總結(jié)不僅僅是總結(jié)成績(jī),更重要的是為了研究經(jīng)驗(yàn),發(fā)現(xiàn)做好工作的規(guī)律,也可以找出工作失誤的教訓(xùn)。這些經(jīng)驗(yàn)教訓(xùn)是非常寶貴的,對(duì)工作有很好的借鑒與指導(dǎo)作用,在今后工作中可以改進(jìn)提高,趨利避害,避免失誤。那關(guān)于總結(jié)格式是怎樣的呢?而個(gè)人總結(jié)又該怎么寫呢?那么下面我就給大家講一講總結(jié)怎么寫才比較好,我們一起來(lái)看一看吧。
高二數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)人教版高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)篇一
學(xué)生一定要明確,現(xiàn)在正做著的題,一定不是考試的題目。而是要運(yùn)用現(xiàn)在正做著的題目的解題思路與方法。因此,要把自己做過(guò)的每道題加以反思,總結(jié)一下自己的收獲。
二、主動(dòng)復(fù)習(xí)與總結(jié)提高
(1)要把課本,筆記,區(qū)單元測(cè)驗(yàn)試卷,校周末測(cè)驗(yàn)試卷,都從頭到尾閱讀一遍。要一邊讀,一邊做標(biāo)記,標(biāo)明哪些是過(guò)一會(huì)兒要摘錄的。要養(yǎng)成一個(gè)習(xí)慣,在讀材料時(shí)隨時(shí)做標(biāo)記,告訴自己下次再讀這份材料時(shí)的閱讀重點(diǎn)。長(zhǎng)期保持這個(gè)習(xí)慣,學(xué)生就能由博反約,把厚書(shū)讀成薄書(shū)。積累起自己的獨(dú)特的,也就是最適合自己進(jìn)行復(fù)習(xí)的材料。這樣積累起來(lái)的資料才有活力,才能用的上。
(2)把本章節(jié)的內(nèi)容一分為二,一部分是基礎(chǔ)知識(shí),一部分是典型問(wèn)題。要把對(duì)技能的要求(對(duì)“鋸,斧,鑿子…”的使用總結(jié)),列進(jìn)這兩部分中的一部分,不要遺漏。
(3)在基礎(chǔ)知識(shí)的疏理中,要羅列出所學(xué)的所有定義,定理,法則,公式。要做到三會(huì)兩用。即:會(huì)代字表述,會(huì)圖象符號(hào)表述,會(huì)推導(dǎo)證明。同時(shí)能從正反兩方面對(duì)其進(jìn)行應(yīng)用。
(4)把重要的,典型的各種問(wèn)題進(jìn)行編隊(duì)。(怎樣做“板凳,椅子,書(shū)架…”)要盡量地把他們分類,找出它們之間的位置關(guān)系,總結(jié)出問(wèn)題間的來(lái)龍去脈。就象我們欣賞一場(chǎng)團(tuán)體操表演,我們不能只盯住一個(gè)人看,看他從哪跑到哪,都做了些什么動(dòng)作。我們一定要居高臨下地看,看全場(chǎng)的結(jié)構(gòu)和變化。不然的話,陷入題海,徒勞無(wú)益。這一點(diǎn),是提高高中數(shù)學(xué)水平的關(guān)鍵所在。
(5)總結(jié)那些尚未歸類的問(wèn)題,作為備注進(jìn)行補(bǔ)充說(shuō)明。
(6)找一份適當(dāng)?shù)臏y(cè)驗(yàn)試卷。一定要計(jì)時(shí)測(cè)驗(yàn)。然后再對(duì)照答案,查漏補(bǔ)缺。
三、
重視改錯(cuò),錯(cuò)不重犯一定要重視改錯(cuò)工作,做到錯(cuò)不再犯。高中數(shù)學(xué)課沒(méi)有那么多時(shí)間,除了少數(shù)幾種典型錯(cuò),其它錯(cuò)誤,不能一一顧及。如果能及時(shí)改錯(cuò),那么錯(cuò)誤就可能轉(zhuǎn)變?yōu)樨?cái)富,成為不再犯這種錯(cuò)誤的預(yù)防針。但是,如果不能及時(shí)改錯(cuò),這個(gè)錯(cuò)誤就將形成一處隱患,一處“地雷”,遲早要惹禍。有的學(xué)生認(rèn)為,自己考試成績(jī)上不去,是因?yàn)樽约鹤鲱}太粗心。而且,自己特愛(ài)粗心。打一個(gè)比方。比如說(shuō),學(xué)習(xí)開(kāi)汽車。右腳下面,往左踩,是踩剎車。往右踩,是踩油門。其機(jī)械原理,設(shè)計(jì)原因,操作規(guī)程都可以講的清清楚楚。如果新司機(jī)真正掌握了這一套,請(qǐng)問(wèn),可以同意他開(kāi)車上街嗎?恐怕他自己也知道自己還缺乏練習(xí)。一兩次能正確地完成任務(wù),并不能說(shuō)明永遠(yuǎn)不出錯(cuò)。
