教案中的教學(xué)策略和方法選擇對于教學(xué)效果至關(guān)重要。教案的編寫要充分利用教學(xué)資源,提高教學(xué)資源的利用效率。以下是一些教學(xué)設(shè)計的范例,供大家參考,希望能夠激發(fā)大家的創(chuàng)新思維。
二次根式數(shù)學(xué)教案篇一
重難點分析。
本節(jié)課的重點是二次根式的加、減、乘、除、乘方、開方的混合運算及分母有理化。它是以二次根式的概念和性質(zhì)為基礎(chǔ),同時又緊密地聯(lián)系著整式、分式的運算,也可以說它是運算問題在初中階段一次總結(jié)性,提高性綜合學(xué)習(xí);二次根式的運算和有理化的方法與技巧,能夠進(jìn)一步開拓學(xué)生的解題思路,提高學(xué)生的解題能力。
本節(jié)課的難點是把分母中含有兩個二次根式的式子進(jìn)行分母有理化。分母有理化,實際上二次根式的除法與混合運算的綜合運用。分母有理化的過程,一般地,先確定分母的有理化因式,然后再根據(jù)分式的基本性質(zhì)把分子、分母都乘以這個有理化因式,就可使分母有理化。所以對初學(xué)者來說,這一過程容易出現(xiàn)找錯有理化因式和計算出錯的問題。
教法建議。
1.在知識的引入上,可采取復(fù)習(xí)引入方式,比如復(fù)習(xí)有理數(shù)的混合運算或整式的運算。
2.在二次根式的加減、乘法混合運算中,要注意由淺入深的層次安排,從單項式與多項式相乘、多項式與多項式到乘法公式的應(yīng)用,逐漸從數(shù)過渡到帶有字母的式。
3.在有理化因式教學(xué)中,要多出幾組題目從不同角度要求學(xué)生辨別,并及時總結(jié)。
學(xué)生特點:實驗班的a層學(xué)生(數(shù)學(xué)實施分層教學(xué)),主動學(xué)習(xí)積極性高,基礎(chǔ)扎實,思維活躍,,并具有一定的獨立分析問題,探索問題,歸納概括問題的能力,有較好的思考、質(zhì)疑的習(xí)慣。
教材特點:本節(jié)課是在學(xué)習(xí)了二次根式的三個重要概念(最簡二次根式、同類二次根式、分母有理化)和二次根式的有關(guān)運算(二次根式的乘法、二次根式的除法、二次根式的加減法)基礎(chǔ)上,將加、減、乘、除、乘方、開方運算綜合在一起的混合運算的學(xué)習(xí)。
鑒于學(xué)生的特點及教材的特點,本節(jié)課主要采用“互動式”的課堂教學(xué)模式及“談話式”的教學(xué)方法,以此實現(xiàn)生生互動、師生互動、學(xué)生與教材之間的互動。具體說明如下:
(一)在師生互動方面,教師注重問題設(shè)計,注重引導(dǎo)、點撥及提高性總結(jié)。使學(xué)生學(xué)中有思、思中有獲。如本節(jié)課開始,出示書中例題1:
強調(diào):運算順序及運算律和有理數(shù)相同。
(二)在學(xué)生與學(xué)生的互動上,教師注重活動設(shè)計,使學(xué)生學(xué)中有樂,樂中悟道。教師設(shè)計一組題目,讓學(xué)生以競賽的形式解答,然后以記成績的方法讓其它同學(xué)說出優(yōu)點(簡便方法及靈活之處)與錯誤。由于本節(jié)課主要以計算為主,對運算法則及規(guī)律性的基礎(chǔ)知識,學(xué)生很容易掌握而且從意識上認(rèn)為本節(jié)課太簡單,不會很感興趣,所以為了提高學(xué)生的學(xué)習(xí)興趣及更好的抓好基礎(chǔ),提高學(xué)生的運算能力,如此這般設(shè)計。
(三)在個體與群體的互動方式上,教師注重合作設(shè)計,使學(xué)生學(xué)中有辯,辯中求同。如本節(jié)課中對重點問題:“分母有理化”的教學(xué),出示一個題目,讓學(xué)生思考,找個別學(xué)生說出自己的想法,然后其它同學(xué)補充完成。
學(xué)生的主體意識和自主能力不是生來就有的,主要靠教師的激勵和主導(dǎo),才能達(dá)到彼此互動。正是在這一教育思想的指導(dǎo)下,追求學(xué)生的認(rèn)知活動與情感活動的協(xié)調(diào)發(fā)展,有效地喚起學(xué)生的主體意識,在和諧、愉快的情境中達(dá)到師生互動,生生互動。互動式教學(xué)模式的目的是讓教師樂教、會教、善教,促使學(xué)生樂學(xué)、會學(xué)、善學(xué),從而優(yōu)化課堂教學(xué)、提高教學(xué)質(zhì)量,在和諧、愉快的情景中實現(xiàn)教與學(xué)的共振。
