最新人教版初三數(shù)學(xué)教案全冊(模板5篇)

格式:DOC 上傳日期:2023-04-01 14:17:09
最新人教版初三數(shù)學(xué)教案全冊(模板5篇)
時間:2023-04-01 14:17:09     小編:admin

作為一名專為他人授業(yè)解惑的人民教師,就有可能用到教案,編寫教案助于積累教學(xué)經(jīng)驗,不斷提高教學(xué)質(zhì)量。教案書寫有哪些要求呢?我們怎樣才能寫好一篇教案呢?以下是小編為大家收集的教案范文,僅供參考,大家一起來看看吧。

人教版初三數(shù)學(xué)教案全冊篇一

課堂教學(xué)是師生的雙邊活動。課堂教學(xué)的實質(zhì)是師生雙方的信息交流,共同學(xué)校的過程。教師得知學(xué)生在數(shù)學(xué)學(xué)習(xí)很困難時,是否想到了可能教師自己對教材理解不夠,沒有準(zhǔn)確地把握教材的重點、難點,對教材內(nèi)容層次沒有理清和教學(xué)方法不適呢?《數(shù)學(xué)課程標(biāo)準(zhǔn)》指導(dǎo)下,我們的數(shù)學(xué)教學(xué)目的是要學(xué)生在數(shù)學(xué)學(xué)習(xí)中,由“聽”到“懂”,再到“會”,最后到“通”。為此,教師必須深刻反思自己的教育教學(xué)行為,批判性地考察自我主體行為表現(xiàn)及其行為依據(jù)。通過觀察、回顧、診斷、自我監(jiān)控等方式,或給予肯定、支持與強(qiáng)化,或給予否定、思索與修正,將“學(xué)會教學(xué)”與“學(xué)會學(xué)習(xí)”結(jié)合起來,從而努力提升教學(xué)實踐的合理性,提高課堂教學(xué)效能,到達(dá)提高教學(xué)質(zhì)量的目的?,F(xiàn)就以下幾方面談?wù)勛约旱目捶ā?/p>

一、教師要反思教育觀念

新課標(biāo)下要求教師要改變學(xué)科的教育觀,始終體現(xiàn)“學(xué)生是教學(xué)活動的主體”科學(xué)理念,著眼于學(xué)生的終身發(fā)展,注重培養(yǎng)學(xué)生濃厚的學(xué)習(xí)興趣和正確的學(xué)習(xí)習(xí)慣。數(shù)學(xué)非常重視教學(xué)內(nèi)容與實際生活的緊密聯(lián)系。但是在教學(xué)活動中還是有不少教師習(xí)慣于傳統(tǒng)的教學(xué)模式,偏重于知識的傳授,強(qiáng)調(diào)接受式學(xué)習(xí),這樣使很多學(xué)生在學(xué)習(xí)數(shù)學(xué)上失去了興趣。教學(xué)中教師要抓住時機(jī),不斷地引導(dǎo)學(xué)生在設(shè)疑、質(zhì)疑、解疑的過程中,創(chuàng)設(shè)認(rèn)知“沖突”,激發(fā)學(xué)生持續(xù)的學(xué)習(xí)興趣和求知欲 望,順利地建立數(shù)學(xué)概念,把握數(shù)學(xué)定義、定理和規(guī)律。

教師在探究教學(xué)中要立足與培養(yǎng)學(xué)生的獨立性和自主性,引導(dǎo)他們質(zhì)疑、調(diào)查和探究,學(xué)會在實踐中學(xué),在合作中學(xué),逐步形成適合于自己的學(xué)習(xí)策略。例如,在學(xué)習(xí)等腰三角形三線合一的性質(zhì)時可以讓三個同學(xué)合作分別去畫出頂角平分線、底邊上的高、底邊上的中線,這是學(xué)生會發(fā)現(xiàn)三條線為什么會是一條線?證明三角形全等的方法有多種,為什么“角邊邊”不能判定兩三角形全等?在學(xué)習(xí)鑲嵌時,可以提這樣的問題,為什么正三角形、正方形、長方形正六邊形可以,而正五邊形不可以?等等。

這樣教師不斷地設(shè)問,不斷地質(zhì)疑,就能引導(dǎo)學(xué)生進(jìn)行積極思考,激發(fā)起學(xué)生濃厚的學(xué)習(xí)興趣和求知欲 望,促使學(xué)生在生活中發(fā)現(xiàn)和歸納各種各樣的數(shù)學(xué)規(guī)律,為下一步學(xué)習(xí)數(shù)學(xué)知識打下堅實的基礎(chǔ)。所以我們的教師必須反思自己的教育觀念,緊緊抓住主導(dǎo)和主體的關(guān)系,解決好學(xué)生學(xué)習(xí)積極性的問題。

