3的倍數(shù)的特征教學反思(9篇)

格式:DOC 上傳日期:2023-03-30 13:54:22
3的倍數(shù)的特征教學反思(9篇)
時間:2023-03-30 13:54:22     小編:zdfb

在日常學習、工作或生活中,大家總少不了接觸作文或者范文吧,通過文章可以把我們那些零零散散的思想,聚集在一塊。寫范文的時候需要注意什么呢?有哪些格式需要注意呢?下面是小編為大家收集的優(yōu)秀范文,供大家參考借鑒,希望可以幫助到有需要的朋友。

3的倍數(shù)的特征教學反思篇一

但上課的過程中,學生并沒有按照我想的思路去進行,一個學生在我沒有預想的前提下說出了3的倍數(shù)的特征,所以我準備讓四人小組去合作交流發(fā)現(xiàn)3的倍數(shù)的特征也沒有進行。只是讓學生兩人去再說一說剛才那個學生的發(fā)現(xiàn),加以理解,鞏固。

這節(jié)課結束后,我感覺以下方面做得不好。

1、備課不充分。自己在備課時沒有好好的去備學生,沒有做好多方面的預設;

2、在觀察百數(shù)表到后面總結3的倍數(shù)特征時,都應放手讓孩子們多說,說透,這樣更有助于鍛煉孩子的概括歸納能力。老師不要著急,學生能說出的盡量讓學生說,多放手,相信學生。

3的倍數(shù)的特征教學反思篇二

《3的倍數(shù)的特征》看似一節(jié)知識簡單的課,但從教學實際來看,是我想得過于簡單了,教師注重的不應該僅僅是對知識的掌握,更應該使學生站在跳板上學習數(shù)學,關注數(shù)學思維的發(fā)展。

新的課程理念要求我們在教學中盡可能地為學生提供一個自主、合作、探究機會,其宗旨也就在于培養(yǎng)學生在實際的學習活動中,善于發(fā)現(xiàn)問題和提出問題的能力,靈活運用知識去解決問題的能力,在研究和解決問題的過程中學會合作。3的倍數(shù)的特征,有規(guī)律可循,容易上成機械刻板、枯燥無味的課,學生雖能死套規(guī)律判斷,但學生的能力沒能培養(yǎng),智力得不到開發(fā)。本課的設計采用了啟發(fā)與發(fā)現(xiàn)相結合的教學方法,激勵學生大膽猜想,動手實踐,去發(fā)現(xiàn)規(guī)律,形成技能,升華至應用于生活。

本課主要使學生在原有認知的基礎上產(chǎn)生認知沖突,進而產(chǎn)生新的探索欲望,突出了對學生“提出問題—探索問題—解決問題”的能力培養(yǎng),學生能在猜想、操作、驗證、交流、反思、歸納的數(shù)學活動中,獲得較為豐富的數(shù)學經(jīng)驗,也有助于創(chuàng)造性的培養(yǎng)。當然,培養(yǎng)學生的創(chuàng)造個性,僅僅停留在教學活動的情境上是不夠的,教師首先要具有創(chuàng)造精神,注重設計寬松和諧民主的教學氛圍,尊重學生,抓住一切可以利用的機會,激發(fā)學生的創(chuàng)新欲望,學生的創(chuàng)造意識才能得以培養(yǎng),個性才能充分發(fā)展。本課重點是要理解3的倍數(shù)特征,能夠準確判斷一個數(shù)是不是3的倍數(shù)。我采用的是復習導入,先和學生們一起回憶了一下

2、5的倍數(shù)特征,然后出示本課的教學目標。新授環(huán)節(jié)先讓學生猜測一下3的倍數(shù)會有哪些特征呢?接著采用數(shù)形結合的方法,學生動手操作,在1~100的數(shù)字卡里找一找3的倍數(shù),然后用自己喜歡的符號圈起來,然后觀察小組討論匯報。發(fā)現(xiàn)3的倍數(shù)特征不像

2、5的倍數(shù)特征一樣,看一個數(shù)的末尾了,引導學生是不是要看這個數(shù)其它的數(shù)位上的數(shù)呢?學生發(fā)現(xiàn)也不是很難。教材中有提示,學生回家預習后也會清楚敘述出3的倍數(shù)特征是一個數(shù)各個數(shù)位上數(shù)字相加的和。找準知識之間的沖突并巧妙激發(fā)出來,這是一節(jié)課的出彩之處,剛開始我們先采用課本上百數(shù)表來研究,結果在一個班實踐后認為效果并不是很理想,由于數(shù)太多,讓學生觀察3的倍數(shù)的這些數(shù)時,并從中找出相同的地方,結果,很多同學找了與本節(jié)課毫無關系的東西,浪費了很多時間。在評課的時候,我們又討論是不是找一些數(shù)代表百數(shù)表,于是我設計了一個表格,讓學生用除法計算的方法找到3的倍數(shù)的特征,并觀察這些數(shù),這些數(shù)的個位分別從0到9都有,讓學生知道3的倍數(shù)的特征跟數(shù)的個位沒有關系,然后從中又把像45和54,75和57,123和321等特殊的數(shù)單獨展示出來,讓學生觀察從中找出規(guī)律。結果我又重新上了這節(jié)課,效果比上節(jié)課要好。