二次根式數(shù)學(xué)教案篇二
重難點分析。
本節(jié)課的重點是二次根式的加、減、乘、除、乘方、開方的混合運算及分母有理化。它是以二次根式的概念和性質(zhì)為基礎(chǔ),同時又緊密地聯(lián)系著整式、分式的運算,也可以說它是運算問題在初中階段一次總結(jié)性,提高性綜合學(xué)習(xí);二次根式的運算和有理化的方法與技巧,能夠進(jìn)一步開拓學(xué)生的解題思路,提高學(xué)生的解題能力。
本節(jié)課的難點是把分母中含有兩個二次根式的式子進(jìn)行分母有理化。分母有理化,實際上二次根式的除法與混合運算的綜合運用。分母有理化的過程,一般地,先確定分母的有理化因式,然后再根據(jù)分式的基本性質(zhì)把分子、分母都乘以這個有理化因式,就可使分母有理化。所以對初學(xué)者來說,這一過程容易出現(xiàn)找錯有理化因式和計算出錯的問題。
教法建議。
1.在知識的引入上,可采取復(fù)習(xí)引入方式,比如復(fù)習(xí)有理數(shù)的混合運算或整式的運算。
2.在二次根式的加減、乘法混合運算中,要注意由淺入深的層次安排,從單項式與多項式相乘、多項式與多項式到乘法公式的應(yīng)用,逐漸從數(shù)過渡到帶有字母的式。
3.在有理化因式教學(xué)中,要多出幾組題目從不同角度要求學(xué)生辨別,并及時總結(jié)。
學(xué)生特點:實驗班的a層學(xué)生(數(shù)學(xué)實施分層教學(xué)),主動學(xué)習(xí)積極性高,基礎(chǔ)扎實,思維活躍,,并具有一定的獨立分析問題,探索問題,歸納概括問題的能力,有較好的思考、質(zhì)疑的習(xí)慣。
教材特點:本節(jié)課是在學(xué)習(xí)了二次根式的三個重要概念(最簡二次根式、同類二次根式、分母有理化)和二次根式的有關(guān)運算(二次根式的乘法、二次根式的除法、二次根式的加減法)基礎(chǔ)上,將加、減、乘、除、乘方、開方運算綜合在一起的混合運算的學(xué)習(xí)。
鑒于學(xué)生的特點及教材的特點,本節(jié)課主要采用“互動式”的課堂教學(xué)模式及“談話式”的教學(xué)方法,以此實現(xiàn)生生互動、師生互動、學(xué)生與教材之間的互動。具體說明如下:
(一)在師生互動方面,教師注重問題設(shè)計,注重引導(dǎo)、點撥及提高性總結(jié)。使學(xué)生學(xué)中有思、思中有獲。如本節(jié)課開始,出示書中例題1:
強調(diào):運算順序及運算律和有理數(shù)相同。
(二)在學(xué)生與學(xué)生的互動上,教師注重活動設(shè)計,使學(xué)生學(xué)中有樂,樂中悟道。教師設(shè)計一組題目,讓學(xué)生以競賽的形式解答,然后以記成績的方法讓其它同學(xué)說出優(yōu)點(簡便方法及靈活之處)與錯誤。由于本節(jié)課主要以計算為主,對運算法則及規(guī)律性的基礎(chǔ)知識,學(xué)生很容易掌握而且從意識上認(rèn)為本節(jié)課太簡單,不會很感興趣,所以為了提高學(xué)生的學(xué)習(xí)興趣及更好的抓好基礎(chǔ),提高學(xué)生的運算能力,如此這般設(shè)計。
(三)在個體與群體的互動方式上,教師注重合作設(shè)計,使學(xué)生學(xué)中有辯,辯中求同。如本節(jié)課中對重點問題:“分母有理化”的教學(xué),出示一個題目,讓學(xué)生思考,找個別學(xué)生說出自己的想法,然后其它同學(xué)補充完成。
學(xué)生的主體意識和自主能力不是生來就有的,主要靠教師的激勵和主導(dǎo),才能達(dá)到彼此互動。正是在這一教育思想的指導(dǎo)下,追求學(xué)生的認(rèn)知活動與情感活動的協(xié)調(diào)發(fā)展,有效地喚起學(xué)生的主體意識,在和諧、愉快的情境中達(dá)到師生互動,生生互動?;邮浇虒W(xué)模式的目的是讓教師樂教、會教、善教,促使學(xué)生樂學(xué)、會學(xué)、善學(xué),從而優(yōu)化課堂教學(xué)、提高教學(xué)質(zhì)量,在和諧、愉快的情景中實現(xiàn)教與學(xué)的共振。
復(fù)習(xí):
1.計算:(1);(2).
解:(1)(2)。
==。
=;=.
