作為一名專為他人授業(yè)解惑的人民教師,就有可能用到教案,編寫教案助于積累教學經(jīng)驗,不斷提高教學質(zhì)量。那么教案應該怎么制定才合適呢?以下是小編為大家收集的教案范文,僅供參考,大家一起來看看吧。
一元二次方程教案第一課時篇一
【知識與技能】
理解并掌握一元二次方程求根公式的推導過程,能正確、熟練地運用公式法解一元二次方程。
【過程與方法】
經(jīng)歷探究求根公式的過程,發(fā)展合情推理能力,提高運算能力并養(yǎng)成良好的運算習慣。
【情感、態(tài)度與價值觀】
通過公式法解一元二次方程,感受解法的多樣性,在學習活動中獲取成功的體驗。
【教學重點】
用公式法解一元二次方程。
【教學難點】
一元二次方程求根公式的推導。
(一)引入新課
復習回顧:用配方法解一元二次方程。
配方,得
(四)小結(jié)作業(yè)
作業(yè):課后練習題,試著用多種方法解答。
四、板書設(shè)計
略
一元二次方程教案第一課時篇二
知識技能使學生會用列一元二次方程的方法解決有關(guān)面積、體積方面和經(jīng)濟方面的問題.
提高將實際問題轉(zhuǎn)化為數(shù)學問題的能力以及用數(shù)學的意識,滲透轉(zhuǎn)化的思想、方程的思想及數(shù)形結(jié)合的思想.
解決問題通過列一元二次方程的方法解決日常生活及生產(chǎn)實際中遇到的有關(guān)面積、體積方面和經(jīng)濟方面的問題.
通過探究性學習,抓住問題的關(guān)鍵,揭示它的規(guī)律性,展示解題的簡潔性的數(shù)學美.
審題,從文字語言中挖掘有價值的信息.
會用列一元二次方程的方法解有關(guān)面積、體積方面和經(jīng)濟方面的問題.
師生共同回憶
列方程解應用題的步驟:
(1)審題;(2)設(shè)未知數(shù);
(3)列方程;(4)求解;
(5)檢驗;(6)答.
教師活動:引導學生讀題,找到題目中的關(guān)鍵語句.
學生活動:在關(guān)鍵語句中找到反映相等關(guān)系的語句,探究解決辦法.
教師活動:用多媒體演示分析,解題方法.
如圖,有一塊長80cm,寬60cm的硬紙片,在四個角各剪去一個同樣的小正方形,用剩余部分做成一個底面積為1500cm2的無蓋的長方體盒子.求剪去的.小正方形的邊長.
課堂練習:將一個長方形的長縮短5cm,寬增長3cm,正好得到一個正方形.已知原長方形的面積是正方形面積的,求這個正方形的邊長.
學生活動:在眾多的文字中,找到關(guān)鍵語句,分析相等關(guān)系.
教師活動:用多媒體幫助學生分析試題.提示學生檢驗解的合理性.
復習列方程解應用題的一般步驟.
本題為后面解決有關(guān)面積、體積方面問題做鋪墊.
提高學生的審題能力.使學生會解決有關(guān)面積的問題.
解決體積問題的問題
培養(yǎng)學生用數(shù)學的意識以及滲透轉(zhuǎn)化和方程的思想方法.
強調(diào)對方程的解進行雙重檢驗.
小結(jié)利用一元二次方程解決實際問題時,要注意通過實際要求檢驗根的合理性,要注意審題能力的培養(yǎng).
作業(yè)課本第43頁習題2
課后隨筆(課堂設(shè)計理念,實際教學效果及改進設(shè)想)
一元二次方程教案第一課時篇三
1、知識與能力目標:要求學生會根據(jù)實際問題列出一元二次方程,體會方程的模型思想,培養(yǎng)學生歸納、分析的能力。
2、過程與方法目標:引導學生分析實際問題中的數(shù)量關(guān)系,回顧一元一次方程的概念,組織學生討論,讓學生自己抽象出一元二次方程的概念。
3.、情感、態(tài)度與價值觀:通過數(shù)學建模的分析、思考過程,激發(fā)學生學數(shù)學的興趣,體會做數(shù)學的快樂,培養(yǎng)用數(shù)學的意識并與校園綠化相結(jié)合。
教學重點、難點
教學重點:通過實際問題模型建立一元二次方程的概念,認識一元二次方程一般形式.