四、圖是高中數(shù)學(xué)的生命線
圖是初等數(shù)學(xué)的生命線,能不能用圖支撐思維活動(dòng)是能否學(xué)好初等數(shù)學(xué)的關(guān)鍵。無(wú)論是幾何還是代數(shù),拿到題的第一件事都應(yīng)該是畫(huà)圖。有的時(shí)候,一些簡(jiǎn)單題只要把圖畫(huà)出來(lái),答案就直接出來(lái)了。遇到難題時(shí)就更應(yīng)該畫(huà)圖,圖可以清楚地呈現(xiàn)出已知條件。而且解難題時(shí)至少一問(wèn)畫(huà)一個(gè)圖,這樣看起來(lái)清晰,做題的時(shí)候也好捋順?biāo)悸贰?/p>
高二數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)人教版高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)篇二
第一:高考數(shù)學(xué)中有函數(shù)、數(shù)列、三角函數(shù)、平面向量、不等式、立體幾何等九大章節(jié)。
主要是考函數(shù)和導(dǎo)數(shù),這是我們整個(gè)高中階段里最核心的板塊,在這個(gè)板塊里,重點(diǎn)考察兩個(gè)方面:第一個(gè)函數(shù)的性質(zhì),包括函數(shù)的單調(diào)性、奇偶性;第二是函數(shù)的解答題,重點(diǎn)考察的是二次函數(shù)和高次函數(shù),分函數(shù)和它的一些分布問(wèn)題,但是這個(gè)分布重點(diǎn)還包含兩個(gè)分析就是二次方程的分布的問(wèn)題,這是第一個(gè)板塊。
第二:平面向量和三角函數(shù)。
重點(diǎn)考察三個(gè)方面:
一個(gè)是劃減與求值。
第一,重點(diǎn)掌握公式,重點(diǎn)掌握五組基本公式。
第二,是三角函數(shù)的圖像和性質(zhì),這里重點(diǎn)掌握正弦函數(shù)和余弦函數(shù)的性質(zhì)。
第三,正弦定理和余弦定理來(lái)解三角形。難度比較小。
第三:數(shù)列。
數(shù)列這個(gè)板塊,重點(diǎn)考兩個(gè)方面:一個(gè)通項(xiàng);一個(gè)是求和。
第四:空間向量和立體幾何。
在里面重點(diǎn)考察兩個(gè)方面:一個(gè)是證明;一個(gè)是計(jì)算。
第五:概率和統(tǒng)計(jì)。
這一板塊主要是屬于數(shù)學(xué)應(yīng)用問(wèn)題的范疇,當(dāng)然應(yīng)該掌握下面幾個(gè)方面:
第一……等可能的概率。
第二………事件。
第三是獨(dú)立事件,還有獨(dú)立重復(fù)事件發(fā)生的概率。
第六:解析幾何。
這是我們比較頭疼的問(wèn)題,是整個(gè)試卷里難度比較大,計(jì)算量的題,當(dāng)然這一類題,我總結(jié)下面五類??嫉念}型,包括第一類所講的直線和曲線的位置關(guān)系,這是考試最多的內(nèi)容??忌鷳?yīng)該掌握它的通法,第二類我們所講的動(dòng)點(diǎn)問(wèn)題,第三類是弦長(zhǎng)問(wèn)題,第四類是對(duì)稱問(wèn)題,這也是20xx年高考已經(jīng)考過(guò)的一點(diǎn),第五類重點(diǎn)問(wèn)題,這類題時(shí)往往覺(jué)得有思路,但是沒(méi)有答案,當(dāng)然這里我相等的是,這道題盡管計(jì)算量很大,但是造成計(jì)算量大的原因,往往有這個(gè)原因,我們所選方法不是很恰當(dāng),因此,在這一章里我們要掌握比較好的算法,來(lái)提高我們做題的準(zhǔn)確度,這是我們所講的第六大板塊。
第七:押軸題。
考生在備考復(fù)習(xí)時(shí),應(yīng)該重點(diǎn)不等式計(jì)算的方法,雖然說(shuō)難度比較大,我建議考生,采取分部得分整個(gè)試卷不要留空白。這是高考所考的七大板塊核心的考點(diǎn)。