二、教師要反思教學(xué)設(shè)計

教學(xué)設(shè)計是課堂教學(xué)的藍(lán)本,是對課堂教學(xué)的整體規(guī)劃和預(yù)設(shè),勾勒出了課堂教學(xué)活動的效益取向。設(shè)計教學(xué)方案時,教師對當(dāng)前的教學(xué)內(nèi)容及其地位(概念的“解構(gòu)”、思想方法的“析出”、相關(guān)知識的聯(lián)系方式等),學(xué)生已有知識經(jīng)驗,教學(xué)目的,重點與難點,如何依據(jù)學(xué)生已有認(rèn)知水平和知識的邏輯過程設(shè)計教學(xué)過程,如何突出重點和突破難點,學(xué)生在理解概念和思想方法時可能會出現(xiàn)哪些情況以及如何處理這些情況,設(shè)計哪些練習(xí)以鞏固新知識,如何評價學(xué)生的學(xué)習(xí)效果等,都應(yīng)該有一定的思考和預(yù)設(shè)。教學(xué)設(shè)計的反思就是對這些思考和預(yù)設(shè)是否考慮到

了。教學(xué)后,要對實際進(jìn)程和學(xué)生的接受程度進(jìn)行比較和反思,找出成功和不足之處及其原因,從而有效地改進(jìn)教學(xué)。

三、教師要反思教學(xué)方法

教師教得好,本質(zhì)上講是學(xué)生學(xué)得好。在實際教學(xué)過程中我們的教學(xué)方法是否合乎學(xué)生實際呢?上課、評卷、答疑解難時,有的教師自以為講清楚明白了,學(xué)生受到了一定的啟發(fā),但反思后發(fā)現(xiàn),教師的講解并沒有很好地從學(xué)生原有的知識基礎(chǔ)出發(fā),從根本上解決學(xué)生認(rèn)識上鴻溝問題。有的教師只是一味的設(shè)想按照自己某個固定的程序去解決某一類問題,也許學(xué)生當(dāng)時聽明白了,但往往是是而非,并沒有真正理解問題的本質(zhì)。

初中數(shù)學(xué)教學(xué)中,例習(xí)題教學(xué)是數(shù)學(xué)教學(xué)中重要的組成部分,是概念類教學(xué)的延伸和發(fā)展。教材中的例習(xí)題都是編者精心編制的,具有典型性和啟發(fā)性,它們不僅是對基礎(chǔ)知識的鞏固,同時對培養(yǎng)學(xué)生智力、掌握數(shù)學(xué)思想和方法,及培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)意識和能力,提高學(xué)生的數(shù)學(xué)素養(yǎng)等都有重要意義。

四、教師要反思學(xué)生學(xué)習(xí)方法

《數(shù)學(xué)課程標(biāo)準(zhǔn)》指出,有效的數(shù)學(xué)學(xué)習(xí)活動不能單純依賴模仿與記憶,動手實踐、自主探索與合作交流是學(xué)生學(xué)習(xí)數(shù)學(xué)的重要方式,因此,轉(zhuǎn)變數(shù)學(xué)學(xué)習(xí)方式,倡導(dǎo)有意義的學(xué)習(xí)方式是課程改革的核心任務(wù)。初中學(xué)生年齡一般在十二至十六歲之間,正處生長發(fā)育期,思想不成熟,行為不穩(wěn)定,辦事情緒化,喜表露,易沖動,既有面見師長的羞澀,有初生牛犢不怕虎的習(xí)性。在數(shù)學(xué)學(xué)習(xí)上憑興趣,看心情,個性反映較為突出,有不少學(xué)生學(xué)習(xí)方法也存在一定的問題。同時他們往往又很難發(fā)現(xiàn)自己的學(xué)習(xí)方法不妥。所以,教師就應(yīng)該反思學(xué)生的學(xué)習(xí)方法,找一找哪些問題,并幫助他們努力改變不恰當(dāng)?shù)姆椒?,使學(xué)生達(dá)到《新課標(biāo)》的要求。

總之,為學(xué)之道,必本與思,思則得之,不思則不得。教學(xué)也是這個規(guī)律,只教不思就會成為教死書的教書匠,學(xué)生也得不到很好的受益。要想成為優(yōu)秀的教師,只有一邊教書一邊總結(jié),一邊教書一邊反思,才能實現(xiàn)自己的目的。

人教版初三數(shù)學(xué)教案全冊篇二

理解一元二次方程求根公式的推導(dǎo)過程,了解公式法的概念,會熟練應(yīng)用公式法解一元二次方程.

