范文為教學中作為模范的文章,也常常用來指寫作的模板。常常用于文秘寫作的參考,也可以作為演講材料編寫前的參考。范文書寫有哪些要求呢?我們怎樣才能寫好一篇范文呢?下面我給大家整理了一些優(yōu)秀范文,希望能夠幫助到大家,我們一起來看一看吧。
小升初必考的數學篇一
單價×數量=總價 單產量×數量=總產量
速度×時間=路程 工效×時間=工作總量
加數+加數=和 一個加數=和+另一個加數
被減數-減數=差 減數=被減數-差 被減數=減數+差
因數×因數=積 一個因數=積÷另一個因數
被除數÷除數=商 除數=被除數÷商 被除數=商×除數
長度單位:
1公里=1千米 1千米=1000米
1米=10分米 1分米=10厘米 1厘米=10毫米
面積單位:
1平方千米=100公頃 1公頃=10000平方米
1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米
1畝=平方米。
體積單位
1立方米=1000立方分米 1立方分米=1000立方厘米
1立方厘米=1000立方毫米
1升=1立方分米=1000毫升 1毫升=1立方厘米
重量單位
1噸=1000千克 1千克= 1000克= 1公斤= 1市斤
什么叫比:兩個數相除就叫做兩個數的比。如:2÷5或3:6或1/3 比的前項和后項同時乘以或除以一個相同的數(0除外),比值不變。
什么叫比例:表示兩個比相等的式子叫做比例。如3:6=9:18
比例的基本性質:在比例里,兩外項之積等于兩內項之積。
解比例:求比例中的未知項,叫做解比例。如3:χ=9:18
正比例:兩種相關聯(lián)的量,一種量變化,另一種量也隨著化,如果這兩種量中相對應的的比值(也就是商k)一定,這兩種量就叫做成正比例的量,它們的關系就叫做正比例關系。如:y/x=k( k一定)或kx=y
反比例:兩種相關聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的積一定,這兩種量就叫做成反比例的量,它們的關系就叫做反比例關系。 如:x×y = k( k一定)或k / x = y
百分數:表示一個數是另一個數的百分之幾的數,叫做百分數。百分數也叫做百分率或百分比。
把小數化成百分數,只要把小數點向右移動兩位,同時在后面添上百分號。其實,把小數化成百分數,只要把這個小數乘以100%就行了。把百分數化成小數,只要把百分號去掉,同時把小數點向左移動兩位。
把分數化成百分數,通常先把分數化成小數(除不盡時,通常保留三位小數),再把小數化成百分數。其實,把分數化成百分數,要先把分數化成小數后,再乘以100%就行了。
把百分數化成分數,先把百分數改寫成分數,能約分的要約成最簡分數。
要學會把小數化成分數和把分數化成小數的化發(fā)。
最大公約數:幾個數公有的約數,叫做這幾個數的公約數。公因數有有限個。其中最大的一個叫做這幾個數的最大公約數。
最小公倍數:幾個數公有的倍數,叫做這幾個數的公倍數。公倍數有無限個。其中最小的一個叫做這幾個數的最小公倍數。
互質數: 公約數只有1的兩個數,叫做互質數。相臨的兩個數一定互質。兩個連續(xù)奇數一定互質。1和任何數互質。
通分:把異分母分數的分別化成和原來分數相等的同分母的分數,叫做通分。(通分用最小公倍數)
約分:把一個分數的分子、分母同時除以公約數,分數值不變,這個過程叫約分。
最簡分數:分子、分母是互質數的分數,叫做最簡分數。分數計算到最后,得數必須化成最簡分數。
質數(素數):一個數,如果只有1和它本身兩個約數,這樣的數叫做質數(或素數)。
合數:一個數,如果除了1和它本身還有別的約數,這樣的數叫做合數。1不是質數,也不是合數。
質因數:如果一個質數是某個數的因數,那么這個質數就是這個數的質因數。
分解質因數:把一個合數用質因數相成的方式表示出來叫做分解質因數。
倍數特征:
2的倍數的特征:各位是0,2,4,6,8。
3(或9)的倍數的特征:各個數位上的數之和是3(或9)的倍數。