高二數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)人教版高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)篇三
總結(jié)是對(duì)過(guò)去一定時(shí)期的工作、學(xué)習(xí)或思想情況進(jìn)行回顧、分析,并做出客觀評(píng)價(jià)的書(shū)面材料,它在我們的學(xué)習(xí)、工作中起到呈上啟下的作用,因此好好準(zhǔn)備一份總結(jié)吧。總結(jié)怎么寫才不會(huì)流于形式呢?下面是小編幫大家整理的高二數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)大全,希望能夠幫助到大家。
1.集合;2.子集;3.補(bǔ)集;4.交集;5.并集;6.邏輯連結(jié)詞;7.四種命題;8.充要條件。
1.映射;2.函數(shù);3.函數(shù)的單調(diào)性;4.反函數(shù);5.互為反函數(shù)的函數(shù)圖象間的關(guān)系;6.指數(shù)概念的擴(kuò)充;7.有理指數(shù)冪的運(yùn)算;8.指數(shù)函數(shù);9.對(duì)數(shù);10.對(duì)數(shù)的運(yùn)算性質(zhì);11.對(duì)數(shù)函數(shù).12.函數(shù)的應(yīng)用舉例。
1.數(shù)列;2.等差數(shù)列及其通項(xiàng)公式;3.等差數(shù)列前n項(xiàng)和公式;4.等比數(shù)列及其通頂公式;5.等比數(shù)列前n項(xiàng)和公式。
1.角的概念的推廣;2.弧度制;3.任意角的三角函數(shù);4.單位圓中的三角函數(shù)線;5.同角三角函數(shù)的基本關(guān)系式;6.正弦、余弦的誘導(dǎo)公式;7.兩角和與差的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函數(shù)、余弦函數(shù)的圖象和性質(zhì);10.周期函數(shù);11.函數(shù)的奇偶性;12.函數(shù)的圖象;13.正切函數(shù)的圖象和性質(zhì);14.已知三角函數(shù)值求角;15.正弦定理;16.余弦定理;17.斜三角形解法舉例。
1.向量;2.向量的加法與減法;3.實(shí)數(shù)與向量的積;4.平面向量的坐標(biāo)表示;5.線段的定比分點(diǎn);6.平面向量的數(shù)量積;7.平面兩點(diǎn)間的距離;8.平移。
1.不等式;2.不等式的基本性質(zhì);3.不等式的證明;4.不等式的解法;5.含絕對(duì)值的不等式。
1.直線的傾斜角和斜率;2.直線方程的點(diǎn)斜式和兩點(diǎn)式;3.直線方程的一般式;4.兩條直線平行與垂直的條件;5.兩條直線的交角;6.點(diǎn)到直線的距離;7.用二元一次不等式表示平面區(qū)域;8.簡(jiǎn)單線性規(guī)劃問(wèn)題;9.曲線與方程的.概念;10.由已知條件列出曲線方程;11.圓的標(biāo)準(zhǔn)方程和一般方程;12.圓的參數(shù)方程。
1.橢圓及其標(biāo)準(zhǔn)方程;2.橢圓的簡(jiǎn)單幾何性質(zhì);3.橢圓的參數(shù)方程;4.雙曲線及其標(biāo)準(zhǔn)方程;5.雙曲線的簡(jiǎn)單幾何性質(zhì);6.拋物線及其標(biāo)準(zhǔn)方程;7.拋物線的簡(jiǎn)單幾何性質(zhì)。
1.平面及基本性質(zhì);2.平面圖形直觀圖的畫(huà)法;3.平面直線;4.直線和平面平行的判定與性質(zhì);5.直線和平面垂直的判定與性質(zhì);6.三垂線定理及其逆定理;7.兩個(gè)平面的位置關(guān)系;8.空間向量及其加法、減法與數(shù)乘;9.空間向量的坐標(biāo)表示;10.空間向量的數(shù)量積;11.直線的方向向量;12.異面直線所成的角;13.異面直線的公垂線;14.異面直線的距離;15.直線和平面垂直的性質(zhì);16.平面的法向量;17.點(diǎn)到平面的距離;18.直線和平面所成的角;19.向量在平面內(nèi)的射影;20.平面與平面平行的性質(zhì);21.平行平面間的距離;22.二面角及其平面角;23.兩個(gè)平面垂直的判定和性質(zhì);24.多面體;25.棱柱;26.棱錐;27.正多面體;28.球。