這節(jié)課結束后,我感覺最大的缺憾之處,最后總結3的倍數(shù)特征時,應放手讓孩子們多說,說透,這樣更有助于鍛煉孩子的概括歸納能力。而練習題方面,也應形式面多樣化,如用卡片練習判斷,或通過打手勢的方法或先聽老師——這樣效率更高,課堂氛圍好,課堂不是同步,學生的發(fā)展始終是教學的落腳點。我們的教學應著眼于學生對解決問題方法的感悟,這樣才可獲得最佳的效果。

3的倍數(shù)的特征教學反思篇三

《3的倍數(shù)的特征》是學生在學習過2.5倍數(shù)特征之后的又一內(nèi)容,因為2.5的倍數(shù)的特征僅僅體現(xiàn)在個位上的數(shù),比較明顯,容易理解。而3的倍數(shù)的特征,不能只從個位上的數(shù)來判斷,必須把其他各位上的數(shù)相加,看所得的和是否為3的倍數(shù)來判斷,學生理解起來有一定的困難。我決定在這節(jié)課中突出學生的自主探索,使學生猜想——觀察——再觀察——動手試驗的過程中,概括歸納出了3的倍數(shù)特征。

找準備知識中沖紛激發(fā)探索,在第一環(huán)節(jié)中我先讓學生復習2.5的倍數(shù)特征并對一些數(shù)據(jù)做出了判斷而后我們“誰來猜測一下3的倍數(shù)特征”激發(fā)學生探究的愿望。由于學生剛剛復習了2.5倍數(shù)的特征,知道只要看一個數(shù)的個位,因此在學習3的倍數(shù)特征時,自然會把“看個位”這一方法遷移過來。但實際上,卻不是這樣,于是新舊知識間的矛盾沖突使學生產(chǎn)生了困惑,有了新舊知識的矛盾沖突,就能激發(fā)起學生探究的愿望,這樣不反有利于學生對新知識的掌握,有效的將新知識納入到原有的認知結構中去,還有利于培養(yǎng)學生深入探究的意識和能力。

找準知識之間的沖突并巧妙激發(fā)出來,這是一節(jié)課的出彩之處,而我從孩子們的學號為入重點,讓孩子們判斷自己的學號是否是3的倍數(shù),并再次探究3的倍數(shù)特征,并且發(fā)現(xiàn)3的倍數(shù)和數(shù)字排列順序的有關系。但和這個數(shù)的個位上的數(shù)字有關。使之所探究的問題是漸漸完整而清晰,而后我又組織孩子們用擺小棒的方法來探究和驗證,這種層層遞進環(huán)環(huán)相扣的方法,促使探究活動走向深入,讓學生獲得更大的發(fā)展。

這節(jié)課結束后,我感覺最大的缺憾之處,最后點選了的倍數(shù)特征時,應放手讓孩子們多說,說透,這樣更有助于鍛煉孩子的概括歸納能力。而老練習題方面,也應形式面多樣化,如用卡片練習判斷,或通過打手勢的方法或先聽老師——這樣效率更高,課堂氛圍好,課堂不是同步,學生的發(fā)展始終是教學的落腳點。我們的教學應著眼于學生對解決問題方法的感悟,這樣才可獲得可持續(xù)發(fā)展的動力。

3的倍數(shù)的特征教學反思篇四

《3的倍數(shù)的特征》的教學是五年級數(shù)學上冊第三單元“因數(shù)與倍數(shù)”中一個重要知識點,是學生在學習了2和5的倍數(shù)特征之后的新內(nèi)容。

3的倍數(shù)的特征與2和5的倍數(shù)的特征有很大差別,2和5的倍數(shù)的特征僅僅體現(xiàn)在個位上的數(shù),比較明顯,容易理解。而3的倍數(shù)的特征,不能只從個位上的數(shù)來判斷,必須把其他各位上的數(shù)相加,看所得的和是否為3的倍數(shù)來判斷,學生理解起來有一定的困難。我在本節(jié)課設計理念上,突出以學生為主體,教師為主導,方法為主線的原則,從現(xiàn)象到本質,從質疑到解疑。當然本節(jié)課也存在很多問題,下面我進行做幾點反思。

在導入環(huán)節(jié),我通過復習舊知識進行“熱身”。由于學生已經(jīng)掌握了2和5倍數(shù)的特征,知道只要看一個數(shù)的個位就能判斷一個數(shù)是不是2或5的倍數(shù),因此在學習3的倍數(shù)特征時,自然會把“看個位”這一方法遷移過來,盡管是負遷移。實際上,鮮明的沖突讓學生發(fā)現(xiàn)卻不是這樣,于是新舊知識間的矛盾沖突使學生產(chǎn)生了困惑,有了新舊知識的矛盾沖突,就能激發(fā)起學生探究的愿望,這樣有利于學生對新知識的掌握,有效的將新知識納入到原有的認知結構中去,還有利于培養(yǎng)學生深入探究的意識和能力。