2。難點:通過實際問題,建立一元二次方程的數(shù)學模型,再由一元一次方程的概念遷移到一元二次方程的概念。
教學過程:
(一)創(chuàng)設(shè)情景,導入新課
分析:設(shè)長方形綠地的寬為x米,則列方程,
整理可得。
分析:設(shè)長方形綠地的寬為x米,則列方程,
整理可得。
【設(shè)計意圖】因為數(shù)學來源與生活,所以以學生的實際生活背景為素材創(chuàng)設(shè)情景,易于被學生接受、感知。同時幫助學生從實際問題中提煉出數(shù)學問題,初步培養(yǎng)學生的空間概念和抽象能力。情景分析中學生自然會想到用方程來解決問題,但所列的方程不是以前學過的,從而激發(fā)學生的求知欲望,順利地進入新課,并激發(fā)學生環(huán)保意識。
一元二次方程教案第一課時篇四
課標要求熟練掌握用配方法解一元二次方程。配方法和公式法是解一元二次方程的通用方法,它的推導是建立在直接開平方法的基礎(chǔ)上,又是推導求根公式和一元二次方程根與系數(shù)的關(guān)系的基礎(chǔ),更是為今后學生能學好二次函數(shù)打基礎(chǔ),二次函數(shù)的頂點坐標的確定和二次函數(shù)與一元二次方程的關(guān)系息息相關(guān)。再者列一元二次方程解應用題和壓軸題----二次函數(shù)的綜合題是中考試題中常見的題型。一元二次方程是中學數(shù)學的主要內(nèi)容之一,在初中數(shù)學占有重要的地位。
(1)會用配方法解簡單的一元二次方程。
(2)了解用配方法解一元二次方程的一般步驟。
2、過程與方法
(1)理解并掌握配方法。
(2)通過探索配方法的過程,體會轉(zhuǎn)化,降次的數(shù)學思想方法,培養(yǎng)觀察、比較、分析、概括、歸納的能力。
3、情感態(tài)度與價值觀
通過分析實際問題中的數(shù)量關(guān)系,建立一元二次方程模型解決問題,進一步認識方程模型的重要性,增強學生的數(shù)學應用意識與能力。
重點:用配方法解一元二次方程。
難點:配方的過程。
一元二次方程教案第一課時篇五
(1)理解一元二次方程的概念
(2)掌握一元二次方程的.一般形式,會判斷一元二次方程的二次項系數(shù)、一次項系數(shù)和常數(shù)項。
(2)會用因式分解法解一元二次方程
因式分解法解一元二次方程
(一)創(chuàng)設(shè)情景,引入新課
由學生說出這幾個方程的共同特征,從而引出一元二次方程的概念。
(二)新授
1:一元二次方程的概念。(一個未知數(shù)、最高次2次、等式兩邊都是整式)
2:一元二次方程的一般形式(形如ax+bx+c=0)
任一個一元二次方程都可以轉(zhuǎn)化成一般形式,注意二次項系數(shù)不為零
3:講解例子
4:利用因式分解法解一元二次方程
5:講解例子
6:一般步驟
(三)小結(jié)
(四)布置作業(yè)
一元二次方程教案第一課時篇六
一元二次方程概念及一元二次方程一般式及有關(guān)概念、
1、通過設(shè)置問題,建立數(shù)學模型,模仿一元一次方程概念給一元二次方程下定義、
2、一元二次方程的一般形式及其有關(guān)概念、
3、解決一些概念性的題目、
4、態(tài)度、情感、價值觀
4、通過生活學習數(shù)學,并用數(shù)學解決生活中的問題來激發(fā)學生的學習熱情、
一、復習引入
學生活動:列方程、
問題(1)《九章算術(shù)》“勾股”章有一題:“今有戶高多于廣六尺八寸,兩隅相去適一丈,問戶高、廣各幾何?”
整理、化簡,得:__________、
問題(2)如圖,如果,那么點c叫做線段ab的黃金分割點、
整理,得:________、
老師點評并分析如何建立一元二次方程的數(shù)學模型,并整理、
二、探索新知
學生活動:請口答下面問題、
(1)上面三個方程整理后含有幾個未知數(shù)?
(2)按照整式中的'多項式的規(guī)定,它們最高次數(shù)是幾次?
(3)有等號嗎?或與以前多項式一樣只有式子?