1.分類計(jì)數(shù)原理與分步計(jì)數(shù)原理;2.排列;3.排列數(shù)公式;4.組合;5.組合數(shù)公式;6.組合數(shù)的兩個(gè)性質(zhì);7.二項(xiàng)式定理;8.二項(xiàng)展開(kāi)式的性質(zhì)。
1.隨機(jī)事件的概率;2.等可能事件的概率;3.互斥事件有一個(gè)發(fā)生的概率;4.相互獨(dú)立事件同時(shí)發(fā)生的概率;5.獨(dú)立重復(fù)試驗(yàn)。
選修ⅱ(24個(gè))
時(shí),6個(gè))
1.離散型隨機(jī)變量的分布列;2.離散型隨機(jī)變量的期望值和方差;3.抽樣方法;4.總體分布的估計(jì);5.正態(tài)分布;6.線性回歸。
1.數(shù)學(xué)歸納法;2.數(shù)學(xué)歸納法應(yīng)用舉例;3.數(shù)列的極限;4.函數(shù)的極限;5.極限的四則運(yùn)算;6.函數(shù)的連續(xù)性。
1.導(dǎo)數(shù)的概念;2.導(dǎo)數(shù)的幾何意義;3.幾種常見(jiàn)函數(shù)的導(dǎo)數(shù);4.兩個(gè)函數(shù)的和、差、積、商的導(dǎo)數(shù);5.復(fù)合函數(shù)的導(dǎo)數(shù);6.基本導(dǎo)數(shù)公式;7.利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和極值;8.函數(shù)的最大值和最小值。
1.復(fù)數(shù)的概念;2.復(fù)數(shù)的加法和減法;3.復(fù)數(shù)的乘法和除法;4.復(fù)數(shù)的一元二次方程和二項(xiàng)方程的解法。
高二數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)人教版高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)篇四
1.集合;2.子集;3.補(bǔ)集;4.交集;5.并集;6.邏輯連結(jié)詞;7.四種命題;8.充要條件。
1.映射;2.函數(shù);3.函數(shù)的單調(diào)性;4.反函數(shù);5.互為反函數(shù)的函數(shù)圖象間的關(guān)系;6.指數(shù)概念的擴(kuò)充;7.有理指數(shù)冪的運(yùn)算;8.指數(shù)函數(shù);9.對(duì)數(shù);10.對(duì)數(shù)的運(yùn)算性質(zhì);11.對(duì)數(shù)函數(shù).12.函數(shù)的應(yīng)用舉例。
1.數(shù)列;2.等差數(shù)列及其通項(xiàng)公式;3.等差數(shù)列前n項(xiàng)和公式;4.等比數(shù)列及其通頂公式;5.等比數(shù)列前n項(xiàng)和公式。
1.角的概念的推廣;2.弧度制;3.任意角的三角函數(shù);4.單位圓中的三角函數(shù)線;5.同角三角函數(shù)的基本關(guān)系式;6.正弦、余弦的誘導(dǎo)公式;7.兩角和與差的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函數(shù)、余弦函數(shù)的圖象和性質(zhì);10.周期函數(shù);11.函數(shù)的奇偶性;12.函數(shù)的圖象;13.正切函數(shù)的圖象和性質(zhì);14.已知三角函數(shù)值求角;15.正弦定理;16.余弦定理;17.斜三角形解法舉例。
1.向量;2.向量的加法與減法;3.實(shí)數(shù)與向量的積;4.平面向量的坐標(biāo)表示;5.線段的定比分點(diǎn);6.平面向量的數(shù)量積;7.平面兩點(diǎn)間的距離;8.平移。
1.不等式;2.不等式的基本性質(zhì);3.不等式的證明;4.不等式的解法;5.含絕對(duì)值的不等式。