復(fù)習(xí)具體數(shù)字的一元二次方程配方法的解題過程,引入ax2+bx+c=0(a≠0)的求根公式的推導(dǎo),并應(yīng)用公式法解一元二次方程.

重點

求根公式的推導(dǎo)和公式法的應(yīng)用.

難點

一元二次方程求根公式的推導(dǎo).

一、復(fù)習(xí)引入

1.前面我們學(xué)習(xí)過解一元二次方程的“直接開平方法”,比如,方程

(1)x2=4(2)(x-2)2=7

提問1這種解法的(理論)依據(jù)是什么?

提問2這種解法的局限性是什么?(只對那種“平方式等于非負(fù)數(shù)”的特殊二次方程有效,不能實施于一般形式的二次方程.)

2.面對這種局限性,怎么辦?(使用配方法,把一般形式的二次方程配方成能夠“直接開平方”的形式.)

(學(xué)生活動)用配方法解方程2x2+3=7x

(老師點評)略

總結(jié)用配方法解一元二次方程的步驟(學(xué)生總結(jié),老師點評).

(1)先將已知方程化為一般形式;

(2)化二次項系數(shù)為1;

(3)常數(shù)項移到右邊;

(4)方程兩邊都加上一次項系數(shù)的一半的平方,使左邊配成一個完全平方式;

(5)變形為(x+p)2=q的形式,如果q≥0,方程的根是x=-p±q;如果q<0,方程無實根.

二、探索新知

用配方法解方程:

(1)ax2-7x+3=0(2)ax2+bx+3=0

如果這個一元二次方程是一般形式ax2+bx+c=0(a≠0),你能否用上面配方法的步驟求出它們的兩根,請同學(xué)獨立完成下面這個問題.

問題:已知ax2+bx+c=0(a≠0),試推導(dǎo)它的兩個根x1=-b+b2-4ac2a,x2=-b-b2-4ac2a(這個方程一定有解嗎?什么情況下有解?)

分析:因為前面具體數(shù)字已做得很多,我們現(xiàn)在不妨把a(bǔ),b,c也當(dāng)成一個具體數(shù)字,根據(jù)上面的解題步驟就可以一直推下去.

解:移項,得:ax2+bx=-c

二次項系數(shù)化為1,得x2+bax=-ca

配方,得:x2+bax+(b2a)2=-ca+(b2a)2

即(x+b2a)2=b2-4ac4a2

∵4a2>0,當(dāng)b2-4ac≥0時,b2-4ac4a2≥0

∴(x+b2a)2=(b2-4ac2a)2

直接開平方,得:x+b2a=±b2-4ac2a

即x=-b±b2-4ac2a

∴x1=-b+b2-4ac2a,x2=-b-b2-4ac2a

由上可知,一元二次方程ax2+bx+c=0(a≠0)的根由方程的系數(shù)a,b,c而定,因此:

(1)解一元二次方程時,可以先將方程化為一般形式ax2+bx+c=0,當(dāng)b2-4ac≥0時,將a,b,c代入式子x=-b±b2-4ac2a就得到方程的根.

(2)這個式子叫做一元二次方程的求根公式.

(3)利用求根公式解一元二次方程的方法叫公式法.

公式的理解

(4)由求根公式可知,一元二次方程最多有兩個實數(shù)根.

例1用公式法解下列方程:

(1)2x2-x-1=0(2)x2+1.5=-3x

(3)x2-2x+12=0(4)4x2-3x+2=0

分析:用公式法解一元二次方程,首先應(yīng)把它化為一般形式,然后代入公式即可.

補(bǔ):(5)(x-2)(3x-5)=0

三、鞏固練習(xí)

教材第12頁練習(xí)1.(1)(3)(5)或(2)(4)(6).

四、課堂小結(jié)

本節(jié)課應(yīng)掌握:

(1)求根公式的概念及其推導(dǎo)過程;

(2)公式法的概念;

(3)應(yīng)用公式法解一元二次方程的步驟:1)將所給的方程變成一般形式,注意移項要變號,盡量讓a>0;2)找出系數(shù)a,b,c,注意各項的系數(shù)包括符號;3)計算b2-4ac,若結(jié)果為負(fù)數(shù),方程無解;4)若結(jié)果為非負(fù)數(shù),代入求根公式,算出結(jié)果.

(4)初步了解一元二次方程根的情況.

