七年級(jí)上冊(cè)從算式到方程教案(精選4篇)

格式:DOC 上傳日期:2023-03-29 14:19:58
七年級(jí)上冊(cè)從算式到方程教案(精選4篇)
時(shí)間:2023-03-29 14:19:58     小編:zdfb

作為一名老師,常常要根據(jù)教學(xué)需要編寫教案,教案是教學(xué)活動(dòng)的依據(jù),有著重要的地位。那么我們?cè)撊绾螌懸黄^為完美的教案呢?下面是小編整理的優(yōu)秀教案范文,歡迎閱讀分享,希望對(duì)大家有所幫助。

七年級(jí)上冊(cè)從算式到方程教案篇一

1.知識(shí)與技能

(1)通過(guò)觀察,歸納一元一次方程的概念.

(2)根據(jù)方程解的概念,會(huì)估算出簡(jiǎn)單的一元一次方程的解.

2.過(guò)程與方法.

通過(guò)對(duì)多種實(shí)際問題的分析,感受方程作為刻畫現(xiàn)實(shí)世界有效模型的意義.

3.情感態(tài)度與價(jià)值觀

鼓勵(lì)學(xué)生進(jìn)行觀察思考,發(fā)展合作交流的意識(shí)和能力.

重、難點(diǎn)與關(guān)鍵

1.重點(diǎn):了解一元一次方程的有關(guān)概念,會(huì)根據(jù)已知條件,設(shè)未知數(shù),列出簡(jiǎn)單的一元一次方程,并會(huì)估計(jì)方程的解.

2.難點(diǎn):找出問題中的相等關(guān)系,列出一元一次方程以及估計(jì)方程的解.

3.關(guān)鍵:找出能表示實(shí)際問題的相等關(guān)系.

教具準(zhǔn)備:投影儀.

教學(xué)過(guò)程

一、復(fù)習(xí)提問

在小學(xué)里,我們已學(xué)習(xí)了像2x=50,3x+1=4等簡(jiǎn)單方程,那么什么叫方程呢?什么叫方程的解和解方程呢?

答:含有未知數(shù)的等式叫方程;能使方程等號(hào)兩邊相等的未知數(shù)的值叫方程的解,求方程解的過(guò)程叫解方程.

方程是應(yīng)用廣泛的數(shù)學(xué)工具,把問題中未知數(shù)與已知數(shù)的聯(lián)系用等式形式表示出來(lái).在研究問題時(shí),要分析數(shù)量關(guān)系,用字母表示未知數(shù),列出方程,然后求出未知數(shù).

怎樣根據(jù)問題中的數(shù)量關(guān)系列出方程?怎樣解方程?這是本章研究的問題.

通過(guò)本章中豐富多彩的問題,你將進(jìn)一步感受到方程的作用,并學(xué)習(xí)利用一地一次方 程解決問題的方法.

二、新授

1.怎樣列方程?

讓學(xué)生觀察章前圖表,根據(jù)圖表中給出的信息,回答以下問題.

(1)根據(jù)圖中的汽車勻速行駛途經(jīng)王家莊、青山、秀水三地的時(shí)間表,你知道,汽車從王家莊行駛到青山用了多少時(shí)間?青山到秀水呢?

(2)青山與翠湖、秀水到翠湖的距離分別是多少?

(3)本問題要求什么?

(4)你會(huì)用算術(shù)方法解決這個(gè)實(shí)際問題呢?不妨試試列算式.

(5)如果設(shè)王家莊到翠湖的路程為x(千米),你能列出方程嗎?

解:(1)汽車從王 家莊行駛到青山用了3小時(shí),青山到秀水用了2小時(shí).

(2)青山與翠湖的距離為50 千米,秀水與翠湖的距離為70千米.

(3)王家莊到翠湖的距離是多少千米?

(4)分析:要求王家莊到翠湖的距離,只要求出王家莊到青山的距離,而王家莊到青山的時(shí)間為3小時(shí),所以必需求汽車的速度.

如何求汽車的速度呢?

這里青山到秀水的時(shí)間為2小時(shí),路程為(50+70)千米,因此可求的汽車的平均速度為(50+70)÷2=60(千米/時(shí))

王家莊到青山的路程為:60×3=180(千米)

所以王家莊到翠湖的路程為:180+50=230(千米)

列綜合算式為: ×3+50

(5)分析:先畫出示意圖,示意圖往往有助于分析問題.

從上圖中可以用含x的式子表示關(guān)于路程的數(shù)量:

王家莊距青山(x-50)千米,王家莊距秀水(x+70)千米.

從章前圖表中可以得出關(guān)于時(shí)間的數(shù)量:

從王家莊到青山行車3小時(shí),從王家莊到秀水行車5小時(shí).

由路程數(shù)量和行車時(shí)間的數(shù)量,可以得到行車速度的表達(dá)式.