1.直線的傾斜角和斜率;2.直線方程的點(diǎn)斜式和兩點(diǎn)式;3.直線方程的一般式;4.兩條直線平行與垂直的條件;5.兩條直線的交角;6.點(diǎn)到直線的距離;7.用二元一次不等式表示平面區(qū)域;8.簡(jiǎn)單線性規(guī)劃問(wèn)題;9.曲線與方程的概念;10.由已知條件列出曲線方程;11.圓的標(biāo)準(zhǔn)方程和一般方程;12.圓的參數(shù)方程。
1.橢圓及其標(biāo)準(zhǔn)方程;2.橢圓的簡(jiǎn)單幾何性質(zhì);3.橢圓的參數(shù)方程;4.雙曲線及其標(biāo)準(zhǔn)方程;5.雙曲線的簡(jiǎn)單幾何性質(zhì);6.拋物線及其標(biāo)準(zhǔn)方程;7.拋物線的簡(jiǎn)單幾何性質(zhì)。
1.平面及基本性質(zhì);2.平面圖形直觀圖的畫(huà)法;3.平面直線;4.直線和平面平行的判定與性質(zhì);5.直線和平面垂直的判定與性質(zhì);6.三垂線定理及其逆定理;7.兩個(gè)平面的位置關(guān)系;8.空間向量及其加法、減法與數(shù)乘;9.空間向量的坐標(biāo)表示;10.空間向量的數(shù)量積;11.直線的方向向量;12.異面直線所成的角;13.異面直線的公垂線;14.異面直線的距離;15.直線和平面垂直的性質(zhì);16.平面的法向量;17.點(diǎn)到平面的距離;18.直線和平面所成的角;19.向量在平面內(nèi)的射影;20.平面與平面平行的性質(zhì);21.平行平面間的距離;22.二面角及其平面角;23.兩個(gè)平面垂直的判定和性質(zhì);24.多面體;25.棱柱;26.棱錐;27.正多面體;28.球。
1.分類計(jì)數(shù)原理與分步計(jì)數(shù)原理;2.排列;3.排列數(shù)公式;4.組合;5.組合數(shù)公式;6.組合數(shù)的兩個(gè)性質(zhì);7.二項(xiàng)式定理;8.二項(xiàng)展開(kāi)式的性質(zhì)。
1.隨機(jī)事件的概率;2.等可能事件的概率;3.互斥事件有一個(gè)發(fā)生的概率;4.相互獨(dú)立事件同時(shí)發(fā)生的概率;5.獨(dú)立重復(fù)試驗(yàn)。
1.離散型隨機(jī)變量的分布列;2.離散型隨機(jī)變量的期望值和方差;3.抽樣方法;4.總體分布的估計(jì);5.正態(tài)分布;6.線性回歸。
1.數(shù)學(xué)歸納法;2.數(shù)學(xué)歸納法應(yīng)用舉例;3.數(shù)列的極限;4.函數(shù)的極限;5.極限的四則運(yùn)算;6.函數(shù)的連續(xù)性。
1.導(dǎo)數(shù)的概念;2.導(dǎo)數(shù)的幾何意義;3.幾種常見(jiàn)函數(shù)的導(dǎo)數(shù);4.兩個(gè)函數(shù)的和、差、積、商的導(dǎo)數(shù);5.復(fù)合函數(shù)的導(dǎo)數(shù);6.基本導(dǎo)數(shù)公式;7.利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和極值;8.函數(shù)的最大值和最小值。
1.復(fù)數(shù)的概念;2.復(fù)數(shù)的加法和減法;3.復(fù)數(shù)的乘法和除法;4.復(fù)數(shù)的一元二次方程和二項(xiàng)方程的解法。
高二數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)人教版高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)篇五
(1)直線的傾斜角
(2)直線的斜率
①定義:傾斜角不是90°的'直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。
②過(guò)兩點(diǎn)的直線的斜率公式:
(2)k與p1、p2的順序無(wú)關(guān);
(3)以后求斜率可不通過(guò)傾斜角而由直線上兩點(diǎn)的坐標(biāo)直接求得;
(4)求直線的傾斜角可由直線上兩點(diǎn)的坐標(biāo)先求斜率得到。
(3)直線方程
①點(diǎn)斜式:直線斜率k,且過(guò)點(diǎn)
注意:當(dāng)直線的斜率為0°時(shí),k=0,直線的方程是y=y1。