2.在整式乘法中,單項式與多項式相乘的法則是什么?多項式與多項式的乘法法則是什么?什么是完全平方式?分別用式子表示出來。
m(a+b+c)=ma+mb+mc。
(a+b)(m+n)=am+an+bm+bn,。
其中a,b,m,n都是單項式。
完全平方式是。
;。
在實數(shù)范圍內(nèi),整式中的乘法法則及乘法公式仍然適用,運用乘法法則及乘法公式可以進(jìn)行二次根式的混合運算。引入新課。
二次根式數(shù)學(xué)教案篇三
1.知識技能:
(1).會進(jìn)行簡單的二次根式的除法運算.
(2).使學(xué)生能利用商的算術(shù)平方根的性質(zhì)進(jìn)行二次根式的化簡與運算.
2.數(shù)學(xué)思考:在學(xué)習(xí)了二次根式乘法的基礎(chǔ)上進(jìn)行總結(jié)對比,得出除法的運算法則.
3.解決問題:引導(dǎo)學(xué)生從特殊到一般總結(jié)歸納的方法以及類比的方法,解決數(shù)學(xué)問題.
4.情感態(tài)度:通過本節(jié)課的學(xué)習(xí)使學(xué)生認(rèn)識到事物之間是相互聯(lián)系的,相互作用的.
二次根式數(shù)學(xué)教案篇四
教法:
2、講練結(jié)合法:在例題教學(xué)中,引導(dǎo)學(xué)生閱讀,與平方根進(jìn)行類比,獲得解決問題的方法后配以精講,并進(jìn)行分層練習(xí),培養(yǎng)學(xué)生的閱讀習(xí)慣和規(guī)范的解題格式。
學(xué)法:
1、類比的方法通過觀察、類比,使學(xué)生感悟二次根式的模型,形成有效的學(xué)習(xí)策略。
2、閱讀的方法讓學(xué)生閱讀教材及材料,體驗一定的閱讀方法,提高閱讀能力。
3、分組討論法將自己的意見在小組內(nèi)交換,達(dá)到取長補短,體驗學(xué)習(xí)活動中的交流與合作。
4、練習(xí)法采用不同的練習(xí)法,鞏固所學(xué)的知識;利用教材進(jìn)行自檢,小組內(nèi)進(jìn)行他檢,提高學(xué)生的素質(zhì)。
二次根式數(shù)學(xué)教案篇五
一、教學(xué)目標(biāo)。
1.理解分母有理化與除法的關(guān)系.。
4.通過學(xué)習(xí)分母有理化與除法的關(guān)系,向?qū)W生滲透轉(zhuǎn)化的數(shù)學(xué)思想。
二、教學(xué)設(shè)計。
小結(jié)、歸納、提高。
三、重點、難點解決辦法。
1.教學(xué)重點:分母有理化.。
2.教學(xué)難點:分母有理化的技巧.。
四、課時安排。
1課時。
五、教具學(xué)具準(zhǔn)備。
投影儀、膠片、多媒體。
六、師生互動活動設(shè)計。
復(fù)習(xí)小結(jié),歸納整理,應(yīng)用提高,以學(xué)生活動為主。
七、教學(xué)過程()。
【復(fù)習(xí)提問】。
例1說出下列算式的運算步驟和順序:
(1)(先乘除,后加減).。
(2)(有括號,先去括號;不宜先進(jìn)行括號內(nèi)的運算).。
(3)辨別有理化因式:
有理化因式:與,與,與…。
不是有理化因式:與,與…。
例如,、、等式子的化簡,如果分母是兩個二次根式的和,應(yīng)該怎樣化簡?
引入新課題.。
【引入新課】。
例2把下列各式的分母有理化:
(1);(2);(3)。
解:略.。
(二)隨堂練習(xí)。
1.把下列各式的分母有理化:
(1);(2);
(3);(4).。
解:(1).。
(2).。
另解:.。
(3)。
.
另解:.。
通過以上例題和練習(xí)題,可以看出,有關(guān)二次根式的除法,可先寫成分式的形式,然后通過分母有理化進(jìn)行運算,例如:
現(xiàn)將分母有理化就可以了.。
學(xué)生易發(fā)生如下錯誤將式子變形為而正確的做法是.。
2.計算:
(1);
(2);
(3).。
解:(1)。
.
(2)。
.
(3)。
.
(三)小結(jié)。
2.注意對有理化因式的概括并尋找出它的規(guī)律.。
(2)練習(xí):教材p202中1、2.。
(四)布置作業(yè)。
教材p205中4、5.。
(五)板書設(shè)計。
標(biāo)題。
1.復(fù)習(xí)內(nèi)容3.練習(xí)題一。
2.例44.練習(xí)題二。
二次根式數(shù)學(xué)教案篇六
重難點分析。
本節(jié)的重點是的化簡.本章自始至終圍繞著二次根式的化簡與計算進(jìn)行,而的化簡不但涉及到前面學(xué)習(xí)過的算術(shù)平方根、二次根式等概念與二次根式的運算性質(zhì),還要牽涉到絕對值以及各種非負(fù)數(shù)、因式分解等知識,在應(yīng)用中常常需要對字母進(jìn)行分類討論.