解:去括號,得:
移項,得:4x2-26x+22=0
其中二次項系數(shù)為4,一次項系數(shù)為-26,常數(shù)項為22、
解:去括號,得:
x2+2x+1+x2-4=1
移項,合并得:2x2+2x-4=0
其中:二次項2x2,二次項系數(shù)2;一次項2x,一次項系數(shù)2;常數(shù)項-4、
三、鞏固練習
教材p32練習1、2
四、應用拓展
分析:要證明不論取何值,該方程都是一元二次方程,只要證明2-8+17≠0即可、
證明:2-8+17=(-4)2+1
∵(-4)2≥0
∴(-4)2+10,即(-4)2+1≠0
∴不論取何值,該方程都是一元二次方程、
五、歸納小結(jié)(學生總結(jié),老師點評)
本節(jié)課要掌握:
六、布置作業(yè)
一元二次方程教案第一課時篇七
(1)理解一元二次方程的概念
(2)掌握一元二次方程的一般形式,會判斷一元二次方程的二次項系數(shù)、一次項系數(shù)和常數(shù)項。
(2)會用因式分解法解一元二次方程
【教學重點】一元二次方程的概念、一元二次方程的一般形式
【教學難點】因式分解法解一元二次方程
【教學過程】
(一)創(chuàng)設(shè)情景,引入新課
由學生說出這幾個方程的共同特征,從而引出一元二次方程的概念。
(二)新授
1:一元二次方程的概念。(一個未知數(shù)、最高次2次、等式兩邊都是整式)
2:一元二次方程的一般形式(形如ax+bx+c=0)
3:講解例子
4:利用因式分解法解一元二次方程
5:講解例子
6:一般步驟
(三)小結(jié)
(四)布置作業(yè)
一元二次方程教案第一課時篇八
1、構(gòu)建本章的部分知識框圖。
2、復習一元二次方程的概念、解法。
1、通過對本章方程解法的復習,進一步提高學生的運算能力。
2、在解一元二次方程的過程中體會轉(zhuǎn)化等數(shù)學思想。
1、一元二次方程的概念
2、一元二次方程的四種解法:直接開平方法、配方法、公式法、因式分解法;
解法的靈活選擇;例4和例5的解法。
導入新課
問題:本章中,我們有哪些收獲?(教師點撥引導學生構(gòu)建本章部分知識框圖)
共同探究
例1
例2
(1)
解法及其關(guān)系
(2)
根的形式
x1=3
x2=4
(3)熟悉解法
例3用四種解法分別解此方程
(4)方法優(yōu)選
例4
例5
解關(guān)于x的方程
錯誤解法
正確解法
提煉思想
我們有哪些收獲?解方程的思想方法是什么?
鞏固提高
一元二次方程教案第一課時篇九
教材分析:1.本節(jié)以生活中的實際問題為背景,引出一元二次方程的概念,讓學生掌握一元二次方程的特點,歸納出一元二次方程的一般形式,給出一元二次方程的根的概念,并指出一元二次方程的根不唯一。本節(jié)內(nèi)容是在前面所學方程、一元一次方程、整式、方程的解的基礎(chǔ)上進行學習,也是后面學習二次函數(shù)的一個基礎(chǔ)。
2.這些概念是全章后繼內(nèi)容的基礎(chǔ)。
3.讓學生體會數(shù)學來源于生活,又服務于生活的基本思想。
學情分析:1.授課班級學生基礎(chǔ)較差,學生成績參差不齊,差生較多。教學中應給予充分思考的時間,注意講練結(jié)合,以學生為本,體現(xiàn)生本課堂的理念。
2.該班級學生在平時訓練中已經(jīng)形成了良好的合作精神和合作氣氛,可以充分發(fā)揮合作的優(yōu)勢,從而充分調(diào)動學生主動性和積極性,使課堂氣氛活躍,讓學生在愉快的環(huán)境中學習。
3.作為該班的班主任,同時又擔任該班的數(shù)學教學,對學生學習情況有比較深入地了解,在解決具體問題的時候可以兼顧不同能力的學生,充分調(diào)動學生的積極性,在練習題的設(shè)計上要針對學生的差異采取分層設(shè)計的方法,著重加強對學生的雙基訓練。
教學目標:
一知識與技能:
1.理解一元二次方程的概念,能判斷一個方程是一元二次方程。
2.掌握一元二次方程的一般形式,正確認識二次項系數(shù)、一次項系數(shù)及常數(shù)項.