當(dāng)直線的斜率為90°時(shí),直線的斜率不存在,它的方程不能用點(diǎn)斜式表示。但因l上每一點(diǎn)的橫坐標(biāo)都等于x1,所以它的方程是x=x1。
②斜截式:直線斜率為k,直線在y軸上的截距為b
③兩點(diǎn)式:()直線兩點(diǎn),
④截矩式:
其中直線與軸交于點(diǎn),與軸交于點(diǎn),即與軸、軸的截距分別為。
⑤一般式:(a,b不全為0)
注意:各式的適用范圍特殊的方程如:
平行于x軸的直線:(b為常數(shù));平行于y軸的直線:(a為常數(shù));
(5)直線系方程:即具有某一共同性質(zhì)的直線
(一)平行直線系
平行于已知直線(是不全為0的常數(shù))的直線系:(c為常數(shù))
(二)垂直直線系
垂直于已知直線(是不全為0的常數(shù))的直線系:(c為常數(shù))
(三)過(guò)定點(diǎn)的直線系
(?。┬甭蕿閗的直線系:,直線過(guò)定點(diǎn);
(ⅱ)過(guò)兩條直線,的交點(diǎn)的直線系方程為
(為參數(shù)),其中直線不在直線系中。
(6)兩直線平行與垂直當(dāng),時(shí),;
注意:利用斜率判斷直線的平行與垂直時(shí),要注意斜率的存在與否。
(7)兩條直線的交點(diǎn)相交
交點(diǎn)坐標(biāo)即方程組的一組解。
方程組無(wú)解;方程組有無(wú)數(shù)解與重合
(8)兩點(diǎn)間距離公式:設(shè)是平面直角坐標(biāo)系中的兩個(gè)點(diǎn),
則
(9)點(diǎn)到直線距離公式:一點(diǎn)到直線的距離
(10)兩平行直線距離公式
在任一直線上任取一點(diǎn),再轉(zhuǎn)化為點(diǎn)到直線的距離進(jìn)行求解。
高二數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)人教版高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)篇六
(3)確定事件:必然事件和不可能事件統(tǒng)稱為相對(duì)于條件s的確定事件;
(5)頻數(shù)與頻率:在相同的條件s下重復(fù)n次試驗(yàn),觀察某一事件a是否出現(xiàn),稱n次試驗(yàn)中事件a出現(xiàn)的次數(shù)na為事件a出現(xiàn)的頻數(shù);稱事件a出現(xiàn)的比例fn(a)=nna為事件a出現(xiàn)的概率:對(duì)于給定的隨機(jī)事件a,如果隨著試驗(yàn)次數(shù)的增加,事件a發(fā)生的頻率fn(a)穩(wěn)定在某個(gè)常數(shù)上,把這個(gè)常數(shù)記作p(a),稱為事件a的概率。
(6)頻率與概率的區(qū)別與聯(lián)系:隨機(jī)事件的頻率,指此事件發(fā)生的次數(shù)na與試驗(yàn)總次數(shù)n的比值nna,它具有一定的穩(wěn)定性,總在某個(gè)常數(shù)附近擺動(dòng),且隨著試驗(yàn)次數(shù)的不斷增多,這種擺動(dòng)幅度越來(lái)越小。我們把這個(gè)常數(shù)叫做隨機(jī)事件的概率,概率從數(shù)量上反映了隨機(jī)事件發(fā)生的可能性的大小。頻率在大量重復(fù)試驗(yàn)的前提下可以近似地作為這個(gè)事件的概率。
高二數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)人教版高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)篇七
1、幾何概型的定義:如果每個(gè)事件發(fā)生的概率只與構(gòu)成該事件區(qū)域的長(zhǎng)度(面積或體積)成比例,則稱這樣的概率模型為幾何概率模型,簡(jiǎn)稱幾何概型。
試驗(yàn)的全部結(jié)果所構(gòu)成的區(qū)域長(zhǎng)度(面積或體積)
3、幾何概型的特點(diǎn):
1)試驗(yàn)中所有可能出現(xiàn)的結(jié)果(基本事件)有無(wú)限多個(gè);
2)每個(gè)基本事件出現(xiàn)的可能性相等、