汽車從王家莊開往青山時(shí)的速度為 千米/時(shí),汽車從王家莊開往秀水的速度為 千米/時(shí).

要列出方程,必需找出“相等關(guān)系”,題目中還有哪些相等關(guān)系嗎?

根據(jù)汽車是勻速行駛的,可知各段路程的車速相等.

于是列出方程:

=

以后我們將學(xué)習(xí)如何解這個(gè)方程,求出未知數(shù)x的值,從而得出王家莊到翠湖的路程.

思考:對(duì)于以上的問題,你還能列出其他方程嗎?如果能,你依據(jù)的是哪個(gè)相等關(guān)系?

根據(jù)汽車勻速行駛,可知各段路程的車速相等.

所以還可以列方程:

= 或 =

(前者是汽車從王家莊到青山與從青山到秀水,這兩段路程的車速相等,后者是汽車從王家莊到翠湖與從青山到秀水,這兩段路程的車速相等)

比較用算術(shù)方法和列方程方法解應(yīng)用題,用算術(shù)方法解題時(shí),列出的算式表示用算術(shù)方法解題的計(jì)算過(guò)程,其中只能用已知數(shù),對(duì)于較復(fù)雜的問題,列算式比較困難;而方程是根據(jù)問題中的等量關(guān)系列出的等式,其中既含有已知數(shù),又含有用字母表示的未知數(shù),有了這個(gè)未知數(shù),問題中的已知量與未知量之間的關(guān)系就很容易用含有這個(gè)未知數(shù)的式子表示,再根據(jù)“相等關(guān)系”列出方程.

有了方程后人們解決許多問題就更方便了,通過(guò)今后的學(xué)習(xí),你會(huì)逐步認(rèn)識(shí):從算式到方程是數(shù)學(xué)的進(jìn)步.

列方程時(shí),要先設(shè)字母表示未知數(shù),通常用x、y、z等字母表示未知數(shù),然后根據(jù)問題中的相等關(guān)系,寫出含有未知數(shù)的等式即方程.

例1:根據(jù)下列問題,設(shè)未知數(shù)并列出方程.

(1)用一根長(zhǎng)24cm的鐵絲圍成一個(gè)正方形,正方形的邊長(zhǎng)是多少?

分析:設(shè)正方形的邊長(zhǎng)為x(cm),那么周長(zhǎng)為4x(cm),依題意,得4x=24.

七年級(jí)上冊(cè)從算式到方程教案篇二

教學(xué)目標(biāo):

1.通過(guò)處理實(shí)際問題,讓學(xué)生體驗(yàn)從算術(shù)方法到代數(shù)方法是一種進(jìn)步.

2.初步學(xué)會(huì)如何尋找問題中的相等關(guān)系,列出方程,了解方程的概念.

3.培養(yǎng)學(xué)生獲取信息、分析問題、處理問題的能力.

教學(xué)重難點(diǎn): 從實(shí)際問題中尋找相等關(guān)系.

教學(xué)過(guò)程:

一、情境引入

提出課本p78的問題,可用多媒體演示題目描述的行駛情境.

1.理解題意:客車比卡車早1小時(shí)經(jīng)過(guò)b地,從這句話中可知客車、卡車行駛的路程和時(shí)間分別有什么關(guān)系?

2.能否列算式求出a、b兩地之間的路程,要求能夠解釋列出的算式表示的實(shí)際意義.

3.提出問題,如果用字母x表示a、b兩地的路程,根據(jù)題意會(huì)得到一個(gè)什么樣的式子?

二、學(xué)習(xí)新知

1.引導(dǎo)學(xué)生把題中的數(shù)量用表格形式反映題意:

路程(km) 速度(km/h) 時(shí)間(h) 卡車 x 60 客車 x 70

2.學(xué)生回顧方程的概念,探討、列出方程,并說(shuō)出列得方程的依據(jù).

3.討論列出方程表示的意義,并對(duì)比算術(shù)方法,體會(huì)列方程解決問題與列算式解決問題的優(yōu)越性.

4.反思:這個(gè)問題中除了a、b兩地的路程是一個(gè)未知量,還有沒有其它的量是未知的?如果還有其它的量是未知的,能否用字母(或未知數(shù)y)表示這個(gè)未知量,列出與前面不同的方程呢?學(xué)生分組討論.

5.將題中的已知量和未知量用表格列出:

路程(km) 速度(km/h) 時(shí)間(h) 卡車 60 y 客車 70 y-1

6.探討:①列出關(guān)于y的方程;②解釋這個(gè)方程表示的實(shí)際意義(或列出這個(gè)方程的依據(jù));③如何求題目問題:a、b之間的路程.