本節(jié)的難點是正確理解與應(yīng)用公式。
這個公式的表達(dá)形式對學(xué)生來說,比較生疏,而實際運用時,則要牽涉到對字母取值范圍的討論,學(xué)生往往容易出現(xiàn)錯誤.
教法建議。
1.性質(zhì)的引入方法很多,以下2種比較常用:
(1)設(shè)計問題引導(dǎo)啟發(fā):由設(shè)計的問題。
1)、、各等于什么?
2)、、各等于什么?
啟發(fā)、引導(dǎo)學(xué)生猜想出。
(2)從算術(shù)平方根的意義引入.。
2.性質(zhì)的鞏固有兩個方面需要注意:
(1)注意與性質(zhì)進(jìn)行對比,可出幾道類型不同的題進(jìn)行比較;
(第1課時)。
一、教學(xué)目標(biāo)。
3.通過本節(jié)的學(xué)習(xí)滲透分類討論的數(shù)學(xué)思想和方法。
二、教學(xué)設(shè)計。
對比、歸納、總結(jié)。
三、重點和難點。
四、課時安排。
1課時。
五、教具學(xué)具準(zhǔn)備。
投影儀、膠片、多媒體。
六、師生互動活動設(shè)計。
復(fù)習(xí)對比,歸納整理,應(yīng)用提高,以學(xué)生活動為主。
七、教學(xué)過程。
一、導(dǎo)入新課。
我們知道,式子()表示非負(fù)數(shù)的算術(shù)平方根.。
問:式子的意義是什么?被開方數(shù)中的表示的是什么數(shù)?
答:式子表示非負(fù)數(shù)的算術(shù)平方根,即,且,從而可以取任意實數(shù).。
二、新課。
計算下列各題,并回答以下問題:
(1);(2);(3);
(4);(5);(6)。
(7);(8)。
1.各小題中被開方數(shù)的冪的底數(shù)都是什么數(shù)?
2.各小題的結(jié)果和相應(yīng)的被開方數(shù)的冪的底數(shù)有什么關(guān)系?
3.用字母表示被開方數(shù)的冪的底數(shù),將有怎樣的結(jié)論?并用語言敘述你的結(jié)論.。
答:
(1);(2);(3);
(4);(5);(6)。
(7);(8).。
3.用字母表示(1),(2),(3),(8)各題中被開方數(shù)的冪的底數(shù),有。
(),
用字母表示(4),(5),(6),(7)各題中被開方數(shù)的冪的底數(shù),有。
().。
問:請把上述討論結(jié)論,用一個式子表示.(注意表示條件和結(jié)論)。
答:
請同學(xué)回憶實數(shù)的絕對值的代數(shù)意義,它和上述二次根式的性質(zhì)有什么聯(lián)系?
答:
填空:
1.當(dāng)_________時,;
2.當(dāng)時,,當(dāng)時,;
3.若,則________;
4.當(dāng)時,.。
答:
1.當(dāng)時,;
2.當(dāng)時,,
當(dāng)時,;
3.若,則;
4.當(dāng)時,.。
例1化簡().。
分析:可以利用積的算術(shù)平方根的性質(zhì)及二次根式的性質(zhì)化簡.。
解,因為,所以,所以。
.
指出:在化簡和運算過程中,把先寫成,再根據(jù)已知條件中的取值范圍,確定其結(jié)果.。
例2化簡().。
解.。
例3化簡:(1)();(2)().。
解(1).。
(2).。
注意:(1)題中的被開方數(shù),因為,所以.。
(2)題中的被開方數(shù),因為,所以.。
這里的取值范圍,在已知條件中沒有直接給出,但可以由已知條件分析而得出.。
例4化簡.。
.
所以要比較與3及1與的大小以確定及的符號,然后再進(jìn)行化簡.。
解因為,,所以。
.
所以。
.