五、作業(yè)布置

教材第17頁習(xí)題4

人教版初三數(shù)學(xué)教案全冊篇三

一、內(nèi)容簡介

本節(jié)課的主題:通過一系列的探究活動,引導(dǎo)學(xué)生從計算結(jié)果中總結(jié)出完全平方公式的兩種形式。

關(guān)鍵信息:

1、以教材作為出發(fā)點,依據(jù)《數(shù)學(xué)課程標(biāo)準(zhǔn)》,引導(dǎo)學(xué)生體會、參與科學(xué)探究過程。首先提出等號左邊的兩個相乘的多項式和等號右邊得出的三項有什么關(guān)系。通過學(xué)生自主、獨立的發(fā)現(xiàn)問題,對可能的答案做出假設(shè)與猜想,并通過多次的檢驗,得出正確的結(jié)論。學(xué)生通過收集和處理信息、表達(dá)與交流等活動,獲得知識、技能、方法、態(tài)度特別是創(chuàng)新精神和實踐能力等方面的發(fā)展。

2、用標(biāo)準(zhǔn)的數(shù)學(xué)語言得出結(jié)論,使學(xué)生感受科學(xué)的嚴(yán)謹(jǐn),啟迪學(xué)習(xí)態(tài)度和方法。

二、學(xué)習(xí)者分析:

1、在學(xué)習(xí)本課之前應(yīng)具備的基本知識和技能:

①同類項的定義。

②合并同類項法則

③多項式乘以多項式法則。

2、學(xué)習(xí)者對即將學(xué)習(xí)的內(nèi)容已經(jīng)具備的水平:

在學(xué)習(xí)完全平方公式之前,學(xué)生已經(jīng)能夠整理出公式的右邊形式。這節(jié)課的目的就是讓學(xué)生從等號的左邊形式和右邊形式之間的關(guān)系,總結(jié)出公式的應(yīng)用方法。

三、教學(xué)/學(xué)習(xí)目標(biāo)及其對應(yīng)的課程標(biāo)準(zhǔn):

(一)教學(xué)目標(biāo):

1、經(jīng)歷探索完全平方公式的過程,進(jìn)一步發(fā)展符號感和推力能力。

2、會推導(dǎo)完全平方公式,并能運用公式進(jìn)行簡單的計算。

(二)知識與技能:經(jīng)歷從具體情境中抽象出符號的過程,認(rèn)識有理數(shù)、實數(shù)、代數(shù)式、防城、不等式、函數(shù);掌握必要的運算,(包括估算)技能;探索具體問題中的數(shù)量關(guān)系和變化規(guī)律,并能運用代數(shù)式、防城、不等式、函數(shù)等進(jìn)行描述。

(四)解決問題:能結(jié)合具體情景發(fā)現(xiàn)并提出數(shù)學(xué)問題;嘗試從不同角度尋求解決問題的方法,并能有效地解決問題,嘗試評價不同方法之間的差異;通過對解決問題過程的反思,獲得解決問題的經(jīng)驗。

(五)情感與態(tài)度:敢于面對數(shù)學(xué)活動中的困難,并有獨立克服困難和運用知識解決問題的成功體驗,有學(xué)好數(shù)學(xué)的自信心;并尊重與理解他人的見解;能從交流中獲益。

四、教育理念和教學(xué)方式:

1、教師是學(xué)生學(xué)習(xí)的組織者、促進(jìn)者、合作者:學(xué)生是學(xué)習(xí)的主人,在教師指導(dǎo)下主動的、富有個性的學(xué)習(xí),用自己的身體去親自經(jīng)歷,用自己的心靈去親自感悟。

教學(xué)是師生交往、積極互動、共同發(fā)展的過程。當(dāng)學(xué)生迷路的時候,教師不輕易告訴方向,而是引導(dǎo)他怎樣去辨明方向;當(dāng)學(xué)生登山畏懼了的時候,教師不是拖著他走,而是喚起他內(nèi)在的精神動力,鼓勵他不斷向上攀登。

2、采用“問題情景—探究交流—得出結(jié)論—強(qiáng)化訓(xùn)練”的模式

展開教學(xué)。

3、教學(xué)評價方式:

(1)通過課堂觀察,關(guān)注學(xué)生在觀察、總結(jié)、訓(xùn)練等活動中的主動參與程度與合作交流意識,及時給與鼓勵、強(qiáng)化、指導(dǎo)和矯正。

(2)通過判斷和舉例,給學(xué)生更多機(jī)會,在自然放松的狀態(tài)下,揭示思維過程和反饋知識與技能的掌握情況,使老師可以及時診斷學(xué)情,調(diào)查教學(xué)。

(3)通過課后訪談和作業(yè)分析,及時查漏補(bǔ)缺,確保達(dá)到預(yù)期的教學(xué)效果。

五、教學(xué)媒體:多媒體

六、教學(xué)和活動過程:

教學(xué)過程設(shè)計如下:

〈一〉、提出問題

[引入]同學(xué)們,前面我們學(xué)習(xí)了多項式乘多項式法則和合并同類項法則,通過運算下列四個小題,你能總結(jié)出結(jié)果與多項式中兩個單項式的關(guān)系嗎?