二過程與方法:
1.引導學生分析實際問題中的數(shù)量關(guān)系,組織學生討論,讓學生類比、抽象出一元二次方程的概念。
2.培養(yǎng)獨立思考,合作交流學,分析問題,解決問題的能力。
三情感態(tài)度與價值觀:
1.培養(yǎng)學生主動探究知識、自主學習和合作交流的意識.
2.激發(fā)學生學數(shù)學的興趣,體會學數(shù)學的快樂,培養(yǎng)用數(shù)學的意識.
3.讓學生體會數(shù)學來源于生活,又服務于生活的基本思想,從而意識到數(shù)學在生活中的作用。
教學重點:一元二次方程的概念及一般形式,利用概念解決實際問題。
教學難點:1.由實際問題向數(shù)學問題的轉(zhuǎn)化過程.
2.正確識別一般式中的“項”及“系數(shù)”.
3.一元二次方程的特點,如何判斷一個方程是一元二次方程。
教學過程:
一、創(chuàng)設(shè)情境,引入新課
1.問題1:廣安區(qū)為增加農(nóng)民收入,需要調(diào)整農(nóng)作物種植結(jié)構(gòu),計劃無公害蔬菜的產(chǎn)量比翻一番,要實現(xiàn)這一目標,和20無公害蔬菜產(chǎn)量的年平均增長率是多少?(通過放幻燈片引入)
(1)用代數(shù)式表示20的產(chǎn)量;
(2)年蔬菜的產(chǎn)量比年增加了2x,對嗎?為什么?你能用代數(shù)式表示出來嗎?
學生思考交流得出方程a(1+x)2=2a
整理得,x2+2x-1=0…………①
2.通過幻燈片引入情境,提出問題:
這個問題的相等關(guān)系是什么?
320×200-(320x+2×200x-2x2)=57000
整理得x2-36x+35=0
誰還能換一種思路考慮這個問題?
把6個小花壇拼起來是一個多長多寬的矩形,由此你會得出什么樣的方程?
(320-2x)(200-x)=57000
整理得x2-36x+35=0…………②
比較一下,哪種方法更巧妙?
一元二次方程教案第一課時篇十
(1)理解一元二次方程的概念
(2)掌握一元二次方程的一般形式,會判斷一元二次方程的二次項系數(shù)、一次項系數(shù)和常數(shù)項。
(2)會用因式分解法解一元二次方程
【教學重點】一元二次方程的.概念、一元二次方程的一般形式
【教學難點】因式分解法解一元二次方程
【教學過程】
(一)創(chuàng)設(shè)情景,引入新課
由學生說出這幾個方程的共同特征,從而引出一元二次方程的概念。
(二)新授
1:一元二次方程的概念。(一個未知數(shù)、最高次2次、等式兩邊都是整式)
2:一元二次方程的一般形式(形如ax+bx+c=0)
任一個一元二次方程都可以轉(zhuǎn)化成一般形式,注意二次項系數(shù)不為零
3:講解例子
4:利用因式分解法解一元二次方程
5:講解例子
6:一般步驟
(三)小結(jié)
(四)布置作業(yè)
一元二次方程教案第一課時篇十一
知識與技能目標
1、構(gòu)建本章的部分知識框圖。
2、復習一元二次方程的概念、解法。
過程與方法
1、通過對本章方程解法的復習,進一步提高學生的運算能力。
2、在解一元二次方程的過程中體會轉(zhuǎn)化等數(shù)學思想。
情感、態(tài)度與價值觀
1、一元二次方程的概念
2、一元二次方程的四種解法:直接開平方法、配方法、公式法、因式分解法;
解法的靈活選擇;例4和例5的解法。
導入新課
問題:本章中,我們有哪些收獲?(教師點撥引導學生構(gòu)建本章部分知識框圖)
共同探究
1、復習概念
例1
例2
2、四種解法
(1)
解法及其關(guān)系
(2)
根的形式
x1=3
x2=4
(3)熟悉解法
例3用四種解法分別解此方程
(4)方法優(yōu)選
3、方法補充
例4
4、解法糾錯
例5
解關(guān)于x的方程
錯誤解法
正確解法
提煉思想
我們有哪些收獲?解方程的思想方法是什么?