猜想3的倍數(shù)特征是基礎,在學生得出猜想后,我便引導學生找出百數(shù)表中3的倍數(shù)去驗證,并在驗證中推翻了剛才的猜想。驗證也是有技巧的,30以內(nèi)即可發(fā)現(xiàn)3的倍數(shù)中,個位上可能是10個數(shù)字中的任何一個,之前的判斷已經(jīng)站不住腳。之后繼續(xù)探究,在100以內(nèi),基本可以發(fā)現(xiàn)規(guī)律,但為了嚴謹,必須跳出百數(shù)表,在100以上的數(shù)中去驗證這個規(guī)律。最后,引導學生理解這個結論背后的原理,為什么它的規(guī)律和之前的規(guī)律不一樣?這樣一來,學生不僅學會本節(jié)課知識,更掌握了科學的探究方法。

本節(jié)課的目標定位上,我考慮到學生的已有認知基礎,我決定引導學生探索3的倍數(shù)的特征背后的道理。這一嘗試建立在我對學生學情把握的基礎上,因為3的倍數(shù)的特征的結論一但得出,運用起來沒有難度,后面的練習往往成了“休閑時間”,而進一步提升探索難度,無疑是開發(fā)思維的良好契機。我運用數(shù)形結合的方法逐步深入,最后還是把話語權留給學生,這樣就給予不同學生各自適應的個性化學習方略,真正做到了讓每位同學在數(shù)學上都得到發(fā)展。

3的倍數(shù)的特征教學反思篇五

心理學原理表明,新異的刺激可以引起學生的注意和興趣。在教學中,根據(jù)不同的教材和要求,采取不同的教學方法,能夠引起學生學習的興趣,有利于創(chuàng)設良好的課堂氣氛。

教學3的倍數(shù)特征這一課時,教師組織學生進行下列鞏固練習:

下列數(shù)中3的倍數(shù)有:()

1435451003328767488

學生利用3的倍數(shù)的特征一下子就回答了上面的問題,得到了老師的肯定。這時我接著說:“我們來一場老師、學生打擂臺怎么樣?看誰說的3的倍數(shù)的數(shù)最多,我們看誰能考倒老師?!边@時同學們興趣盎然,紛紛出題來考老師。

生:42

師:111

生:78

師:57

生:81

師:20xx

生:6891

…………

這時師故意出錯:369041

學生馬上發(fā)現(xiàn)了這個數(shù)不是3的倍數(shù),師問:“你能不能改一改其中的某個數(shù)字使它成為3的倍數(shù)?!?/p>

生:“可以將1改為2?!?/p>

生:“可以將4改為5?!?/p>

生:“可以將1改為5?!?/p>

生:“可以將1改為8?!?/p>

生:“可以將4改為2”

生:“可以將4改為8”

學生回答完后,我及時提問:“你們?yōu)槭裁床桓钠渲械?、6、9和0呢?”學生通過思考回答:“因為0、6、3、9每一個數(shù)都是3的倍數(shù),所以只要改4和1這兩個數(shù)就行了?!边@時我及時指出:“判斷一個數(shù)是不是3的倍數(shù)可以用篩選法來判斷,在各數(shù)位的數(shù)字中先篩去3的倍數(shù)或和為3的倍數(shù)的數(shù)字,若余下的數(shù)字之和是3的倍數(shù),原數(shù)就是3的倍數(shù),否則就不是?!边@時我逐漸地出示下列這組數(shù)要求學生馬上判斷是否3的倍數(shù)。

56

561

5617

56178

561784

5617849

…………

這個鞏固練習,有效地調(diào)動了學生的積極性,不斷激起學生認知的內(nèi)驅力,使學生在探索的過程中,主動學習、主動探索,帶來了內(nèi)心的滿足感。

3的倍數(shù)的特征教學反思篇六

《3 的倍數(shù)和特征》一課是在學生自主探究2、5的倍數(shù)的特征的基礎上進一步學習,我從學生的已有基礎出發(fā),把復習和導入有機結合起來,通過2、5的倍數(shù)特征的復習,設置了“陷阱”,引導學生進行猜想3的倍數(shù)的特征可能是什么,從而引發(fā)認知沖突,激發(fā)學生的求知欲望,經(jīng)歷新知的產(chǎn)生過程。

