú)理數(shù),并求出這個(gè)無(wú)理數(shù)。
1、要使式子的值為實(shí)數(shù),求x的取值范圍。
2、寫出x的一個(gè)值,使式子的值為有理數(shù),并求出這個(gè)有理數(shù)。
3、寫出x的一個(gè)值,使式子的值為無(wú)理數(shù),并求出這個(gè)無(wú)理數(shù)。
批改者姓名:
復(fù)查者姓名:
《課程標(biāo)準(zhǔn)》突出了學(xué)生在學(xué)習(xí)中的地位--學(xué)生是學(xué)習(xí)的主人,同時(shí),教師的地位、角色發(fā)生了變化,從“主導(dǎo)”變成了“學(xué)生學(xué)習(xí)活動(dòng)的組織者、引導(dǎo)者和合作者”。合作活動(dòng)的安排就是對(duì)這一課程標(biāo)準(zhǔn)的體現(xiàn)。
二次根式數(shù)學(xué)教案篇十五
(2)會(huì)用公式化簡(jiǎn)二次根式.
(1)學(xué)生能通過(guò)計(jì)算發(fā)現(xiàn)規(guī)律并對(duì)其進(jìn)行一般化的推廣,得出乘法法則的內(nèi)容;
(2)學(xué)生能利用二次根式的乘法法則和積的算術(shù)平方根的性質(zhì),化簡(jiǎn)二次根式.
教學(xué)問(wèn)題診斷分析
本節(jié)課的學(xué)習(xí)中,學(xué)生在得出乘法法則和積的算術(shù)平方根的性質(zhì)后,對(duì)于何時(shí)該選用何公式簡(jiǎn)化運(yùn)算感到困難.運(yùn)算習(xí)慣的養(yǎng)成與符號(hào)意識(shí)的養(yǎng)成、運(yùn)算能力的形成緊密相關(guān),由于該內(nèi)容與以前學(xué)過(guò)的實(shí)數(shù)內(nèi)容有較多的聯(lián)系,例如,整式中的乘法公式在二次根式的運(yùn)算中也成立,在教學(xué)中,要多從聯(lián)系性上下力氣.,培養(yǎng)學(xué)生良好的運(yùn)算習(xí)慣.
在教學(xué)時(shí),通過(guò)實(shí)例運(yùn)算,對(duì)于將一個(gè)二次根式化為最簡(jiǎn)二次根式,一般有兩種情況:
(2)如果被開方數(shù)不含分母,可以先將它分解因數(shù)或分解因式,然后吧開得盡方的因數(shù)或因式開出來(lái),從而將式子化簡(jiǎn).
本節(jié)課的教學(xué)難點(diǎn)為:二次根式的性質(zhì)及乘法法則的正確應(yīng)用和二次根式的化簡(jiǎn).
教學(xué)過(guò)程設(shè)計(jì)
1.復(fù)習(xí)引入,探究新知
我們前面已經(jīng)學(xué)習(xí)了二次根式的概念和性質(zhì),本節(jié)課開始我們要學(xué)習(xí)二次根式的乘除.本節(jié)課先學(xué)習(xí)二次根式的乘法.
問(wèn)題1什么叫二次根式?二次根式有哪些性質(zhì)?
師生活動(dòng)學(xué)生回答。
【設(shè)計(jì)意圖】乘法運(yùn)算和二次根式的化簡(jiǎn)需要用到二次根式的性質(zhì).
問(wèn)題2教材第6頁(yè)“探究”欄目,計(jì)算結(jié)果如何?有何規(guī)律?
師生活動(dòng)學(xué)生計(jì)算、思考并嘗試歸納,引導(dǎo)學(xué)生用自己的語(yǔ)言描述乘法法則的內(nèi)容.
【設(shè)計(jì)意圖】學(xué)生在自主探究的過(guò)程中發(fā)現(xiàn)規(guī)律,運(yùn)用類比思想,由特殊到一般地,采用不完全歸納的方法得出二次根式的乘法法則.要求學(xué)生用數(shù)學(xué)語(yǔ)言和文字分別描述法則,以培養(yǎng)學(xué)生的符號(hào)意識(shí).