4、幾何概型與古典概型的比較:一方面,古典概型具有有限性,即試驗(yàn)結(jié)果是可數(shù)的;而幾何概型則是在試驗(yàn)中出現(xiàn)無(wú)限多個(gè)結(jié)果,且與事件的區(qū)域長(zhǎng)度(或面積、體積等)有關(guān),即試驗(yàn)結(jié)果具有無(wú)限性,是不可數(shù)的。這是二者的不同之處;另一方面,古典概型與幾何概型的試驗(yàn)結(jié)果都具有等可能性,這是二者的共性。
通過(guò)以上對(duì)于幾何概型的基本知識(shí)點(diǎn)的梳理,我們不難看出其要核是:要抓住幾何概型具有無(wú)限性和等可能性兩個(gè)特點(diǎn),無(wú)限性是指在一次試驗(yàn)中,基本事件的個(gè)數(shù)可以是無(wú)限的,這是區(qū)分幾何概型與古典概型的關(guān)鍵所在;等可能性是指每一個(gè)基本事件發(fā)生的可能性是均等的,這是解題的基本前提。因此,用幾何概型求解的概率問(wèn)題和古典概型的基本思路是相同的,同屬于“比例法”,即隨機(jī)事件a的概率可以用“事件a包含的基本事件所占的圖形的長(zhǎng)度、面積(體積)和角度等”與“試驗(yàn)的基本事件所占總長(zhǎng)度、面積(體積)和角度等”之比來(lái)表示。下面就幾何概型常見(jiàn)類型題作一歸納梳理。
高二數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)人教版高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)篇八
一、集合、簡(jiǎn)易邏輯(14課時(shí),8個(gè))
1、集合;
2、子集;
3、補(bǔ)集;
4、交集;
5、并集;
6、邏輯連結(jié)詞;
7、四種命題;
8、充要條件。
二、函數(shù)(30課時(shí),12個(gè))
1、映射;
2、函數(shù);
3、函數(shù)的單調(diào)性;
4、反函數(shù);
5、互為反函數(shù)的函數(shù)圖象間的關(guān)系;
6、指數(shù)概念的擴(kuò)充;
7、有理指數(shù)冪的運(yùn)算;
8、指數(shù)函數(shù);
9、對(duì)數(shù);
10、對(duì)數(shù)的運(yùn)算性質(zhì);
11、對(duì)數(shù)函數(shù)。
12、函數(shù)的應(yīng)用舉例。
三、數(shù)列(12課時(shí),5個(gè))
1、數(shù)列;
2、等差數(shù)列及其通項(xiàng)公式;
3、等差數(shù)列前n項(xiàng)和公式;
4、等比數(shù)列及其通頂公式;
5、等比數(shù)列前n項(xiàng)和公式。
四、三角函數(shù)(46課時(shí),17個(gè))
1、角的概念的推廣;
2、弧度制;
3、任意角的三角函數(shù);
4、單位圓中的三角函數(shù)線;
5、同角三角函數(shù)的基本關(guān)系式;
6、正弦、余弦的誘導(dǎo)公式;
7、兩角和與差的正弦、余弦、正切;
8、二倍角的正弦、余弦、正切;
9、正弦函數(shù)、余弦函數(shù)的圖象和性質(zhì);
10、周期函數(shù);
11、函數(shù)的奇偶性;
12、函數(shù)的圖象;
13、正切函數(shù)的圖象和性質(zhì);
14、已知三角函數(shù)值求角;
15、正弦定理;
16、余弦定理;
17、斜三角形解法舉例。
五、平面向量(12課時(shí),8個(gè))
1、向量;
2、向量的加法與減法;
3、實(shí)數(shù)與向量的積;
4、平面向量的坐標(biāo)表示;
5、線段的定比分點(diǎn);
6、平面向量的數(shù)量積;
7、平面兩點(diǎn)間的距離;
8、平移。
六、不等式(22課時(shí),5個(gè))
1、不等式;
2、不等式的基本性質(zhì);
3、不等式的證明;
4、不等式的解法;
5、含絕對(duì)值的不等式。
七、直線和圓的方程(22課時(shí),12個(gè))
1、直線的傾斜角和斜率;
2、直線方程的點(diǎn)斜式和兩點(diǎn)式;
3、直線方程的一般式;
4、兩條直線平行與垂直的條件;
5、兩條直線的交角;
6、點(diǎn)到直線的距離;
7、用二元一次不等式表示平面區(qū)域;
8、簡(jiǎn)單線性規(guī)劃問(wèn)題;