前一課時,學生在發(fā)現(xiàn)2、5的倍數(shù)特征時,都是從個位上研究起的,所以在復習舊知時,我也特意強調(diào)了這一點。接下來我引導學生猜想3 的倍數(shù)特征是什么時,不少學生知識遷移,提出:個位上是3、6、9的數(shù)應該是3 的倍數(shù);3 的倍數(shù)都是奇數(shù)。提出猜想,當然需要驗證,很快就有學生在觀察百數(shù)表后提出問題:個位上是3、6、9的數(shù)只是有些是3的位數(shù),有些不是3的倍數(shù);有些偶數(shù)也是3的倍數(shù),而有些奇數(shù)卻不是3 的倍數(shù)。學生的第一猜想被自己否決了。既然沒有這么明顯的特征,那么在百數(shù)表里找出3的倍數(shù),不少學生就開始了繁雜的計算,這個環(huán)節(jié)我給了他們時間慢慢去算,用意在于體會這種計算的不方便,從而去想有沒有更好的方法去判斷一個數(shù)是否是3 的倍數(shù)。

找3 的倍數(shù)的特征是本節(jié)課的難點,我處理這個難點時力求體現(xiàn)學生是學習的主體,教師只是教學活動的組織者、指導者、參與者。整節(jié)課中,始終為學生創(chuàng)造寬松的學習氛圍,讓學生自主探索并掌握找一個3的倍數(shù)的特征的方法,引導學生在充分的動口、動手、動腦中自主獲取知識。

在完成100以內(nèi)的數(shù)表中找出所有3 的倍數(shù)后,我引導學生觀察發(fā)現(xiàn)3的倍數(shù)的個位可以是0~9中任何一個數(shù)字,要判斷一個數(shù)是不是3的倍數(shù)不能和判斷2、5的倍數(shù)一樣只看個位,打破了學生的認知平衡,然后我提出到底什么樣的數(shù)才是3的倍數(shù)這一問題。這個問題的解決需要借助計數(shù)器,于是我給學生準備了簡易計數(shù)器,讓學生多次撥數(shù)后,觀察算珠的個數(shù)有什么共同的特點。反應比較快的學生就有了發(fā)現(xiàn):所用的算珠個數(shù)都是3 的倍數(shù)。在學生提出這個猜想后,全班學生再一次進行驗證第二個猜想,這個驗證也是在突破難點,學生在驗證中掌握難點。同時,我也讓學生對比了之前所用的方法,體驗這個新方法的快捷與簡便,讓學生的印象更深刻。這個教學環(huán)節(jié)在教師的引導下克服困難,解決了力所能及的問題,達到了新的平衡,開發(fā)了學生的創(chuàng)新潛能。

在教學過程中讓學生自主探索,雖然用了很多時間,但我認為學生探索的比較充分,學生的收獲會更多。

在上述教學過程中,雖然每個同學只操作了一兩次,但是通過學生之間的合作交流,在教師的引導下,學生經(jīng)歷了一個典型的通過不完全 歸納的方法得出規(guī)律的過程。學生在這一過程中的體驗,無論是方法層面,還是思想層面均將對后繼的學習產(chǎn)生深刻的影響。

在初步感知3 的倍數(shù)的特征后,我提出了問題:一個數(shù),在計數(shù)器上撥出它,所用數(shù)珠的顆數(shù)是3的倍數(shù),它就是3的倍數(shù),對嗎?你是否認為我們研究出的結論對所有的數(shù)都適用呢?這兩個問題的提出,意義在于通過“更大的數(shù)”和“任意找”兩方面,使學生深切體驗了不完全歸納法的這一要義,同時也培養(yǎng)了學生縝密思考問題的意識和習慣。

3的倍數(shù)的特征教學反思篇七

《3的倍數(shù)的特征》是人教版義務教材新課程第八冊的教學內(nèi)容,對這節(jié)課的教學設計,有從2、5的倍數(shù)的特征中引入的、有讓學生通過擺火柴棒研究的,其中不乏好點子好設計。但是,大部分老師都要拋出一個問題讓學生思考:“火柴棒的總根數(shù)跟3的倍數(shù)有什么聯(lián)系?”或者干脆問“3的倍數(shù)和數(shù)位上的數(shù)字的和有什么關系?”總覺得教師對學生的引導過于直接,對于五年級的學生,經(jīng)過這樣的提問,一般都能找到3的倍數(shù)的特征,也能用語言來表述。我認為,我們的關鍵不但要讓學生找到3的倍數(shù)的特征,更應該引導學生怎樣去發(fā)現(xiàn)數(shù)位上的數(shù)字的和與3的倍數(shù)之間的關系。我考慮,能不能在本節(jié)課中運用分類,讓學生自主探究呢?以下是兩個教學片段:

讓學生用30秒時間,寫3的倍數(shù),大部分學生都從小到大寫了25個左右

老師板演了10個:105、111、156、273、300、339、504、918、1527、2442……然后提出探究的任務。

師:請你給自己寫的3的倍數(shù)分類,看看能不能找到規(guī)律。限時2分鐘。

(結束)學生回答。

生1:3、6、9;12、15、18、21、24……按位數(shù)分類。(有3人和他一樣分)師:按位數(shù)分類,那么3位數(shù)里哪些是3的倍數(shù)呢:103、208是3的倍數(shù)

嗎?(學生答不出)

生2:3、6、9、12、15、18、21、24、27、30;

33、36、39、42、45、48、51、54、57、60

63、66……

(有32人和他一樣)

師:你分類的標準是什么?

