初三數(shù)學(xué)重點(diǎn)難點(diǎn)考點(diǎn)優(yōu)質(zhì)(三篇)

格式:DOC 上傳日期:2023-04-01 12:42:33
初三數(shù)學(xué)重點(diǎn)難點(diǎn)考點(diǎn)優(yōu)質(zhì)(三篇)
時(shí)間:2023-04-01 12:42:33     小編:admin

每個(gè)人都曾試圖在平淡的學(xué)習(xí)、工作和生活中寫一篇文章。寫作是培養(yǎng)人的觀察、聯(lián)想、想象、思維和記憶的重要手段。相信許多人會(huì)覺(jué)得范文很難寫?接下來(lái)小編就給大家介紹一下優(yōu)秀的范文該怎么寫,我們一起來(lái)看一看吧。

初三數(shù)學(xué)重點(diǎn)難點(diǎn)考點(diǎn)篇一

三角形是初中幾何圖形中內(nèi)容最多的一塊知識(shí),也是學(xué)好平面幾何的必要基礎(chǔ),貫穿初二到到初三的幾何知識(shí),其中的幾何證明題及線段長(zhǎng)度和角度的計(jì)算對(duì)很多學(xué)生是難點(diǎn)。

只有學(xué)好了三角形,后面的四邊形乃至圓的證明就容易理解掌握了,反之,后面的一切幾何證明更將無(wú)從下手,沒(méi)有清晰的思路。

其中解三角形在初三下冊(cè)學(xué)習(xí),是以直角三角形為基礎(chǔ)的,在中考中會(huì)以船的觸礁、樓高、影子問(wèn)題出現(xiàn)一道大題。因此在初中數(shù)學(xué)學(xué)習(xí)中也是一個(gè)重點(diǎn)。

四邊形在初二進(jìn)行學(xué)習(xí)的,其中特殊四邊形的性質(zhì)及判定定理很多,容易混淆,深刻理解這些性質(zhì)和判定、理清它們之間的聯(lián)系是解決證明和計(jì)算的基礎(chǔ),四邊形中題型多變,計(jì)算、證明都有一定難度。經(jīng)常在中考選擇題、填空題及解答題的壓軸題(最后一題)中出現(xiàn),對(duì)學(xué)生綜合運(yùn)用知識(shí)的能力要求較高。

2、圓,中考中占總分的10%左右

包括圓的基本性質(zhì),點(diǎn)、直線與圓位置關(guān)系,圓心角與圓周角,切線的性質(zhì)和判定,扇形弧長(zhǎng)及面積,這章節(jié)知識(shí)是在初三學(xué)習(xí)的。

其中切線的性質(zhì)和判定、圓中的基本性質(zhì)的理解和運(yùn)用、直線與圓的位置關(guān)系、圓中的一些線段長(zhǎng)度及角度的計(jì)算是重點(diǎn)也是難點(diǎn)。

初三數(shù)學(xué)重點(diǎn)難點(diǎn)考點(diǎn)篇二

1.二次根式:一般地,式子 叫做二次根式.

注意:(1)若 這個(gè)條件不成立,則 不是二次根式;

(2) 是一個(gè)重要的非負(fù)數(shù),即; ≥0.

2.重要公式:(1) ,(2) ;

3.積的算術(shù)平方根:

積的算術(shù)平方根等于積中各因式的算術(shù)平方根的積;

4.二次根式的乘法法則: .

5.二次根式比較大小的方法:

(1)利用近似值比大小;

(2)把二次根式的系數(shù)移入二次根號(hào)內(nèi),然后比大小;

(3)分別平方,然后比大小.

6.商的算術(shù)平方根: ,

商的算術(shù)平方根等于被除式的算術(shù)平方根除以除式的算術(shù)平方根.

7.二次根式的除法法則:

(1) ;(2) ;

(3)分母有理化的方法是:分式的分子與分母同乘分母的有理化因式,使分母變?yōu)檎?

8.最簡(jiǎn)二次根式:

(1)滿足下列兩個(gè)條件的二次根式,叫做最簡(jiǎn)二次根式,① 被開方數(shù)的因數(shù)是整數(shù),因式是整式,② 被開方數(shù)中不含能開的盡的因數(shù)或因式;

(2)最簡(jiǎn)二次根式中,被開方數(shù)不能含有小數(shù)、分?jǐn)?shù),字母因式次數(shù)低于2,且不含分母;

(3)化簡(jiǎn)二次根式時(shí),往往需要把被開方數(shù)先分解因數(shù)或分解因式;

(4)二次根式計(jì)算的最后結(jié)果必須化為最簡(jiǎn)二次根式.

10.同類二次根式:幾個(gè)二次根式化成最簡(jiǎn)二次根式后,如果被開方數(shù)相同,這幾個(gè)二次根式叫做同類二次根式.