5的倍數的特征:各位是0,5。
4(或25)的倍數的特征:末2位是4(或25)的倍數。
8(或125)的倍數的特征:末3位是8(或125)的倍數。
7(11或13)的倍數的特征:末3位與其余各位之差(大-小)是7(11或13)的倍數。
17(或59)的倍數的特征:末3位與其余各位3倍之差(大-小)是17(或59)的倍數。
19(或53)的倍數的特征:末3位與其余各位7倍之差(大-小)是19(或53)的倍數。
23(或29)的倍數的特征:末4位與其余各位5倍之差(大-小)是23(或29)的倍數。
倍數關系的兩個數,最大公約數為較小數,最小公倍數為較大數。
互質關系的兩個數,最大公約數為1,最小公倍數為乘積。
兩個數分別除以他們的最大公約數,所得商互質。
兩個數的與最小公倍數的乘積等于這兩個數的乘積。
兩個數的公約數一定是這兩個數最大公約數的約數。
1既不是質數也不是合數。
用6去除大于3的質數,結果一定是1或5。
小升初必考的數學篇二
我們在數物體的時候,用來表示物體個數的1,2,3??叫做自然數。
一個物體也沒有,用0表示。0也是自然數。
一(個)、十、百、千、萬、十萬、百萬、千萬、億??都是計數單位。
每相鄰兩個計數單位之間的進率都是10。這樣的計數法叫做十進制計數法。
計數單位按照一定的順序排列起來,它們所占的位置叫做數位。
整數a除以整數b(b ≠ 0),除得的商是整數而沒有余數,我們就說a能被b整除,或者說b能整除a 。例如15÷3=5,所以15能被3整除,3能整除15。
如果數a能被數b(b ≠ 0)整除,a就叫做b的倍數,b就叫做a的因數。倍數和約數是相互依存的。
一個數的因數的個數是有限的,其中最小的因數是1,最大的因數是它本身。
一個數的倍數的個數是無限的,其中最小的倍數是它本身,沒有最大的倍數。
個位上是0、2、4、6、8的數,都能被2整除,例如:202、480、304,都能被2整除。。
個位上是0或5的數,都能被5整除,例如:5、30、405都能被5整除。。
一個數的各位上的數的和能被3整除,這個數就能被3整除,例如:12、108、204都能被3整除。
能被2整除的數叫做偶數,不能被2整除的數叫做奇數。0也是偶數。自然數按能否被2 整除的特征可分為奇數和偶數。
一個數,如果只有1和它本身兩個因數,這樣的數叫做質數,100以內的質數有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53 、59、61、67、71、73、79、83、89、97。
一個數,如果除了1和它本身還有別的因數,這樣的數叫做合數,例如 4、6、8、9、12都是合數。
1不是質數也不是合數,自然數除了1外,不是質數就是合數。如果把自然數按其因數的個數的不同分類,可分為質數、合數和1。
每個合數都可以寫成幾個質數相乘的形式。其中每個質數都是這個合數的因數,叫做這個合數的質因數,例如15=3×5,3和5 叫做15的質因數。
把一個合數用質因數相乘的形式表示出來,叫做分解質因數。 例如把28分解質因數 28=2×2×7
幾個數公有的因數,叫做這幾個數的公因數。其中最大的一個,叫做這幾個數的最大公因數,例如12的約數有1、2、3、4、6、12;18的約數有1、2、3、6、9、18。其中,1、2、3、6是12和1 8的公因數,6是它們的最大公因數。 公約數只有1的兩個數,叫做互質數,成互質關系的兩個數,有下列幾種情況:
1和任何自然數互質。 相鄰的兩個自然數互質。 兩個不同的質數互質。
當合數不是質數的倍數時,這個合數和這個質數互質。 兩個合數的公約數只有1時,這兩個合數互質,如果幾個數中任意兩個都互質,就說這幾個數兩兩互質。
如果較小數是較大數的因數,那么較小數就是這兩個數的最大公因數。
如果兩個數是互質數,它們的最大公因數就是1。 幾個數公有的倍數,叫做這幾個數的公倍數,其中最小的一個,叫做這幾個數的最小公倍數,如2的倍數有2、4、6 、8、10、12、 ??