三、課堂練習(xí)。
1.求下列各式的值:
(1);(2).。
2.化簡:
(1);(2);
(3)();(4)().。
3.化簡:
(1);(2);
(3);(4);
(5);(6)().。
答案:
1.(1)0.1;(2).。
2.(1);(2);(3);(4).。
3.(1)4;(2)1.5;(3)0.09;(4)-1;(5)4;(6)-1.。
四、小結(jié)。
1.二次根式的意義是,所以,因此,其中可以取任意實數(shù).。
五、作業(yè)。
1.化簡:
(1);(2);
(3)();(4)();
(5);(6)(,);
(7)().。
2.化簡:
(1);
(2)();
(3)(,).。
答案:
1.(1)-30;(2);(3);
(4);(5);(6);(7).。
2.(1)2;(2)0;(3).。
二次根式數(shù)學(xué)教案篇七
2、能力目標(biāo):能熟練進(jìn)行二次根式的加減運算,能通過二次根式的加減法運算解決實際問題。
3、情感態(tài)度:培養(yǎng)學(xué)生善于思考,一絲不茍的科學(xué)精神。
重點:能熟練進(jìn)行二次根式的加減運算。
難點:正確合并被開方數(shù)相同的二次根式,二次根式加減法的實際應(yīng)用。
教學(xué)關(guān)鍵:通過復(fù)習(xí)舊知識,運用類比思想方法,達(dá)到溫故知新的目的;運用創(chuàng)設(shè)問題激發(fā)學(xué)生求知欲;通過學(xué)生全面參與學(xué)習(xí)(分層次要求),達(dá)到每個學(xué)生在學(xué)習(xí)數(shù)學(xué)上有不同的發(fā)展。
運用教具:小黑板等。
問題與情景。
師生活動。
設(shè)計目的。
活動一:
情景引入,導(dǎo)學(xué)展示。
這道題是舊知識的回顧,老師可以找同學(xué)直接回答。對于問題,老師要關(guān)注:學(xué)生是否能熟練得到正確答案。教師傾聽學(xué)生的交流,指導(dǎo)學(xué)生探究。
問:什么樣的二次根式能進(jìn)行加減運算,運算到那一步為止。
由此也可以看到只有通過找出被開方數(shù)相同的二次根式的途徑,才能進(jìn)行加減。
加強新舊知識的聯(lián)系。通過觀察,初步認(rèn)識同類二次根式。
3、a、b層同學(xué)自主學(xué)習(xí)15頁例1、例2、例3,c層同學(xué)至少完成例1、例2的學(xué)習(xí)。
例1.計算:
(1);
(2)-;
例2.計算:
1)。
2)。
活動二:分層練習(xí),合作互助。
1、下列計算是否正確?為什么?
(1)。
(2);
(3)。
2、計算:
(1);
(2)。
(3)。
(4)。
3、(見課本16頁)。
補充:
活動三:分層檢測,反饋小結(jié)。
教材17頁習(xí)題:
a層、b層:2、3.
c層1、2.
小結(jié):
這節(jié)課你學(xué)到了什么知識?你有什么收獲?
作業(yè):課堂練習(xí)冊第5、6頁。
自學(xué)的同時抽查部分同學(xué)在黑板上板書計算過程。抽2名c層同學(xué)在黑板上完成例1板書過程,學(xué)生在計算時若出現(xiàn)錯誤,抽2名b層同學(xué)訂正。抽2名b層同學(xué)在黑板上完成例2板書過程,若出現(xiàn)錯誤,再抽2名a層同學(xué)訂正。抽1名a層同學(xué)在黑板上完成例3板書過程,并做適當(dāng)?shù)姆治鲋v解。
此題是聯(lián)系實際的題目,需要學(xué)生先列式,再計算。并將結(jié)果精確到0.1m,學(xué)生考慮問題要全面,不能漏掉任何一段鋼材。
老師提示:
1)解決問題的方案是否得當(dāng);2)考慮的問題是否全面。3)計算是否準(zhǔn)確。
a層同學(xué)完成16頁練習(xí)1、2、3;b層同學(xué)完成練習(xí)1、2,可選做第3題;c層同學(xué)盡量完成練習(xí)1、2。多數(shù)同學(xué)完成后,讓學(xué)生在小組內(nèi)互相檢查,有問題時共同分析矯正或請教老師。也可以抽查部分同學(xué)。例如:抽3名c層同學(xué)口答練習(xí)1;抽4名b層或c層同學(xué)在黑板上板書練習(xí)第2題;抽1名a層或b層同學(xué)在黑板上板書練習(xí)第3題后再分析講解。
3)運算法則的運用是否正確。
先測試,再小組內(nèi)互批,查找問題。學(xué)生反思本節(jié)課學(xué)到的知識,談自己的感受。
小結(jié)時教師要關(guān)注:
1)學(xué)生是否抓住本課的重點;
2)對于常見錯誤的認(rèn)識。
把學(xué)習(xí)目標(biāo)由高到低分為a、b、c三個層次,教學(xué)中做到分層要求。
學(xué)生學(xué)習(xí)經(jīng)歷由淺到深的過程,可以提高學(xué)生能力,同時有利于激發(fā)學(xué)生的探索知識的欲望。
將運算融入實際問題中去,提高了學(xué)生的學(xué)習(xí)興趣和對數(shù)學(xué)知識的應(yīng)用意識和能力。
小組成員互相檢查學(xué)生對于新的知識掌握的情況,鞏固學(xué)生剛掌握的知識能力。達(dá)到共同把關(guān)、合作互助的目的。
培養(yǎng)學(xué)生的計算的準(zhǔn)確性,以培養(yǎng)學(xué)生科學(xué)的精神。
對課堂的問題及時反饋,使學(xué)生熟練掌握新知識。
每個學(xué)生對于知識的理解程度不同,學(xué)生回答時教師要多鼓勵學(xué)生。
二次根式數(shù)學(xué)教案篇八
2.會運用積和商的算術(shù)平方根的性質(zhì),把一個二次根式化為最簡二次根式。
最簡二次根式的定義。
一個二次根式化成最簡二次根式的方法。
1.把下列各根式化簡,并說出化簡的根據(jù):
2.引導(dǎo)學(xué)生觀察考慮:
化簡前后的根式,被開方數(shù)有什么不同?