9、曲線與方程的概念;
10、由已知條件列出曲線方程;
11、圓的標(biāo)準(zhǔn)方程和一般方程;
12、圓的參數(shù)方程。
高二數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)人教版高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)篇九
如果等到把課堂內(nèi)容遺忘得差不多時(shí)才復(fù)習(xí),就幾乎等于重新學(xué)習(xí),所以課堂學(xué)習(xí)的新知識(shí)必須及時(shí)復(fù)習(xí)。
可以一個(gè)人單獨(dú)回憶,也可以幾個(gè)人在一起互相啟發(fā),補(bǔ)充回憶。一般按照教師板書(shū)的提綱和要領(lǐng)進(jìn)行,也可以按教材綱目結(jié)構(gòu)進(jìn)行,從課題到重點(diǎn)內(nèi)容,再到例題的每部分的細(xì)節(jié),循序漸進(jìn)地進(jìn)行復(fù)習(xí)。在復(fù)習(xí)過(guò)程中要不失時(shí)機(jī)整理筆記,因?yàn)檎砉P記也是一種有效的復(fù)習(xí)方法。
即使是復(fù)習(xí)過(guò)的內(nèi)容仍須定期鞏固,但是復(fù)習(xí)的次數(shù)應(yīng)隨時(shí)間的增長(zhǎng)而逐步減小,間隔也可以逐漸拉長(zhǎng)??梢援?dāng)天鞏固新知識(shí),每周進(jìn)行周小結(jié),每月進(jìn)行階段性總結(jié),期中、期末進(jìn)行全面系統(tǒng)的學(xué)期復(fù)習(xí)。從內(nèi)容上看,每課知識(shí)即時(shí)回顧,每單元進(jìn)行知識(shí)梳理,每章節(jié)進(jìn)行知識(shí)歸納總結(jié),必須把相關(guān)知識(shí)串聯(lián)在一起,形成知識(shí)網(wǎng)絡(luò),達(dá)到對(duì)知識(shí)和方法的整體把握。
復(fù)習(xí)一般可以分為集中復(fù)習(xí)和分散復(fù)習(xí)。實(shí)驗(yàn)證明,分散復(fù)習(xí)的效果優(yōu)于集中復(fù)習(xí),特殊情況除外。分散復(fù)習(xí),可以把需要識(shí)記的材料適當(dāng)分類,并且與其他的學(xué)習(xí)或娛樂(lè)或休息交替進(jìn)行,不至于單調(diào)使用某種思維方式,形成疲勞。分散復(fù)習(xí)也應(yīng)結(jié)合各自認(rèn)知水平,以及識(shí)記素材的特點(diǎn),把握重復(fù)次數(shù)與間隔時(shí)間,并非間隔時(shí)間越長(zhǎng)越好,而要適合自己的復(fù)習(xí)規(guī)律。
對(duì)所學(xué)的素材要進(jìn)行分析、歸類,找出重、難點(diǎn),分清主次。在復(fù)習(xí)過(guò)程中,特別要關(guān)注難點(diǎn)及容易造成誤解的問(wèn)題,應(yīng)分析其關(guān)鍵點(diǎn)和易錯(cuò)點(diǎn),找出原因,必要時(shí)還可以把這類問(wèn)題進(jìn)行梳理,記錄在一個(gè)專題本上,也可以在電腦上做一個(gè)重難點(diǎn)“超市”,可隨時(shí)點(diǎn)擊,進(jìn)行復(fù)習(xí)。
隨著時(shí)間的推移,復(fù)習(xí)的效果會(huì)產(chǎn)生變化,有的淡化、有的模糊、有的不準(zhǔn)確,到底各環(huán)節(jié)的內(nèi)容掌握得如何,需進(jìn)行效果檢測(cè),如:周周練、月月測(cè)、單元過(guò)關(guān)練習(xí)、期中考試、期末考試等,都是為了檢測(cè)學(xué)習(xí)效果。檢測(cè)時(shí)必須獨(dú)立,限時(shí)完成,保證檢測(cè)出的效果的真實(shí)性,如果存在問(wèn)題,應(yīng)該找到錯(cuò)誤的根源,并適時(shí)采取補(bǔ)救措施進(jìn)行校正。目前市場(chǎng)上練習(xí)冊(cè)多如牛毛,請(qǐng)?jiān)诶蠋煹闹笇?dǎo)下選用。
【本文地址:http://www.aiweibaby.com/zuowen/2057446.html】