生2:個位是0——9的都歸為一類,共兩類。

生3:共十類。個位是0的一類,個位是1的一類,個位是2的一類,到個位是9的一類。

師:懂了。3、33、63是一類;6、36、66是一類,共十類。那21253是不是3的倍數(shù),能迅速判斷嗎?(生無語)

師:看來,分類的方法很多。但是,哪一種分類才能幫助我們發(fā)現(xiàn)3的倍數(shù)的特征,是有價值的呢?(學生陷入沉思)

以上學生的分類方法,都有不同的標準,從單一分類的角度來看,沒有問題。但是對于尋求3的倍數(shù)的特征,卻沒有意義。大部分學生是從2、5的倍數(shù)的特征中受到啟示,這是學生的經(jīng)驗,卻是一種負遷移。課前,我也想到了,那么是不是就一定要先提醒學生,不要走彎路呢?我認為,負遷移也是一種寶貴的經(jīng)驗,經(jīng)歷過挫折,對知識的理解就會更加深刻,無需刻意回避。

師:繼續(xù)觀察這些數(shù),還有其它分類方法嗎?限時5分鐘。(陸續(xù)有學生舉手,5分鐘后,共有15位學生舉手,巡視一遍。)

師:誰來介紹自己新的分類方法?

生1:3、21、30;

6、15、24、33、42;

9、18、36、45、63;

12、39、48、57;

……

師:你的分類標準是什么?

生1:第一類,每個數(shù)數(shù)位上的數(shù)字的和是3;第二類,每個數(shù)數(shù)位上的數(shù)字的和是6;第三類,每個數(shù)數(shù)位上的數(shù)字的和是9;第四類,每個數(shù)數(shù)位上的數(shù)字的和是12;以此類推。

師:誰來幫他“以此類推”?

生2:每個數(shù)數(shù)位上的數(shù)字的和是15,也是3的倍數(shù);每個數(shù)數(shù)位上的數(shù)字的和是18,也是3的倍數(shù)。

生3:每個數(shù)數(shù)位上的數(shù)字的和是21,也是3的倍數(shù);每個數(shù)數(shù)位上的數(shù)字的和是24,也是3的倍數(shù)。

師:你能用一句話來表達嗎?

生4:每個數(shù)位上的數(shù)字的和是3、6、9、12、15、18等,這個數(shù)就是3的倍數(shù)。

生5:每個數(shù)位上的數(shù)字的和是3的倍數(shù),這個數(shù)就是3的倍數(shù)。

師:很厲害。但是,我們需要驗證。判斷老師剛才寫的3的倍數(shù)(前5個)105、111、156、273、300。

生4:1加0加5等于6,6是3的倍數(shù),105也是3的倍數(shù)。

生5:1加1加1等于3,3是3的倍數(shù),111也是3的倍數(shù)。

……

(一個學生根據(jù)規(guī)律回答,其他學生用豎式驗證。)

生6:3的倍數(shù)的特征是找到了,但這樣的分類太亂。我一共分3類:

第一類:每個數(shù)數(shù)位上的數(shù)字的和是3:3、12、21、30;

第二類:每個數(shù)數(shù)位上的數(shù)字的和是6:6、15、24、42、51;

第三類:每個數(shù)數(shù)位上的數(shù)字的和是9:9、18、27、36、45……,

這樣的數(shù)是3的倍數(shù)。

師:那老師的這些數(shù):339、504、918、1527、2442屬于哪一類呢?

生6:339,3加3加9等于15,然后1加5等于6,分到第二類;918,9加1加8等于18,然后1加8等于9,分到第三類;1527分到第二類;2442分到第一類。所有3的倍數(shù)沒有超出這三類的。

師:厲害?。ㄗ屍渌麑W生說了兩個四位數(shù),用他的方法來判斷是不是3的倍數(shù),大概有三十個左右的學生能用這樣的方法分析。老師又舉了一個反例。)

師:誰能用幾句話來概括?

生6:一個數(shù),每個數(shù)位上的數(shù)字的和是3、6、9,如果和大于9的,數(shù)位上的數(shù)再加,直到出現(xiàn)一位數(shù),如果是3、6、9,那么這個數(shù)就是3的倍數(shù)。

師:真佩服你們!

第二天,有學生告訴我他發(fā)現(xiàn)了一種更快判斷3的倍數(shù)的方法,不用把數(shù)位上的數(shù)都加起來,比如538,3是3的倍數(shù)就不要管它了,只要5加8加一下,13不是3的倍數(shù),538就不是3的倍數(shù)。我又說了一個五位數(shù)20xx,學生分析,6是3的倍數(shù),不去管它,2加7是9,9是3的倍數(shù),整個數(shù)就是3的倍數(shù)。

學生的探究能力如此之強,是我沒想到的,學生快速判斷3的倍數(shù)的方法,實際上已經(jīng)綜合了很多的知識,盡管不能很明確地用語言來表達,但是,方法是完全正確的,其實這又是一個學生新的探究的開始。