化簡前的被開方數(shù)有分?jǐn)?shù),分式;化簡后的被開方數(shù)都是整數(shù)或整式,且被開方數(shù)中開得盡方的因數(shù)或因式,被移到根號外。
3.啟發(fā)學(xué)生回答:
二次根式,請同學(xué)們考慮一下被開方數(shù)符合什么條件的二次根式叫做最簡二次根式?
1.總結(jié)學(xué)生回答的內(nèi)容后,給出最簡二次根式定義:
滿足下列兩個條件的二次根式叫做最簡二次根式:
(1)被開方數(shù)的因數(shù)是整數(shù),因式是整式;
(2)被開方數(shù)中不含能開得盡的因數(shù)或因式。
最簡二次根式定義中第(1)條說明被開方數(shù)不含有分母;分母是1的例外。第(2)條說明被開方數(shù)中每個因式的指數(shù)小于2;特別注意被開方數(shù)應(yīng)化為因式連乘積的形式。
2.練習(xí):
下列各根式是否為最簡二次根式,不是最簡二次根式的說明原因:
3.例題:
例1 把下列各式化成最簡二次根式:
例2 把下列各式化成最簡二次根式:
4.總結(jié)
把二次根式化成最簡二次根式的根據(jù)是什么?應(yīng)用了什么方法?
當(dāng)被開方數(shù)為整數(shù)或整式時,把被開方數(shù)進(jìn)行因數(shù)或因式分解,根據(jù)積的算術(shù)平方根的性質(zhì),把開得盡方的因數(shù)或因式用它的算術(shù)平方根代替移到根號外面去。
當(dāng)被開方數(shù)是分?jǐn)?shù)或分式時,根據(jù)分式的基本性質(zhì)和商的算術(shù)平方根的性質(zhì)化去分母。
此方法是先根據(jù)分式的基本性質(zhì)把被開方數(shù)的分母化成能開得盡方的因式,然后分子、分母再分別化簡。
1.把下列各式化成最簡二次根式:
2.判斷下列各根式,哪些是最簡二次根式?哪些不是最簡二次根式?如果不是,把它化成最簡二次根式。
本節(jié)課學(xué)習(xí)了最簡二次根式的定義及化簡二次根式的方法。同學(xué)們掌握用最簡二次根式的定義判斷一個根式是否為最簡二次根式,要根據(jù)積的算術(shù)平方根和商的算術(shù)平方根的性質(zhì)把一個根式化成最簡二次根式,特別注意當(dāng)被開方數(shù)為多項式時要進(jìn)行因式分解,被開方數(shù)為兩個分?jǐn)?shù)的和則要先通分,再化簡。
下列各式化成最簡二次根式:
二次根式數(shù)學(xué)教案篇九
1、知識與技能:了解二次根式的概念,能求根號內(nèi)字母范圍,理解二次根式的雙重非負(fù)性,并能應(yīng)用它解決相關(guān)問題。
2、過程與方法:進(jìn)一步體會分類討論的數(shù)學(xué)思想。
3、情感、態(tài)度與價值觀:通過小組合作學(xué)習(xí),體驗在合作探索中學(xué)習(xí)數(shù)學(xué)的樂趣。
1、重點:準(zhǔn)確理解二次根式的概念,并能進(jìn)行簡單的計算。
2、難點:準(zhǔn)確理解二次根式的雙重非負(fù)性。
課本第2― 3頁
一、 課前準(zhǔn)備(預(yù)習(xí)學(xué)案見附件1)
學(xué)生在家中認(rèn)真閱讀理解課本中相關(guān)內(nèi)容的知識,并根據(jù)自己的理解完成預(yù)習(xí)學(xué)案。
二、 課堂教學(xué)
(一)合作學(xué)習(xí)階段。
教師出示課堂教學(xué)目標(biāo)及引導(dǎo)材料,各學(xué)習(xí)小組結(jié)合本節(jié)課學(xué)習(xí)目標(biāo),根據(jù)課堂引導(dǎo)材料中得內(nèi)容,以小組合作的形式,組內(nèi)交流、總結(jié),并記錄合作學(xué)習(xí)中碰到的問題。組內(nèi)各成員根據(jù)課堂引導(dǎo)材料的要求在小組合作的前提下認(rèn)真完成課堂引導(dǎo)材料。教師在巡視中觀察各小組合作學(xué)習(xí)的情況,并進(jìn)行及時的引導(dǎo)、點撥,對普遍存在的問題做好記錄。
(二)集體講授階段。(15分鐘左右)
1. 各小組推選代表依次對課堂引導(dǎo)材料中的問題進(jìn)行解答,不足的本組成員可以補充。
2. 教師對合作學(xué)習(xí)中存在的普遍的不能解決的問題進(jìn)行集體講解。
3. 各小組提出本組學(xué)習(xí)中存在的困惑,并請其他小組幫助解答,解答不了的由教師進(jìn)行解答。
(三)當(dāng)堂檢測階段