2.觀察比較,理解法則
問(wèn)題3簡(jiǎn)單的根式運(yùn)算.
師生活動(dòng)學(xué)生動(dòng)手操作,教師檢驗(yàn).
問(wèn)題4二次根式的乘除成立的條件是什么?等式反過(guò)來(lái)有什么價(jià)值?
師生活動(dòng) 學(xué)生回答,給出正確答案后,教師給出積的算術(shù)平方根的性質(zhì).
【設(shè)計(jì)意圖】讓學(xué)生運(yùn)用法則進(jìn)行簡(jiǎn)單的二次根式的乘法運(yùn)算,以檢驗(yàn)法則的掌握情況.乘法法則反過(guò)來(lái)就是積的算術(shù)平方根的性質(zhì),性質(zhì)是為運(yùn)算服務(wù)的,積的算術(shù)平方根的性質(zhì)將積的算術(shù)平方根分解成幾個(gè)因數(shù)或因式的算術(shù)平方根的積,利用整式的運(yùn)算法則、乘法公式等可以簡(jiǎn)化二次根式,培養(yǎng)學(xué)生的運(yùn)算能力.
3.例題示范,學(xué)會(huì)應(yīng)用
例1 化簡(jiǎn):(1)二次根式的乘除; (2)二次根式的乘除.
師生活動(dòng)提問(wèn):你是怎么理解例(1)的?
師生合作回答上述問(wèn)題.對(duì)于根式運(yùn)算的最后結(jié)果,一般被開方數(shù)中有開得盡方的因數(shù)或因式,應(yīng)依據(jù)二次根式的性質(zhì)二次根式的乘除將其移出根號(hào)外.
再提問(wèn):你能仿照第(1)題的解答,能自己解決(2)嗎?
【設(shè)計(jì)意圖】通過(guò)運(yùn)算,培養(yǎng)學(xué)生的運(yùn)算能力,明確二次根式化簡(jiǎn)的方向.積的算術(shù)平方根的性質(zhì)可以進(jìn)行二次根式的化簡(jiǎn).
例2 計(jì)算:(1)二次根式的乘除; (2)二次根式的乘除; (3)二次根式的乘除
師生活動(dòng)學(xué)生計(jì)算,教師檢驗(yàn).
(3)例(3)的運(yùn)算是選學(xué)內(nèi)容.讓學(xué)有余力的學(xué)生學(xué)到“根號(hào)下為字母的二次根式”的運(yùn)算.本題先利用積的算術(shù)平方根的性質(zhì),得到二次根式的乘除,然后利用二次根式的乘法法則,變成二次根式的乘除,由于二次根式的乘除可以判斷二次根式的乘除,因此直接將x移出根號(hào)外.
【設(shè)計(jì)意圖】引導(dǎo)學(xué)生及時(shí)總結(jié),強(qiáng)調(diào)利用運(yùn)算律進(jìn)行運(yùn)算,利用乘法公式簡(jiǎn)化運(yùn)算.讓學(xué)生認(rèn)識(shí)到,二次根式是一類特殊的實(shí)數(shù),因此滿足實(shí)數(shù)的運(yùn)算律,關(guān)于整式運(yùn)算的公式和方法也適用.
教材中雖然指明,如未特別說(shuō)明,本章中所有的字母都表示正數(shù),但仍應(yīng)強(qiáng)調(diào),看到根號(hào)就要注意被開方數(shù)的符號(hào).可以根據(jù)二次根式的概念對(duì)字母的符號(hào)進(jìn)行判斷,在移出根號(hào)時(shí)正確處理符號(hào)問(wèn)題.
4.鞏固概念,學(xué)以致用
練習(xí):教科書第7頁(yè)練習(xí)第1題. 第10頁(yè)習(xí)題16.2第1題.
【設(shè)計(jì)意圖】鞏固性練習(xí),同時(shí)檢驗(yàn)乘法法則的掌握情況.
5.歸納小結(jié),反思提高
師生共同回顧本節(jié)課所學(xué)內(nèi)容,并請(qǐng)學(xué)生回答以下問(wèn)題:
(1)你能說(shuō)明二次根式的乘法法則是如何得出的嗎?