12.二次根式的混合運(yùn)算:

(1)二次根式的混合運(yùn)算包括加、減、乘、除、乘方、開方六種代數(shù)運(yùn)算,以前學(xué)過(guò)的,在有理數(shù)范圍內(nèi)的一切公式和運(yùn)算律在二次根式的混合運(yùn)算中都適用;

(2)二次根式的運(yùn)算一般要先把二次根式進(jìn)行適當(dāng)化簡(jiǎn),例如:化為同類二次根式才能合并;除法運(yùn)算有時(shí)轉(zhuǎn)化為分母有理化或約分更為簡(jiǎn)便;使用乘法公式等.

第22章 一元二次方程

1. 一元二次方程的一般形式: a≠0時(shí),ax2+bx+c=0叫一元二次方程的一般形式,研究一元二次方程的有關(guān)問(wèn)題時(shí),多數(shù)習(xí)題要先化為一般形式,目的是確定一般形式中的a、 b、 c; 其中a 、 b,、c可能是具體數(shù),也可能是含待定字母或特定式子的代數(shù)式.

2. 一元二次方程的解法: 一元二次方程的四種解法要求靈活運(yùn)用, 其中直接開平方法雖然簡(jiǎn)單,但是適用范圍較小;公式法雖然適用范圍大,但計(jì)算較繁,易發(fā)生計(jì)算錯(cuò)誤;因式分解法適用范圍較大,且計(jì)算簡(jiǎn)便,是首選方法;配方法使用較少.

3. 一元二次方程根的判別式: 當(dāng)ax2+bx+c=0 (a≠0)時(shí),δ=b2-4ac 叫一元二次方程根的判別式.請(qǐng)注意以下等價(jià)命題:

δ>0 <=> 有兩個(gè)不等的實(shí)根; δ=0 <=> 有兩個(gè)相等的實(shí)根;δ<0 <=> 無(wú)實(shí)根;

4.平均增長(zhǎng)率問(wèn)題--------應(yīng)用題的類型題之一 (設(shè)增長(zhǎng)率為x):

(1) 第一年為 a , 第二年為a(1+x) , 第三年為a(1+x)2.

(2)常利用以下相等關(guān)系列方程: 第三年=第三年 或 第一年+第二年+第三年=總和.

第23章 旋轉(zhuǎn)

1、概念:

把一個(gè)圖形繞著某一點(diǎn)o轉(zhuǎn)動(dòng)一個(gè)角度的圖形變換叫做旋轉(zhuǎn),點(diǎn)o叫做旋轉(zhuǎn)中心,轉(zhuǎn)動(dòng)的角叫做旋轉(zhuǎn)角.

旋轉(zhuǎn)三要素:旋轉(zhuǎn)中心、旋轉(zhuǎn)方面、旋轉(zhuǎn)角

2、旋轉(zhuǎn)的性質(zhì):

(1) 旋轉(zhuǎn)前后的兩個(gè)圖形是全等形;

(2) 兩個(gè)對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等

(3) 兩個(gè)對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線段的夾角等于旋轉(zhuǎn)角

3、中心對(duì)稱:

把一個(gè)圖形繞著某一個(gè)點(diǎn)旋轉(zhuǎn)180°,如果它能夠與另一個(gè)圖形重合,那么就說(shuō)這兩個(gè)圖形關(guān)于這個(gè)點(diǎn)對(duì)稱或中心對(duì)稱,這個(gè)點(diǎn)叫做對(duì)稱中心.

這兩個(gè)圖形中的對(duì)應(yīng)點(diǎn)叫做關(guān)于中心的對(duì)稱點(diǎn).

4、中心對(duì)稱的性質(zhì):

(1)關(guān)于中心對(duì)稱的兩個(gè)圖形,對(duì)稱點(diǎn)所連線段都經(jīng)過(guò)對(duì)稱中心,而且被對(duì)稱中心所平分.

(2)關(guān)于中心對(duì)稱的兩個(gè)圖形是全等圖形.

5、中心對(duì)稱圖形:

把一個(gè)圖形繞著某一個(gè)點(diǎn)旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來(lái)的圖形重合,那么這個(gè)圖形叫做中心對(duì)稱圖形,這個(gè)點(diǎn)就是它的對(duì)稱中心.

6、坐標(biāo)系中的中心對(duì)稱

兩個(gè)點(diǎn)關(guān)于原點(diǎn)對(duì)稱時(shí),它們的坐標(biāo)符號(hào)相反,

即點(diǎn)p(x,y)關(guān)于原點(diǎn)o的對(duì)稱點(diǎn)p′(-x,-y).