為了及時了解本節(jié)課學(xué)生的學(xué)習(xí)效果,及對本節(jié)課進(jìn)行及時的鞏固,對學(xué)生進(jìn)行當(dāng)堂檢測,測試完試卷上交。
(注:合作學(xué)習(xí)階段與集體講授階段可以根據(jù)授課內(nèi)容進(jìn)行適當(dāng)調(diào)整次序或交叉進(jìn)行)
三、 課后作業(yè)(課后作業(yè)見附件2)
教師發(fā)放根據(jù)本節(jié)課所學(xué)內(nèi)容制定的針對性作業(yè),以幫助學(xué)生進(jìn)一步鞏固提高課堂所學(xué)。
四、板書設(shè)計
課題:二次根式(1)
二次根式概念 例題 例題
二次根式性質(zhì)
反思:
二次根式數(shù)學(xué)教案篇十
新教材打破了舊教材從定義出發(fā),由理論到理論,按部就班的舊格局,創(chuàng)造出從實踐到理論再回到實踐,由淺入深,符合認(rèn)知結(jié)構(gòu)的新模式。本節(jié)首先通過四個實際問題引出二次根式的概念,給出二次根式的意義。然后讓學(xué)生通過二次根式的意義和算術(shù)平方根的意義找出二次根式的三個性質(zhì)。本節(jié)通過學(xué)生所熟悉的實際問題建立二次根式的概念,使學(xué)生在經(jīng)歷將現(xiàn)實問題符號化的過程中,進(jìn)一步體會二次根式的重要作用,發(fā)展學(xué)生的應(yīng)用意識。
1.知道什么是二次根式,并會用二次根式的意義解題;
2.熟記二次根式的性質(zhì),并能靈活應(yīng)用;
通過二次根式的概念和性質(zhì)的學(xué)習(xí),培養(yǎng)邏輯思維能力;
1.經(jīng)歷將現(xiàn)實問題符號化的過程,發(fā)展應(yīng)用的意識;
2.通過二次根式性質(zhì)的介紹滲透對稱性、規(guī)律性的數(shù)學(xué)美。
重點:(1)二次根式的意義;(2)二次根式中字母的取值范圍;
難點:確定二次根式中字母的取值范圍。
啟發(fā)式、講練結(jié)合
多媒體
1課時
二次根式數(shù)學(xué)教案篇十一
本節(jié)是九年級上學(xué)期數(shù)學(xué)的起始課。二次根式的學(xué)習(xí),是對代數(shù)式的進(jìn)一步學(xué)習(xí)。本節(jié)主要經(jīng)歷二次根式的發(fā)生過程及對二次根式的理解。掌握求二次根式的值和二次根式根號內(nèi)字母的取值范圍。為以后的運用二次根式的運算解決實際問題打好基礎(chǔ)。
1、學(xué)習(xí)任務(wù)分析:
通過對數(shù)和平方根、算術(shù)平方根的復(fù)習(xí),鼓勵學(xué)生經(jīng)歷觀察、歸納、類比等方法理解二次根式的概念。在解決實際問題的時候,注意轉(zhuǎn)化思想的滲透。體會分析問題、解決問題的方法,積累數(shù)學(xué)活動經(jīng)驗。比如求二次根式根號內(nèi)的字母的取值范圍,就是將問題轉(zhuǎn)化為不等式來解決。注意學(xué)生數(shù)學(xué)書寫格式的規(guī)范,為以后的學(xué)習(xí)打好基礎(chǔ)。為了使學(xué)生更好地掌握這一部分內(nèi)容,遵循啟發(fā)式教學(xué)原則,用復(fù)習(xí)以前學(xué)過的知識導(dǎo)入新課。設(shè)計合作學(xué)習(xí)活動,引導(dǎo)學(xué)生操作、觀察、探索、交流、發(fā)現(xiàn)、思維,解決實際問題的過程,真正把學(xué)生放到主體位置。
2、學(xué)生的認(rèn)知起點分析:
學(xué)生已掌握數(shù)的平方根和算術(shù)平方根。這為經(jīng)歷二次根式概念的發(fā)生過程做好準(zhǔn)備。另外,學(xué)生對數(shù)的算術(shù)平方根的理解作為基礎(chǔ),經(jīng)歷跟此根式概念的發(fā)生過程,引導(dǎo)學(xué)生對二次根式概念的理解。
案例反思:
以往對這類問題的回答都是全班回答,有些學(xué)生反面信息不能體現(xiàn)出來。采取的`措施是全班舉手勢回答,可以做二次根式的被開方數(shù)舉“布”,若不能舉“拳頭”。使班級能夠全面參與,避免集體回答所體現(xiàn)不出的問題。
2、合作活動:
第一位同學(xué)——出題者:請你按表中的要求寫完后,按順時針方向交給下一位同學(xué);
第二位同學(xué)——解題者:請你按表中的要求解完后,按順時針方向交給下一位同學(xué);
第四位同學(xué)——復(fù)查者:請你一定要把好關(guān)哦!