(2m+3n)2=_______________,(-2m-3n)2=______________,

(2m-3n)2=_______________,(-2m+3n)2=_______________。

〈二〉、分析問題

1、[學(xué)生回答]分組交流、討論

(2m+3n)2=4m2+12mn+9n2,(-2m-3n)2=4m2+12mn+9n2,

(2m-3n)2=4m2-12mn+9n2,(-2m+3n)2=4m2-12mn+9n2。

(1)原式的特點。

(2)結(jié)果的項數(shù)特點。

(3)三項系數(shù)的特點(特別是符號的特點)。

(4)三項與原多項式中兩個單項式的關(guān)系。

2、[學(xué)生回答]總結(jié)完全平方公式的語言描述:

兩數(shù)和的平方,等于它們平方的和,加上它們乘積的兩倍;

兩數(shù)差的平方,等于它們平方的和,減去它們乘積的兩倍。

3、[學(xué)生回答]完全平方公式的數(shù)學(xué)表達(dá)式:

(a+b)2=a2+2ab+b2;

(a-b)2=a2-2ab+b2.

〈三〉、運用公式,解決問題

1、口答:(搶答形式,活躍課堂氣氛,激發(fā)學(xué)生的學(xué)習(xí)積極性)

(m+n)2=____________,(m-n)2=_______________,

(-m+n)2=____________,(-m-n)2=______________,

(a+3)2=______________,(-c+5)2=______________,

(-7-a)2=______________,(0.5-a)2=______________.

2、判斷:

()①(a-2b)2=a2-2ab+b2

()②(2m+n)2=2m2+4mn+n2

()③(-n-3m)2=n2-6mn+9m2

()④(5a+0.2b)2=25a2+5ab+0.4b2

()⑤(5a-0.2b)2=5a2-5ab+0.04b2

()⑥(-a-2b)2=(a+2b)2

()⑦(2a-4b)2=(4a-2b)2

()⑧(-5m+n)2=(-n+5m)2

3、小試牛刀

①(x+y)2=______________;②(-y-x)2=_______________;

③(2x+3)2=_____________;④(3a-2)2=_______________;

⑤(2x+3y)2=____________;⑥(4x-5y)2=______________;

⑦(0.5m+n)2=___________;⑧(a-0.6b)2=_____________.

〈四〉、[學(xué)生小結(jié)]

你認(rèn)為完全平方公式在應(yīng)用過程中,需要注意那些問題?

(1)公式右邊共有3項。

(2)兩個平方項符號永遠(yuǎn)為正。

(3)中間項的符號由等號左邊的兩項符號是否相同決定。

(4)中間項是等號左邊兩項乘積的2倍。

〈五〉、冒險島:

(1)(-3a+2b)2=________________________________

(2)(-7-2m)2=__________________________________

(3)(-0.5m+2n)2=_______________________________

(4)(3/5a-1/2b)2=________________________________

(5)(mn+3)2=__________________________________

(6)(a2b-0.2)2=_________________________________

(7)(2xy2-3x2y)2=_______________________________

(8)(2n3-3m3)2=________________________________

〈六〉、學(xué)生自我評價

[小結(jié)]通過本節(jié)課的學(xué)習(xí),你有什么收獲和感悟?

本節(jié)課,我們自己通過計算、分析結(jié)果,總結(jié)出了完全平方公式。在知識探索的過程中,同學(xué)們積極思考,大膽探索,團(tuán)結(jié)協(xié)作共同取得了進(jìn)步。

〈七〉[作業(yè)]p34隨堂練習(xí)p36習(xí)題

七、課后反思

本節(jié)課雖然算不上課本中的難點,但在整式一章中是個重點。它是多項式乘法特殊形式下的一種簡便運算。學(xué)生需要熟練掌握公式兩種形式的使用方法,以提高運算速度。授課過程中,應(yīng)注重讓學(xué)生總結(jié)公式的等號兩邊的特點,讓學(xué)生用語言表達(dá)公式的內(nèi)容,讓學(xué)生說明運用公式過程中容易出現(xiàn)的問題和特別注意的細(xì)節(jié)。然后再通過逐層深入的練習(xí),鞏固完全平方公式兩種形式的應(yīng)用。為完全平方公式第二節(jié)課的實際應(yīng)用和提高應(yīng)用做好充分的準(zhǔn)備

人教版初三數(shù)學(xué)教案全冊篇四

一、素質(zhì)教育目標(biāo)

(一)知識教學(xué)點

使學(xué)生知道當(dāng)直角三角形的銳角固定時,它的對邊、鄰邊與斜邊的比值也都固定這一事實.