(2)你能說(shuō)明乘法法則逆用的意義嗎?
(3)化簡(jiǎn)二次根式的基本步驟是怎樣?一般對(duì)最后結(jié)果有何要求?
6.布置作業(yè):教科書第7頁(yè)第2、3題.習(xí)題16.2第1,6題.
五、目標(biāo)檢測(cè)設(shè)計(jì)
1.下列各式中,一定能成立的是( )
a.二次根式的乘除 b.二次根式的乘除
c.二次根式的乘除 d.二次根式的乘除
【設(shè)計(jì)意圖】考查二次根式的概念和性質(zhì),這是進(jìn)行二次根式的乘法運(yùn)算的基礎(chǔ).
2.化簡(jiǎn)二次根式的乘除 ______________________________。
【設(shè)計(jì)意圖】二次根式是特殊的實(shí)數(shù),實(shí)數(shù)的相關(guān)運(yùn)算法則也適用于二次根式.
3.已知二次根式的乘除,化簡(jiǎn)二次根式二次根式的乘除的結(jié)果是()
a.二次根式的乘除 b.二次根式的乘除 c.二次根式的乘除 d.二次根式的乘除
【設(shè)計(jì)意圖】鞏固二次根式的性質(zhì),利用積的算術(shù)平方根的性質(zhì)正確化簡(jiǎn)二次根式.
二次根式數(shù)學(xué)教案篇十六
新教材打破了舊教材從定義出發(fā),由理論到理論,按部就班的舊格局,創(chuàng)造出從實(shí)踐到理論再回到實(shí)踐,由淺入深,符合認(rèn)知結(jié)構(gòu)的新模式。本節(jié)首先通過(guò)四個(gè)實(shí)際問(wèn)題引出二次根式的概念,給出二次根式的意義。然后讓學(xué)生通過(guò)二次根式的意義和算術(shù)平方根的意義找出二次根式的三個(gè)性質(zhì)。本節(jié)通過(guò)學(xué)生所熟悉的實(shí)際問(wèn)題建立二次根式的概念,使學(xué)生在經(jīng)歷將現(xiàn)實(shí)問(wèn)題符號(hào)化的過(guò)程中,進(jìn)一步體會(huì)二次根式的重要作用,發(fā)展學(xué)生的應(yīng)用意識(shí)。
1.知道什么是二次根式,并會(huì)用二次根式的意義解題;
2.熟記二次根式的性質(zhì),并能靈活應(yīng)用;
通過(guò)二次根式的概念和性質(zhì)的學(xué)習(xí),培養(yǎng)邏輯思維能力;
1.經(jīng)歷將現(xiàn)實(shí)問(wèn)題符號(hào)化的過(guò)程,發(fā)展應(yīng)用的意識(shí);
2.通過(guò)二次根式性質(zhì)的介紹滲透對(duì)稱性、規(guī)律性的數(shù)學(xué)美。
重點(diǎn):(1)二次根式的意義;(2)二次根式中字母的取值范圍;
難點(diǎn):確定二次根式中字母的取值范圍。
啟發(fā)式、講練結(jié)合
多媒體
1課時(shí)
二次根式數(shù)學(xué)教案篇十七
二次根式作為“式子”模塊的最后一個(gè)章節(jié),一般都是緊跟著實(shí)數(shù)這一章下來(lái)的。為什么呢?因?yàn)橹皩W(xué)過(guò)的兩個(gè)式子,整式和分式都有可以類比的“數(shù)”,整式類比正數(shù),整式的因式分解也可以類比整數(shù)的“分解因數(shù)”。
而分式可以類比分?jǐn)?shù)。分?jǐn)?shù)的加減法需要通分,分式的加減也需要通分,分?jǐn)?shù)通分需要尋找最小公倍數(shù)(需要分解質(zhì)因數(shù)),分式通分也是尋找最小公倍“式”(也需要因式分解)。等等類比還有很多。
所以實(shí)數(shù)是本章之前的鋪墊內(nèi)容,整式當(dāng)然也是,所謂二次根式,簡(jiǎn)單理解就是根號(hào)下面一個(gè)整式(當(dāng)然要滿足于要求)。同理分式就是分?jǐn)?shù)線上下都是整式(還有分母必須有子母)。
二次根式數(shù)學(xué)教案篇十八
2.會(huì)運(yùn)用積和商的算術(shù)平方根的性質(zhì),把一個(gè)二次根式化為最簡(jiǎn)二次根式,數(shù)學(xué)教案-最簡(jiǎn)二次根式 教學(xué)設(shè)計(jì)示例2。
最簡(jiǎn)二次根式的定義。
一個(gè)二次根式化成最簡(jiǎn)二次根式的方法。
1.把下列各根式化簡(jiǎn),并說(shuō)出化簡(jiǎn)的根據(jù):
2.引導(dǎo)學(xué)生觀察考慮:
化簡(jiǎn)前后的根式,被開方數(shù)有什么不同?