7.總結(jié)以上列出兩個(gè)含不同未知數(shù)x、y的方程的方法:①以路程為未知數(shù),則根據(jù)兩車行駛時(shí)間的關(guān)系列方程.②以行駛時(shí)間為未知數(shù),則從兩車行駛路程的關(guān)系列方程.

8.比較列算式和列方程兩種方法的特點(diǎn):閱讀課本p79.

9.舉一反三:分別列算式和設(shè)未知數(shù)列方程解決下列問題:

(1)某數(shù)與它的的和是8,求這個(gè)數(shù);

(2)班上有女生32人,比男生多,求男生人數(shù);

(3)公園購(gòu)回一批風(fēng)景樹,其中桂花樹占總數(shù)的,樟樹比桂花樹的棵數(shù)多,杉樹比前兩種樹木的棵數(shù)和還多12棵,求這批樹木總共多少棵?

三、初步應(yīng)用

1.例1:課本p79例1.

例2(補(bǔ)充):根據(jù)下列條件,列出關(guān)于x的方程:

(1)x與18的和等于54;

(2)27與x的差的一半等于x的4倍.

列出方程后教師說(shuō)明:“4x”表示4與x的積,當(dāng)乘數(shù)中有字母時(shí),通常省略乘號(hào)“×”,并把數(shù)字乘數(shù)寫在字母乘數(shù)的前面.

2.練習(xí)(補(bǔ)充)

(1)列式表示:

① 比a小9的數(shù); ② x的2倍與3的和;

③ 5與y的差的一半; ④ a與b的7倍的和.

(2)根據(jù)下列條件,列出關(guān)于x的方程:

①12與x的差等于x的2倍;

②x的三分之一與5的和等于6.

四、課時(shí)小結(jié)

1.本節(jié)課我們學(xué)了什么知識(shí)?

2.你有什么收獲?

五、課堂作業(yè)

小青家3月份收入a元,生活費(fèi)花去了三分之一,還剩2400元,求三月份的收入.

第2課時(shí)一元一次方程

教學(xué)目標(biāo):

1.理解一元一次方程、方程的解等概念.

2.掌握檢驗(yàn)?zāi)硞€(gè)值是不是方程的解的方法.

3.培養(yǎng)學(xué)生根據(jù)問題尋找相等關(guān)系、根據(jù)相等關(guān)系列出方程的能力.

4.體驗(yàn)用估算方法尋求方程的解的過(guò)程,培養(yǎng)學(xué)生求實(shí)的態(tài)度.

教學(xué)重點(diǎn):尋找相等關(guān)系,列出方程.

教學(xué)難點(diǎn):對(duì)于復(fù)雜一點(diǎn)的方程,用估算的方法尋求方程的解,需要多次的嘗試,也需要一定的估計(jì)能力.

教學(xué)過(guò)程:

一、情境引入

問題:小雨、小思的年齡和是25.小雨年齡的2倍比小思的年齡大8歲,小雨、小思的年齡各是幾歲?

如果設(shè)小雨的年齡為x歲,你能用不同的方法表示小思的年齡嗎?(25-x,2x-8)

由于這兩個(gè)不同的式子表示的是同一個(gè)量,因此我們又可以寫成:25-x=2x-8,這樣就得到了一個(gè)方程.

二、自主嘗試

1.嘗試:讓學(xué)生嘗試解答課本p79的例1.

2.交流:

在學(xué)生基本完成解答的基礎(chǔ)上,請(qǐng)幾名學(xué)生匯報(bào)所列的方程,并解釋方程等號(hào)左右兩邊式子的含義.

3.教師在學(xué)生回答的基礎(chǔ)上作補(bǔ)充講解,并強(qiáng)調(diào):(1)方程等號(hào)兩邊表示的是同一個(gè)量;(2)左右兩邊表示的方法不同.

4.討論:

問題1:在第(1)題中,你還能用兩種不同的方法來(lái)表示另一個(gè)量,再列出方程嗎?

問題2:在第(3)題中,你還能設(shè)其它的未知數(shù)為x嗎?

5.建立概念

(1)概念的建立:

在學(xué)生觀察上述方程的基礎(chǔ)上,教師進(jìn)行歸納:各方程都只含有一個(gè)未知數(shù),并且未知數(shù)的次數(shù)都是1,這樣的方程叫做一元一次方程.

“一元”:一個(gè)未知數(shù);“一次”:未知數(shù)的指數(shù)是一次.