(二)能力訓(xùn)練點

逐步培養(yǎng)學(xué)生會觀察、比較、分析、概括等邏輯思維能力.

(三)德育滲透點

引導(dǎo)學(xué)生探索、發(fā)現(xiàn),以培養(yǎng)學(xué)生獨立思考、勇于創(chuàng)新的精神和良好的學(xué)習(xí)習(xí)慣.

二、教學(xué)重點、難點

1.重點:使學(xué)生知道當(dāng)銳角固定時,它的對邊、鄰邊與斜邊的比值也是固定的這一事實.

2.難點:學(xué)生很難想到對任意銳角,它的對邊、鄰邊與斜邊的比值也是固定的事實,關(guān)鍵在于教師引導(dǎo)學(xué)生比較、分析,得出結(jié)論.

三、教學(xué)步驟

(一)明確目標(biāo)

1.如圖6-1,長5米的梯子架在高為3米的墻上,則a、b間距離為多少米?

2.長5米的梯子以傾斜角∠cab為30°靠在墻上,則a、b間的距離為多少?

3.若長5米的梯子以傾斜角40°架在墻上,則a、b間距離為多少?

4.若長5米的梯子靠在墻上,使a、b間距為2米,則傾斜角∠cab為多少度?

前兩個問題學(xué)生很容易回答.這兩個問題的設(shè)計主要是引起學(xué)生的回憶,并使學(xué)生意識到,本章要用到這些知識.但后兩個問題的設(shè)計卻使學(xué)生感到疑惑,這對初三年級這些好奇、好勝的學(xué)生來說,起到激起學(xué)生的學(xué)習(xí)興趣的作用.同時使學(xué)生對本章所要學(xué)習(xí)的內(nèi)容的特點有一個初步的了解,有些問題單靠勾股定理或含30°角的直角三角形和等腰直角三角形的知識是不能解決的,解決這類問題,關(guān)鍵在于找到一種新方法,求出一條邊或一個未知銳角,只要做到這一點,有關(guān)直角三角形的其他未知邊角就可用學(xué)過的知識全部求出來.

通過四個例子引出課題.

(二)整體感知

1.請每一位同學(xué)拿出自己的三角板,分別測量并計算30°、45°、60°角的對邊、鄰邊與斜邊的比值.

學(xué)生很快便會回答結(jié)果:無論三角尺大小如何,其比值是一個固定的值.程度較好的學(xué)生還會想到,以后在這些特殊直角三角形中,只要知道其中一邊長,就可求出其他未知邊的長.

2.請同學(xué)畫一個含40°角的直角三角形,并測量、計算40°角的對邊、鄰邊與斜邊的比值,學(xué)生又高興地發(fā)現(xiàn),不論三角形大小如何,所求的比值是固定的.大部分學(xué)生可能會想到,當(dāng)銳角取其他固定值時,其對邊、鄰邊與斜邊的比值也是固定的嗎?

這樣做,在培養(yǎng)學(xué)生動手能力的同時,也使學(xué)生對本節(jié)課要研究的知識有了整體感知,喚起學(xué)生的求知欲,大膽地探索新知.

(三)重點、難點的學(xué)習(xí)與目標(biāo)完成過程

1.通過動手實驗,學(xué)生會猜想到“無論直角三角形的銳角為何值,它的對邊、鄰邊與斜邊的比值總是固定不變的”.但是怎樣證明這個命題呢?學(xué)生這時的思維很活躍.對于這個問題,部分學(xué)生可能能解決它.因此教師此時應(yīng)讓學(xué)生展開討論,獨立完成.

2.學(xué)生經(jīng)過研究,也許能解決這個問題.若不能解決,教師可適當(dāng)引導(dǎo):

若一組直角三角形有一個銳角相等,可以把其

頂點a1,a2,a3重合在一起,記作a,并使直角邊ac1,ac2,ac3……落在同一條直線上,則斜邊ab1,ab2,ab3……落在另一條直線上.這樣同學(xué)們能解決這個問題嗎?引導(dǎo)學(xué)生獨立證明:易知,b1c1∥b2c2∥b3c3……,∴△ab1c1∽△ab2c2∽△ab3c3∽……,∴

形中,∠a的對邊、鄰邊與斜邊的比值,是一個固定值.