一、教師不要害怕學生探究的失敗。學生第一次探究的失敗,完全是正常的,這是他們運用已有的經(jīng)驗,進行探究后的結果。盡管這種經(jīng)驗的遷移是負作用的,但是從失敗到成功的過程,記憶是深刻的。負遷移在教學中比比皆是,我們不但不能回避,而且要好好利用,要讓學生積累對數(shù)學活動的經(jīng)驗,同時能將“經(jīng)驗材料組織化”。

二、教師要給學生創(chuàng)造探究的機會。學生的探究能力其實是老師意想不到的。最后一位學生對3的倍數(shù)的概括(一個數(shù),每個數(shù)位上的數(shù)字的和是3、6、9,如果和大于9的,數(shù)位上的數(shù)再加,直到出現(xiàn)一位數(shù),如果是3、6、9,那么這個數(shù)就是3的倍數(shù)。),盡管實際的意義不是很大,但是它更具有橫向的關聯(lián),2的倍數(shù)特征是:個位是0、2、4、6、8的數(shù)是2的倍數(shù);5的倍數(shù)的特征是個位是0或5的數(shù)是5的倍數(shù)。或許,這種類比聯(lián)想更容易讓學生理解新的知識,更何況是學生自己探究出來的。其實很多教學內(nèi)容我們都可以讓學生進行探究,關鍵是教師如何給學生提供一個探究的載體,一種探究的環(huán)境。

三、教師對學過的知識要經(jīng)常地進行整合。新教材的特點是有些知識點分得比較散,所以教師要經(jīng)常把學生學過的知識,在新知中不知不覺地再應用,再鞏固。溫故而知新,在復習與鞏固中,學生會對舊知有更高的認識,更深的理解,也容易排除學生對新知的畏難思想。同時要經(jīng)常地對各種知識進行串聯(lián),編織學生知識的網(wǎng)絡,使學生認識到各種知識之間是相互關聯(lián)相互作用的,以利于學生解決一些實際問題或綜合性問題。

四、教師要經(jīng)常在教學中滲透一些數(shù)學思想。分類是一種數(shù)學思想,同時也是一種數(shù)學思維的工具。人教版小學數(shù)學第一冊學生就接觸了分類《整理房間》,第七冊《角的分類》、第八冊《三角形的分類》,讓學生對分類有了更多的理解。其實在生活中,無處不在的分類:超市貨物的擺放、自己書本的整理、性別之間、班級之間等等。對于分類的標準,分類的原則,學生在不知不覺中有了感悟。借助分類,有40%的學生找到了3的倍數(shù)的特征,學生完全是在觀察、嘗試、驗證的基礎上探究的,是自主的行為研究。在小學數(shù)學中,滲透了很多數(shù)學思想,如集合、對應、假設、比較、類比、轉化、分類、統(tǒng)計思想等,在教學中合理地運用這些數(shù)學思想,對學生學習數(shù)學的影響是深遠的,也會讓我們的數(shù)學探究活動更有意義,更有價值。

3的倍數(shù)的特征教學反思篇八

《3 的倍數(shù)的特征》本節(jié)課的教學活動,注重學生實踐操作,展開探究活動,組織學生進行交流和探討,注重培養(yǎng)學生發(fā)現(xiàn)問題,解決問題的能力,讓學生經(jīng)歷科學探索的過程,感受數(shù)學的嚴謹性和數(shù)學結論的正確性。我是從教學環(huán)節(jié)維度進行觀課的,本節(jié)課有五個環(huán)節(jié)包括:一、復習舊知,直接導入。二、自主探究,合作驗證。三、總結提升,共同驗證。四、運用結論,鞏固訓練。五、全課小結,課后延伸。每個環(huán)節(jié)環(huán)環(huán)相扣,設計合理。下面就說一下自己的想法。

趙老師先復習了2、5的倍數(shù)的特征,為這節(jié)課的學習打下了基礎。趙老師以學生原有認知為基礎,激發(fā)學生的探究欲望,利用學生剛學完“2、5的倍數(shù)的特征”遷移到“3的倍數(shù)的特征”的問題中,由此萌發(fā)疑問,激發(fā)強烈的探究欲望,因此學生很快進入問題情境,猜測、否定、反思、觀察、討論,使得大部分學生漸漸進入了探究者的角色。

本節(jié)課教師努力嘗試構建數(shù)學生態(tài)課堂,讓學生繼續(xù)利用小棒擺一擺,進而發(fā)現(xiàn)不止是3根、6根小棒能擺出3的倍數(shù),9根也能“只要小棒的根數(shù)是3的倍數(shù),擺出來的數(shù)就是3的倍數(shù)?!苯處煂ⅰ皠邮謹[小棒”升級為“腦中撥計數(shù)器”,將“直觀性思維”升華為“理性思維”,通過小組交流、集體驗證,學生的探索發(fā)現(xiàn)離“3的倍數(shù)的特征”只有咫尺之遙。整節(jié)課讓學生經(jīng)歷“動手操作——觀察發(fā)現(xiàn)——舉例驗證——歸納總結”的探究過程,實現(xiàn)課程、師生、知識等多層次的互動。