判斷下列方程是不是一元一次方程:

①23-x=-7;②2a-b=3;

七年級(jí)上冊(cè)從算式到方程教案篇三

【教學(xué)習(xí)目標(biāo)】

一、知識(shí)與技能

1、通過(guò)處理 實(shí)際問題,讓學(xué)生體驗(yàn)從算術(shù)方法到代數(shù)方法是一種進(jìn)步。

2、初步學(xué)會(huì)如何尋找問題中的相等關(guān)系,列出方程,了解方程的概念。

3、培養(yǎng)學(xué)生獲取信息,分析問題,處理問題的能力。

二、過(guò)程與方法

通過(guò)實(shí)際問題,感受數(shù)學(xué)與生活的聯(lián)系。

三、情感態(tài)度與價(jià)值觀

培養(yǎng)學(xué)生熱愛數(shù)學(xué)熱愛生活的樂觀人生態(tài)度。

【教學(xué)方法】

探索式教學(xué)法

教師準(zhǔn)備教學(xué)用課件。

【教學(xué)過(guò)程】

一、新課引入

教師提出教科書第79頁(yè)的問題,同時(shí)出現(xiàn)下圖:

問題2:你會(huì)用算術(shù)方法求出王家莊到翠湖的距離嗎?

問題3:能否用方程的知識(shí)來(lái)解決這個(gè)問題呢?

可以提示學(xué)生從時(shí)間、路程、速度、四地的排列順序等方面去考慮。)

當(dāng)學(xué)生列出不同算式時(shí),應(yīng)讓他們說(shuō)明每個(gè)式子的含義)

教師可以在學(xué)生回答的 基礎(chǔ)上做回顧小結(jié):

1、問題涉及的三個(gè)基本物理量及其關(guān)系;

2、從知的信息中可以求出汽車的速度;

3、從路程的角度可以列出不同的算式 :

如果設(shè)王家莊到翠湖的路程為x千米,那么王家莊距青山 千米,王家莊距秀水 千米.

問題1:題目中的“汽車勻速行駛”是什么意思?

問題2:汽車在王家莊至青山這段路上行駛的速度該怎樣表示?你能表示其他各段路程的車速嗎?

問題3:根據(jù)車速相等,你能列出方程嗎?

教師引導(dǎo)學(xué)生設(shè)未知數(shù),并用含未知數(shù)的字母表示有關(guān)的數(shù)量

教師引導(dǎo)學(xué)生尋找相等關(guān)系,列出方程.

教師根據(jù)學(xué)生的回答情況進(jìn)行分析,如:

依據(jù)“王家莊至青山路段的車速=王家莊至秀水路段的車速”可列方程:

依據(jù)“王家莊至青山路段的車速=青山至秀水路段的車速”

可列方程:

給出方程的概念,介紹等式、等式的左邊、等式的右邊等概念.

含有未知數(shù)的等式叫方程.

七年級(jí)上冊(cè)從算式到方程教案篇四

教學(xué)

目標(biāo) 1、通過(guò)處理實(shí) 際問題,讓學(xué)生體驗(yàn)從算術(shù)方法到代數(shù)方法是一種進(jìn)步。

2、初 步學(xué)會(huì)如何尋 找問題中的相等關(guān)系,列出方程,了解方程的概念。

3、培養(yǎng)學(xué)生獲取信息,分析問題,處理問題的能力 。

教學(xué)過(guò)程 一、情景引入:

教師提出教科書第79頁(yè)的問題,同時(shí)出現(xiàn)下圖:

問題1:從上圖中你能獲得哪些信息?

問題3:能否用方程的知識(shí)來(lái)解決這個(gè)問題呢 ?如果設(shè)王家莊到翠湖的路程為x千米,那么王家莊距 青山 千米,王家莊距秀水 千米.

二.新課講解

問題1:題目中的“汽車勻速行駛”是什么意思?

問題2:汽車在王家莊至青山這段路上行駛的速度該怎樣表示?你能表示其他各段路程的車速嗎?

問題3:根據(jù)車速相等,你能列出方程嗎?

教師引導(dǎo)學(xué)生設(shè) 未知數(shù),并用含未知數(shù)的字母表示有關(guān)的數(shù)量

教師引導(dǎo)學(xué)生尋找相等關(guān) 系,列出方程.

教師根據(jù)學(xué)生的回答情況進(jìn)行分析,如:

依據(jù)“王家莊至青山路段的車速=王家莊至秀水路段的車速”可列方程 :

依據(jù)“王家莊至青山路段的車速=青山至 秀水路段的車速”

可列方程:

對(duì)于上面的問題,你還能列出其他方程嗎?

如果能,你依據(jù)的是哪個(gè)相等關(guān)系?

如果直接設(shè)元,還可列方程:

如果設(shè)王家莊到青山的路程為x千米,那么可以列方程:

依據(jù)各路段的車速相等,也可以先求出汽車到達(dá)翠湖的時(shí)刻:

,再列出方程 =60

三.練習(xí)鞏固

1、例題p/80

2、練習(xí)(補(bǔ)充):

【本文地址:http://www.aiweibaby.com/zuowen/1927562.html】

全文閱讀已結(jié)束,如果需要下載本文請(qǐng)點(diǎn)擊

下載此文檔