出題者姓名:
解題者姓名:
1、要使式子的值為實數(shù),求x的取值范圍。
2、寫出x的一個值,使式子的值為有理數(shù),并求出這個有理數(shù)。
3、寫出x的一個值,使式子的值為無理數(shù),并求出這個無理數(shù)。
1、要使式子的值為實數(shù),求x的取值范圍。
2、寫出x的一個值,使式子的值為有理數(shù),并求出這個有理數(shù)。
3、寫出x的一個值,使式子的值為無理數(shù),并求出這個無理數(shù)。
批改者姓名:
復(fù)查者姓名:
《課程標(biāo)準(zhǔn)》突出了學(xué)生在學(xué)習(xí)中的地位--學(xué)生是學(xué)習(xí)的主人,同時,教師的地位、角色發(fā)生了變化,從“主導(dǎo)”變成了“學(xué)生學(xué)習(xí)活動的組織者、引導(dǎo)者和合作者”。合作活動的安排就是對這一課程標(biāo)準(zhǔn)的體現(xiàn)。
二次根式數(shù)學(xué)教案篇十二
2.會運用積和商的算術(shù)平方根的性質(zhì),把一個二次根式化為最簡二次根式。
一個二次根式化成最簡二次根式的方法。
1.把下列各根式化簡,并說出化簡的根據(jù):
2.引導(dǎo)學(xué)生觀察考慮:
化簡前后的根式,被開方數(shù)有什么不同?
化簡前的被開方數(shù)有分?jǐn)?shù),分式;化簡后的被開方數(shù)都是整數(shù)或整式,且被開方數(shù)中開得盡方的因數(shù)或因式,被移到根號外。
3.啟發(fā)學(xué)生回答:
二次根式,請同學(xué)們考慮一下被開方數(shù)符合什么條件的二次根式叫做最簡二次根式?
1.總結(jié)學(xué)生回答的內(nèi)容后,給出最簡二次根式定義:
滿足下列兩個條件的二次根式叫做最簡二次根式:
(1)被開方數(shù)的因數(shù)是整數(shù),因式是整式;。
(2)被開方數(shù)中不含能開得盡的.因數(shù)或因式。
最簡二次根式定義中第(1)條說明被開方數(shù)不含有分母;分母是1的例外。第(2)條說明被開方數(shù)中每個因式的指數(shù)小于2;特別注意被開方數(shù)應(yīng)化為因式連乘積的形式。
2.練習(xí):
下列各根式是否為最簡二次根式,不是最簡二次根式的說明原因:
3.例題:
例1把下列各式化成最簡二次根式:
例2把下列各式化成最簡二次根式:
4.總結(jié)。
把二次根式化成最簡二次根式的根據(jù)是什么?應(yīng)用了什么方法?
當(dāng)被開方數(shù)為整數(shù)或整式時,把被開方數(shù)進(jìn)行因數(shù)或因式分解,根據(jù)積的算術(shù)平方根的性質(zhì),把開得盡方的因數(shù)或因式用它的算術(shù)平方根代替移到根號外面去。
當(dāng)被開方數(shù)是分?jǐn)?shù)或分式時,根據(jù)分式的基本性質(zhì)和商的算術(shù)平方根的性質(zhì)化去分母。
此方法是先根據(jù)分式的基本性質(zhì)把被開方數(shù)的分母化成能開得盡方的因式,然后分子、分母再分別化簡。
1.把下列各式化成最簡二次根式:
2.判斷下列各根式,哪些是最簡二次根式?哪些不是最簡二次根式?如果不是,把它化成最簡二次根式。
本節(jié)課學(xué)習(xí)了最簡二次根式的定義及化簡二次根式的方法。同學(xué)們掌握用最簡二次根式的定義判斷一個根式是否為最簡二次根式,要根據(jù)積的算術(shù)平方根和商的算術(shù)平方根的性質(zhì)把一個根式化成最簡二次根式,特別注意當(dāng)被開方數(shù)為多項式時要進(jìn)行因式分解,被開方數(shù)為兩個分?jǐn)?shù)的和則要先通分,再化簡。
【本文地址:http://www.aiweibaby.com/zuowen/18406954.html】