習題的設計力爭在突出重點,突破難點,遵循學生認知規(guī)律的基礎上,體現(xiàn)基礎性、層次性、靈活性、生活性、趣味性。本節(jié)課教師設計了3道練習題。在鞏固練習部分,第(1)、(2)題是基本題;第(3)題,教師努力拉近數(shù)學與生活的聯(lián)系。把數(shù)學和生活有機聯(lián)系起來,使學生體會到數(shù)學在現(xiàn)實生活中作用和價值,初步學會用數(shù)學的眼光去觀察事物、思考問題,樹立學好數(shù)學、用好數(shù)學的志趣。

在學生學習的過程中注意“學習方法”的指導,讓學生感受到掌握方法才能舉一反三,真正做到觸類旁通。最后一個環(huán)節(jié)設計了讓學生靜靜的回顧這節(jié)課的學習歷程“動手操作——觀察發(fā)現(xiàn)——舉例驗證——歸納總結”,使其在數(shù)學思想上做進一步的提升。

3的倍數(shù)的特征教學反思篇九

課始,讓學生任意報數(shù),師生比賽誰先判斷出這個數(shù)是不是3的倍數(shù),正當我沉浸在游戲的情境之中,幾個“不識時務者”打亂了課前的預想。“老師,我知道其中的秘密,只要把各個數(shù)位上的數(shù)加起來,看看是不是3的倍數(shù)就行了!”“對!在數(shù)學書上就有這句話。”……又有幾個學生偷偷地打開了數(shù)學書。“怎么辦?”謎底都被學生揭開了。面對這一生成,我沒有死守教案,而是果斷地調(diào)整了預設,變“探索”為“驗證”,將結論板書在黑板上,讓學生理解這句話的意思,然后組織學生將百數(shù)表中3的倍數(shù)圈出來,驗證是不是具有這樣的特征,最后進行一系列鞏固練習……

課堂上經(jīng)常會出現(xiàn)類似上述案例中的“超前行為”,即有些學生提前把要探究的新知識和盤托出。我們的習慣做法就是變“探索”為“驗證”,當然有些知識的教學采用這種方式是有效的,然而本課中“驗證”的過程真能取代“探究發(fā)現(xiàn)”的過程嗎?僅僅舉幾個例子試一試,驗證方法單一,思維含量低,學生充其量只能算是執(zhí)行操作命令的“計算器”,又能獲得哪些有益的發(fā)展?如果經(jīng)常進行這樣的教學,還容易使學生形成浮躁淺薄,不求甚解,甚至只要結論的不良學習風氣。怎么辦,置之不理嗎?如果這樣,不僅沒有尊重學生已有的知識經(jīng)驗,而且在已經(jīng)揭開“謎底”的情況下,再試圖引導學生進行猜想、實驗、發(fā)現(xiàn),體驗遭受挫折后取得成功的那種激動,也只能是一種奢望。那么又該如何激發(fā)學生探究的熱情,促使學生進行深入探究呢?

(與第一次教學情況基本相同,有些學生能夠正確地判斷一個數(shù)是不是3的倍數(shù),這時一些學生卻依然感到困惑,我設法將這一困惑激發(fā)出來。)

師:同學們真能干,這么快就知道了3的倍數(shù)的特征,上節(jié)課我們學習了2、5的倍數(shù)的特征只和什么有關?

生:只和一個數(shù)的個位有關。

師:與今天學習的知識比較一下,你有什么疑問嗎?

生1:為什么判斷一個數(shù)是不是3的倍數(shù)只看個位不行?

生2:為什么判斷一個數(shù)是不是2、5的倍數(shù)只看個位,而判斷是不是3的倍數(shù)要看各位上數(shù)的和?

……

師:同學們思考問題確實比較深入,提出了非常有研究價值的問題。那我們先來研究一下2、5的倍數(shù)為什么只和它的個位有關。

(學生嘗試探索,教師適時引導學生從簡單數(shù)開始研究,借助小棒或其他方法進行解釋。)

生1:我在擺小棒時發(fā)現(xiàn),十位上擺幾就是幾十,它肯定是2、5的倍數(shù),因此只要看個位擺幾就可以了。

生2:其實不用擺小棒也可以,我們組發(fā)現(xiàn)每個數(shù)都可以拆成一個整十數(shù)加個位數(shù),整十數(shù)當然都是2、5的倍數(shù),所以這個數(shù)的個位是幾就決定了它是否是2、5的倍數(shù)。

師:同學們想到用“拆數(shù)”的方法來研究,是個好辦法。

生3:是否是3的倍數(shù)只看個位就不行了。比如13,雖然個位上是3的倍數(shù),但10卻不是3的倍數(shù);12雖然個位不是3的倍數(shù),但12 = 10 + 2 = 9 + 1 + 2 = 9 + 3,因此只要看十位上余下的數(shù)和個位上的數(shù)合起來是不是3的倍數(shù)就行了。

生4:我也是這樣想的,我還發(fā)現(xiàn)十位上余下的數(shù)正好和十位上的數(shù)字一樣。

生5:(面帶困惑)起初,我也是這樣想的,可是在試三十幾、四十幾時就不行了。余下的數(shù)和十位上的數(shù)不一樣了,比如40除以3只余1,余下的數(shù)就和十位數(shù)字不同。

生(部分):對。

生4:其實40不要拆成39和1,你拆成36和4,余下的數(shù)不就和十位數(shù)字相同了嗎?