通過引導(dǎo),使學(xué)生自己獨立掌握了重點,達(dá)到知識教學(xué)目標(biāo),同時培養(yǎng)學(xué)生能力,進(jìn)行了德育滲透.

而前面導(dǎo)課中動手實驗的設(shè)計,實際上為突破難點而設(shè)計.這一設(shè)計同時起到培養(yǎng)學(xué)生思維能力的作用.

練習(xí)題為 作了孕伏同時使學(xué)生知道任意銳角的對邊與斜邊的比值都能求出來.

(四)總結(jié)與擴(kuò)展

1.引導(dǎo)學(xué)生作知識總結(jié):本節(jié)課在復(fù)習(xí)勾股定理及含30°角直角三角形的性質(zhì)基礎(chǔ)上,通過動手實驗、證明,我們發(fā)現(xiàn),只要直角三角形的銳角固定,它的對邊、鄰邊與斜邊的比值也是固定的.

教師可適當(dāng)補(bǔ)充:本節(jié)課經(jīng)過同學(xué)們自己動手實驗,大膽猜測和積極思考,我們發(fā)現(xiàn)了一個新的結(jié)論,相信大家的邏輯思維能力又有所提高,希望大家發(fā)揚(yáng)這種創(chuàng)新精神,變被動學(xué)知識為主動發(fā)現(xiàn)問題,培養(yǎng)自己的創(chuàng)新意識.

2.擴(kuò)展:當(dāng)銳角為30°時,它的對邊與斜邊比值我們知道.今天我們又發(fā)現(xiàn),銳角任意時,它的對邊與斜邊的比值也是固定的.如果知道這個比值,已知一邊求其他未知邊的問題就迎刃而解了.看來這個比值很重要,下節(jié)課我們就著重研究這個“比值”,有興趣的同學(xué)可以提前預(yù)習(xí)一下.通過這種擴(kuò)展,不僅對正、余弦概念有了初步印象,同時又激發(fā)了學(xué)生的興趣.

四、布置作業(yè)

本節(jié)課內(nèi)容較少,而且是為正、余弦概念打基礎(chǔ)的,因此課后應(yīng)要求學(xué)生預(yù)習(xí)正余弦概念.

五、板書設(shè)計

人教版初三數(shù)學(xué)教案全冊篇五

一、素質(zhì)教育目標(biāo)

(一)知識教學(xué)點

使學(xué)生了解一個銳角的正弦(余弦)值與它的余角的余弦(正弦)值之間的關(guān)系.

(二)能力訓(xùn)練點

逐步培養(yǎng)學(xué)生觀察、比較、分析、綜合、抽象、概括的邏輯思維能力.

(三)德育滲透點

培養(yǎng)學(xué)生獨立思考、勇于創(chuàng)新的精神.

二、教學(xué)重點、難點

1.重點:使學(xué)生了解一個銳角的正弦(余弦)值與它的余角的余弦(正弦)值之間的關(guān)系并會應(yīng)用.

2.難點:一個銳角的正弦(余弦)與它的余角的余弦(正弦)之間的關(guān)系的應(yīng)用.

三、教學(xué)步驟

(一)明確目標(biāo)

1.復(fù)習(xí)提問

(1)、什么是∠a的正弦、什么是∠a的余弦,結(jié)合圖形請學(xué)生回答.因為正弦、余弦的概念是研究本課內(nèi)容的知識基礎(chǔ),請中下學(xué)生回答,從中可以了解教學(xué)班還有多少人不清楚的,可以采取適當(dāng)?shù)难a(bǔ)救措施.

(2)請同學(xué)們回憶30°、45°、60°角的正、余弦值(教師板書).

(3)請同學(xué)們觀察,從中發(fā)現(xiàn)什么特征?學(xué)生一定會回答“sin30°=cos60°,sin45°=cos45°,sin60°=cos30°,這三個角的正弦值等于它們余角的余弦值”.

2.導(dǎo)入新課

根據(jù)這一特征,學(xué)生們可能會猜想“一個銳角的正弦(余弦)值等于它的余角的余弦(正弦)值.”這是否是真命題呢?引出課題.