鞏固提高
一元二次方程教案第一課時篇十二
一元二次方程概念及一元二次方程一般式及有關(guān)概念.
1.通過設(shè)置問題,建立數(shù)學模型,模仿一元一次方程概念給一元二次方程下定義.
2.一元二次方程的一般形式及其有關(guān)概念.
3.解決一些概念性的題目.
4.態(tài)度、情感、價值觀
4.通過生活學習數(shù)學,并用數(shù)學解決生活中的問題來激發(fā)學生的學習熱情.
一、復習引入
學生活動:列方程.
問題(1)《九章算術(shù)》“勾股”章有一題:“今有戶高多于廣六尺八寸,兩隅相去適一丈,問戶高、廣各幾何?”
整理、化簡,得:__________.
問題(2)如圖,如果,那么點c叫做線段ab的黃金分割點.
整理,得:________.
老師點評并分析如何建立一元二次方程的數(shù)學模型,并整理.
二、探索新知
學生活動:請口答下面問題.
(1)上面三個方程整理后含有幾個未知數(shù)?
(2)按照整式中的多項式的規(guī)定,它們最高次數(shù)是幾次?
(3)有等號嗎?或與以前多項式一樣只有式子?
解:去括號,得:
移項,得:4x2-26x+22=0
其中二次項系數(shù)為4,一次項系數(shù)為-26,常數(shù)項為22.
解:去括號,得:
x2+2x+1+x2-4=1
移項,合并得:2x2+2x-4=0
其中:二次項2x2,二次項系數(shù)2;一次項2x,一次項系數(shù)2;常數(shù)項-4.
三、鞏固練習
教材p32練習1、2
四、應用拓展
分析:要證明不論取何值,該方程都是一元二次方程,只要證明2-8+17≠0即可.
證明:2-8+17=(-4)2+1
∵(-4)2≥0
∴(-4)2+10,即(-4)2+1≠0
∴不論取何值,該方程都是一元二次方程.
五、歸納小結(jié)(學生總結(jié),老師點評)
本節(jié)課要掌握:
六、布置作業(yè)
一元二次方程教案第一課時篇十三
1.教學重點:一元二次方程的意義及一般形式.
2.教學難點:正確識別一般式中的“項”及“系數(shù)”.
(一)明確目標
板書:“第十二章一元二次方程”.教師恰當?shù)恼Z言,激發(fā)學生的求知欲和學習興趣.
(二)整體感知
(三)重點、難點的學習及目標完成過程
1.復習提問
(1)什么叫做方程?曾學過哪些方程?
(2)什么叫做一元一次方程?“元”和“次”的含義?
一元二次方程教案第一課時篇十四
1、知識與技能目標:認識一元二次方程,并能分析簡單問題中的數(shù)量關(guān)系列出一元二次方程。
2、過程與方法:學生通過觀察與模仿,建立起對一元二次方程的感性認識,獲得對代數(shù)式的初步經(jīng)驗,鍛煉抽象思維能力。
3、情感態(tài)度與價值觀:學生在獨立思考的過程中,能將生活中的經(jīng)驗與所學的知識結(jié)合起來,形成實事求是的態(tài)度以及進行質(zhì)疑和獨立思考的習慣。
重點:理解一元二次方程的意義,能根據(jù)題目列出一元二次方程,會將不規(guī)則的一元二次方程化成標準的一元二次方程。
難點:找對題目中的數(shù)量關(guān)系從而列出一元二次方程。
(一)導入新課
生:老師,這是雷鋒叔叔。
生:是的老師。
生:想。
師:同學們也都很樂于助人,好那我們看一看這個問題是什么,然后帶著這個問題開始我們今天的學習一元二次方程。
(二)新課教學
師:我們來看到這個題目,要設(shè)計一座2m高的人體雕像,使雕像的上部(腰以上)與下部(腰以下)的高度比,等于下部與全部(全身)的高度比,雕像的下部應設(shè)計為全高?同學們用ac來表示上部,bc來表示下部先簡單列一下這個比例關(guān)系,待會老師下去看看同學們的式子。
(下去巡視)
(三)小結(jié)作業(yè)
師:今天大家學習了一元二次方程,同學們回去還要加強鞏固,做練習題的1、2(2)題。
【本文地址:http://aiweibaby.com/zuowen/19291643.html】