化簡(jiǎn)前的被開方數(shù)有分?jǐn)?shù),分式;化簡(jiǎn)后的被開方數(shù)都是整數(shù)或整式,且被開方數(shù)中開得盡方的因數(shù)或因式,被移到根號(hào)外。
3.啟發(fā)學(xué)生回答:
二次根式,請(qǐng)同學(xué)們考慮一下被開方數(shù)符合什么條件的二次根式叫做最簡(jiǎn)二次根式?
滿足下列兩個(gè)條件的二次根式叫做最簡(jiǎn)二次根式:
(1)被開方數(shù)的因數(shù)是整數(shù),因式是整式;
(2)被開方數(shù)中不含能開得盡的'因數(shù)或因式,初中數(shù)學(xué)教案《數(shù)學(xué)教案-最簡(jiǎn)二次根式 教學(xué)設(shè)計(jì)示例2》。
最簡(jiǎn)二次根式定義中第(1)條說(shuō)明被開方數(shù)不含有分母;分母是1的例外。第(2)條說(shuō)明被開方數(shù)中每個(gè)因式的指數(shù)小于2;特別注意被開方數(shù)應(yīng)化為因式連乘積的形式。
下列各根式是否為最簡(jiǎn)二次根式,不是最簡(jiǎn)二次根式的說(shuō)明原因:
例1 把下列各式化成最簡(jiǎn)二次根式:
例2 把下列各式化成最簡(jiǎn)二次根式:
把二次根式化成最簡(jiǎn)二次根式的根據(jù)是什么?應(yīng)用了什么方法?
當(dāng)被開方數(shù)為整數(shù)或整式時(shí),把被開方數(shù)進(jìn)行因數(shù)或因式分解,根據(jù)積的算術(shù)平方根的性質(zhì),把開得盡方的因數(shù)或因式用它的算術(shù)平方根代替移到根號(hào)外面去。
當(dāng)被開方數(shù)是分?jǐn)?shù)或分式時(shí),根據(jù)分式的基本性質(zhì)和商的算術(shù)平方根的性質(zhì)化去分母。
此方法是先根據(jù)分式的基本性質(zhì)把被開方數(shù)的分母化成能開得盡方的因式,然后分子、分母再分別化簡(jiǎn)。
1.把下列各式化成最簡(jiǎn)二次根式:
2.判斷下列各根式,哪些是最簡(jiǎn)二次根式?哪些不是最簡(jiǎn)二次根式?如果不是,把它化成最簡(jiǎn)二次根式。
二次根式數(shù)學(xué)教案篇十九
要判斷幾個(gè)根式是不是同類二次根式,須先化簡(jiǎn)根號(hào)里面的數(shù),把非最簡(jiǎn)二次根式化成最簡(jiǎn)二次根式,然后判斷。判斷兩個(gè)最簡(jiǎn)二次根式是否為同類二次根式,其依據(jù)是“被開方數(shù)是否相同”,與根號(hào)外的因式無(wú)關(guān)。
1、被開方數(shù)中不含能開得盡方的.因數(shù)或因式;
2、被開方數(shù)的因數(shù)是整數(shù),因式是整式。
【本文地址:http://www.aiweibaby.com/zuowen/18380459.html】