生6:也就是說整十數(shù)都可以拆成十位上的數(shù)字和一個3的倍數(shù)的數(shù)。這樣只要看十位上的數(shù)和個位上的和是不是3的倍數(shù)就可以了。

師:同學們確實很厲害!那三位數(shù)、四位數(shù)是不是也有這樣的規(guī)律呢?

學生用“拆數(shù)”的方法繼續(xù)研究三、四位數(shù),發(fā)現(xiàn)和兩位數(shù)一樣,只不過千位、百位上余下的數(shù)要依次加到下一位上進行研究。3的倍數(shù)的特征在學生頭腦中越來越清晰。

師:同學們通過自己的探索,你們不僅發(fā)現(xiàn)了3的倍數(shù)的特征,還弄清了為什么有這樣的特征?,F(xiàn)在你還有哪些新的探索想法呢?

生1:我想知道4的倍數(shù)有什么特征?

生2:我知道,應該只要看末兩位就行了,因為整百、整千數(shù)一定都是4的倍數(shù)。

師:你能把學到的方法及時應用,非常棒!

生3:7或9的倍數(shù)有什么特征呢?

……

師:同學們又提出了一些新的、非常有價值的問題,課后可以繼續(xù)進行探索。

1. 找準知識間的沖突,激發(fā)探究的愿望。學生剛剛學習了2、5的倍數(shù)的特征,知道只要看一個數(shù)的個位,因此在學習3的倍數(shù)的特征時,自然會把“看個位”這一方法遷移過來。而實際上,3的倍數(shù)的特征,卻要把各個位上的數(shù)加起來研究。于是新舊知識之間的矛盾沖突使學生產(chǎn)生了困惑,“為什么2或5的倍數(shù)只看個位?”“為什么3的倍數(shù)要把各個位上的數(shù)加起來研究?”……學生急于想了解這些為什么,便會自覺地進入到自主探究的狀態(tài)之中。知識不是孤立的,新舊知識有時會存在矛盾沖突,教師如能找準知識間的沖突并巧妙激發(fā)出來,就能激起學生探究的愿望。這樣不僅有利于學生對新知的掌握,有效地將新知納入到原有的認知結構中去,還有利于培養(yǎng)學生深入探究的意識和能力。

2. 激活學習中的困惑,讓探究走向深入。創(chuàng)造和發(fā)現(xiàn)往往是由驚訝和困惑開始。對比兩次教學,第一次教學由于忽視了學習中的困惑,學生對于3的倍數(shù)的特征理解并不透徹,探索的體驗也并不深刻。第二次教學留給學生質疑的時空,巧設沖突,讓學生進行新舊知識的對比,將困惑激發(fā)出來,通過學生間相互啟發(fā)、相互質疑,對問題的思考漸漸完整而清晰。學生不但經(jīng)歷由困惑到明了的過程,而且思維不斷走向深入,獲得了更有價值的發(fā)現(xiàn),探究能力也得到切實提高。學生在學習中難免會產(chǎn)生困惑,這種困惑有時是學生希望理解更全面、更深刻的表現(xiàn)。面對這些有價值的思考,我們要有敏銳的洞察力,采取恰當?shù)姆椒▽⑵浼せ?,促使探究活動走向深入,讓學生獲得更大的發(fā)展。當然,學生在學習中可能產(chǎn)生怎樣的困惑,面對這一困惑又該如何恰當引導,尚需要教師課前精心預設。

3. 溝通知識間的聯(lián)系,讓學生不斷探究。顯然,2、5的倍數(shù)的特征與3的倍數(shù)的特征是相互聯(lián)系的,其研究方法是相通的(都可以通過“拆數(shù)”進行觀察),特征的本質也是相同的。這種研究方法和特征本質的及時溝通,激發(fā)了學生繼續(xù)研究4、7、9……的倍數(shù)的特征的好奇心,促使學生不斷探究,將學習由課內(nèi)延伸到課外,并在探究過程中建構起對數(shù)的倍數(shù)特征的整體認識,感悟數(shù)學其實就是以一馭萬,以簡馭繁。課堂不是句號,學生的發(fā)展始終是教學的落腳點。我們的教學絕不能僅僅局限于學生對于一堂課知識的掌握,而應著眼于學生對于解決問題方法的感悟,獲得可持續(xù)發(fā)展的動力。

【本文地址:http://aiweibaby.com/zuowen/1987619.html】

全文閱讀已結束,如果需要下載本文請點擊

下載此文檔