(二)、整體感知

關(guān)于銳角的正弦(余弦)值與它的余角的余弦(正弦)值之間的關(guān)系,是通過30°、45°、60°角的正弦、余弦值之間的關(guān)系引入的,然后加以證明.引入這兩個關(guān)系式是為了便于查“正弦和余弦表”,關(guān)系式雖然用黑體字并加以文字語言的證明,但不標(biāo)明是定理,其證明也不要求學(xué)生理解,更不應(yīng)要求學(xué)生利用這兩個關(guān)系式去推證其他三角恒等式.在本章,這兩個關(guān)系式的用處僅僅限于查表和計算,而不是證明.

(三)重點、難點的學(xué)習(xí)和目標(biāo)完成過程

1.通過復(fù)習(xí)特殊角的三角函數(shù)值,引導(dǎo)學(xué)生觀察,并猜想“任一銳角的正弦(余弦)值等于它的余角的余弦(正弦)值嗎?”提出問題,激發(fā)學(xué)生的學(xué)習(xí)熱情,使學(xué)生的思維積極活躍.

2.這時少數(shù)反應(yīng)快的學(xué)生可能頭腦中已經(jīng)“畫”出了圖形,并有了思路,但對部分學(xué)生來說仍思路凌亂.因此教師應(yīng)進(jìn)一步引導(dǎo):sina=cos(90°-a),cosa=sin(90°-a)(a是銳角)成立嗎?這時,學(xué)生結(jié)合正、余弦的概念,完全可以自己解決,教師要給學(xué)生足夠的研究解決問題的時間,以培養(yǎng)學(xué)生邏輯思維能力及獨立思考、勇于創(chuàng)新的精神.

3.教師板書:

任意銳角的正弦值等于它的余角的余弦值;任意銳角的余弦值等于它的余角的正弦值.

sina=cos(90°-a),cosa=sin(90°-a).

4.在學(xué)習(xí)了正、余弦概念的基礎(chǔ)上,學(xué)生了解以上內(nèi)容并不困難,但是,由于學(xué)生初次接觸三角函數(shù),還不熟練,而定理又涉及余角、余函數(shù),使學(xué)生極易混淆.因此,定理的應(yīng)用對學(xué)生來說是難點、在給出定理后,需加以鞏固.

已知∠a和∠b都是銳角,

(1)把cos(90°-a)寫成∠a的正弦.

(2)把sin(90°-a)寫成∠a的余弦.

這一練習(xí)只能起到鞏固定理的作用.為了運用定理,教材安排了例3.

(2)已知sin35°=0.5736,求cos55°;

(3)已知cos47°6′=0.6807,求sin42°54′.

(1)問比較簡單,對照定理,學(xué)生立即可以回答.(2)、(3)比(1)則更深一步,因為(1)明確指出∠b與∠a互余,(2)、(3)讓學(xué)生自己發(fā)現(xiàn)35°與55°的角,47°6′分42°54′的角互余,從而根據(jù)定理得出答案,因此(2)、(3)問在課堂上應(yīng)該請基礎(chǔ)好一些的同學(xué)講清思維過程,便于全體學(xué)生掌握,在三個問題處理完之后,將題目變形:

(2)已知sin35°=0.5736,則cos______=0.5736.

(3)cos47°6′=0.6807,則sin______=0.6807,以培養(yǎng)學(xué)生思維能力.

為了配合例3的教學(xué),教材中配備了練習(xí)題2.

(2)已知sin67°18′=0.9225,求cos22°42′;

(3)已知cos4°24′=0.9971,求sin85°36′.

學(xué)生獨立完成練習(xí)2,就說明定理的教學(xué)較成功,學(xué)生基本會運用.

教材中3的設(shè)置,實際上是對前二節(jié)課內(nèi)容的綜合運用,既考察學(xué)生正、余弦概念的掌握程度,同時又對本課知識加以鞏固練習(xí),因此例3的安排恰到好處.同時,做例3也為下一節(jié)查正余弦表做了準(zhǔn)備.

(四)小結(jié)與擴(kuò)展

1.請學(xué)生做知識小結(jié),使學(xué)生對所學(xué)內(nèi)容進(jìn)行歸納總結(jié),將所學(xué)內(nèi)容變成自己知識的組成部分.

2.本節(jié)課我們由特殊角的正弦(余弦)和它的余角的余弦(正弦)值間關(guān)系,以及正弦、余弦的概念得出的結(jié)論:任意一個銳角的正弦值等于它的余角的余弦值,任意一個銳角的余弦值等于它的余角的正弦值.

四、布置作業(yè)

【本文地址:http://www.aiweibaby.com/zuowen/2094953.html】

全文閱讀已結(jié)束,如果需要下載本文請點擊

下載此文檔