初三數(shù)學(xué)重點(diǎn)難點(diǎn)考點(diǎn)篇三

1、構(gòu)建完整的知識(shí)框架是我們解決問(wèn)題的基礎(chǔ),想要學(xué)好數(shù)學(xué)必須重視基礎(chǔ)概念,必須加深對(duì)知識(shí)點(diǎn)的理解,然后會(huì)運(yùn)用知識(shí)點(diǎn)解決問(wèn)題,遇到問(wèn)題自己學(xué)會(huì)反思及多維度的思考,最后形成自己的思路和方法。

但有很多初中學(xué)生不重視書本的概念,對(duì)某些概念一知半解,對(duì)知識(shí)點(diǎn)沒(méi)有吃透,知識(shí)體系不完整,就會(huì)出現(xiàn)成績(jī)飄忽不定的現(xiàn)象。

2、正確理解和掌握數(shù)學(xué)的一些基本概念、法則、公式、定理,把握他們之間的內(nèi)在聯(lián)系。

由于數(shù)學(xué)是一門知識(shí)的連貫性和邏輯性都很強(qiáng)的學(xué)科,正確掌握學(xué)過(guò)的每一個(gè)概念、法則、公式、定理可以為以后的學(xué)習(xí)打下良好的基礎(chǔ),如果在學(xué)習(xí)某一內(nèi)容或解某一題時(shí)碰到了困難,那么很有可能就是因?yàn)榕c其有關(guān)的、以前的一些基本知識(shí)沒(méi)有掌握好所造成的,因此要經(jīng)常查缺補(bǔ)漏,找到問(wèn)題并及時(shí)解決之,努力做到發(fā)現(xiàn)一個(gè)問(wèn)題及時(shí)解決一個(gè)問(wèn)題。只有基礎(chǔ)扎實(shí),解決問(wèn)題才能得心應(yīng)手,成績(jī)才會(huì)提高。

初中數(shù)學(xué)中考知識(shí)重難點(diǎn)分析

1、函數(shù)(一次函數(shù)、反比例函數(shù)、二次函數(shù))中考占總分的15%左右

特別是二次函數(shù)是中考的重點(diǎn),也是中考的難點(diǎn),在填空、選擇、解答題中均會(huì)出現(xiàn),且知識(shí)點(diǎn)多,題型多變。

而且一道解答題一般會(huì)在試卷最后兩題中出現(xiàn),一般二次函數(shù)的應(yīng)用和二次函數(shù)的圖像、性質(zhì)及三角形、四邊形綜合題難度較大。有一定難度。

如果在這一環(huán)節(jié)掌握不好,將會(huì)直接影響代數(shù)的基礎(chǔ),會(huì)對(duì)中考的分?jǐn)?shù)會(huì)造成很大的影響。

2、整式、分式、二次根式的化簡(jiǎn)運(yùn)算

整式的運(yùn)算、因式分解、二次根式、科學(xué)計(jì)數(shù)法及分式化簡(jiǎn)等都是初中學(xué)習(xí)的重點(diǎn),它貫穿于整個(gè)初中數(shù)學(xué)的知識(shí),是我們進(jìn)行數(shù)學(xué)運(yùn)算的基礎(chǔ),其中因式分解及理解因式分解和整式乘法運(yùn)算的關(guān)系、分式的運(yùn)算是難點(diǎn)。

中考一般以選擇、填空形式出現(xiàn),但卻是解答題完整解答的基礎(chǔ)。運(yùn)算能力的熟練程度和答題的正確率有直接的關(guān)系,掌握不好,答題正確率就不會(huì)很高,進(jìn)而后面的的方程、不等式、函數(shù)也無(wú)法學(xué)好。

3、應(yīng)用題,中考中占總分的30%左右

包括方程(組)應(yīng)用,一元一次不等式(組)應(yīng)用,函數(shù)應(yīng)用,解三角形應(yīng)用,概率與統(tǒng)計(jì)應(yīng)用幾種題型。

一般會(huì)出現(xiàn)二至三道解答題(30分左右)及2—3道選擇、填空題(10分—15分),占中考總分的30%左右。

現(xiàn)在中考對(duì)數(shù)學(xué)實(shí)際應(yīng)用的考察會(huì)越來(lái)越多,數(shù)學(xué)與生活聯(lián)系越來(lái)越緊密,應(yīng)用題要求學(xué)生的理解辨別能力很強(qiáng),能從問(wèn)題中讀出必要的數(shù)學(xué)信息,并從數(shù)學(xué)的角度尋求解決問(wèn)題的策略和方法。方程思想、函數(shù)思想、數(shù)形結(jié)合思想也是中學(xué)階段一種很重要的數(shù)學(xué)思想、是解決很多問(wèn)題的工具。

【本文地址:http://aiweibaby.com/zuowen/2088691.html】

全文閱讀已結(jié)束,如果需要下載本文請(qǐng)點(diǎn)擊

下載此文檔