3的倍數有3、6、9、12、15、18 ?? 其中6、12、18??是2、3的公倍數,6是它們的最小公倍數。。
如果較大數是較小數的倍數,那么較大數就是這兩個數的最小公倍數。
如果兩個數是互質數,那么這兩個數的積就是它們的最小公倍數。
幾個數的公因數的個數是有限的,而幾個數的公倍數的個數是無限的。
小升初必考的數學篇三
(1)平面圖形知識;(2)平面圖形的周長和面積;(3)立體圖形的認識;(4)立體圖形的表面積和體積。
(1)平面圖形知識
①直線、射線、線段的特點、聯(lián)系與區(qū)別。
②角的特征、角的分類、角的度量方法。
③垂直與平行。
④三角形的特征,分類(按邊分、按角分)。
⑤四邊形。每類圖形的特征,特殊與一般的關系。
⑥圓與扇形。圓的特征、直徑、半徑的特點,扇形與圓的關系。
⑦軸對稱圖形。(能畫出學過的軸對稱圖形的對稱軸)
要求:①掌握特征、建立聯(lián)系,讓學生感受到點到線,線到面、面到體的聯(lián)系。
②能根據圖形特征進行合理的判斷、選擇。
(2)平面圖形的周長和面積
①理解周長與面積概念。
②掌握每種圖形的周長與面積計算公式及推導過程。
③能應用公式靈活解決問題。
①長方體、正方體、圓柱、圓錐的特征。
②長、正方體的關系。
(3)立體圖形的表面積和體積
②會求長方體、正方體、圓柱的表面積和體積;圓錐的體積。
③建立這四種立體圖形體積計算的聯(lián)系。
④加強體積與表面積的區(qū)別、體積與容積的區(qū)別的對比訓練。
建議:幾何初步知識這部分內容,知識容量比較大,復習時要讓學生真正參與到學習中來,提高學習效率,教師就要設計一些具有思考性,挑戰(zhàn)性、綜合性強的問題激發(fā)學生積極思考,調動學生的積極性,充分發(fā)揮學生的主體作用,讓他們在探究的過程中進一步理解、鞏固所學的知識,體驗成功的快樂,掌握學習的方法。
小升初必考的數學篇四
幾何的初步知識
線和角
(1)線
__直線
直線沒有端點;長度無限;過一點可以畫無數條,過兩點只能畫一條直線。
__射線
射線只有一個端點;長度無限。
__線段
線段有兩個端點,它是直線的一部分;長度有限;兩點的連線中,線段為最短。
__平行線
在同一平面內,不相交的兩條直線叫做平行線。
兩條平行線之間的垂線長度都相等。
__垂線
兩條直線相交成直角時,這兩條直線叫做互相垂直,其中一條直線叫做另一條直線的垂線,相交的點叫做垂足。
從直線外一點到這條直線所畫的垂線的長叫做這點到直線的距離。
(2)角
(1)從一點引出兩條射線,所組成的圖形叫做角。這個點叫做角的頂點,這兩條射線叫做角的邊。
(2)角的分類
銳角:小于90°的角叫做銳角。
直角:等于90°的角叫做直角。
鈍角:大于90°而小于180°的角叫做鈍角。
平角:角的兩邊成一條直線,這時所組成的角叫做平角。平角180°。
周角:角的一邊旋轉一周,與另一邊重合。周角是360°。
小升初必考的數學篇五
(1) 簡單應用題:
只含有一種基本數量關系,或用一步運算解答的應用題,通常叫做簡單應用題。
(2) 解題步驟:
a 審題理解題意:了解應用題的內容,知道應用題的條件和問題。讀題時,不丟字不添字邊讀邊思考,弄明白題中每句話的意思。也可以復述條件和問題,幫助理解題意。
b 選擇算法和列式計算:這是解答應用題的中心工作。從題目中告訴什么,要求什么著手,逐步根據所給的條件和問題,聯(lián)系四則運算的含義,分析數量關系,確定算法,進行解答并標明正確的單位名稱。
c 檢驗:就是根據應用題的條件和問題進行檢查看所列算式和計算過程是否正確,是否符合題意。如果發(fā)現(xiàn)錯誤,馬上改正。
d 答案:根據計算的結果,先口答,逐步過渡到筆答。
(3)解答加法應用題:
a 求總數的應用題:已知甲數是多少,乙數是多少,求甲乙兩數的和是多少。
b 求比一個數多幾的數應用題:已知甲數是多少和乙數比甲數多多少,求乙數是多少。
(4)解答減法應用題:
a 求剩余的應用題:從已知數中去掉一部分,求剩下的部分。
b 求兩個數相差的多少的應用題:已知甲乙兩數各是多少,求甲數比乙數多多少,或乙數比甲數少多少。
c 求比一個數少幾的數的應用題:已知甲數是多少,,乙數比甲數少多少,求乙數是多少。
(5)解答乘法應用題:
a 求相同加數和的應用題:已知相同的加數和相同加數的個數,求總數。
b 求一個數的幾倍是多少的應用題:已知一個數是多少,另一個數是它的幾倍,求另一個數是多少。
(6)解答除法應用題:
a 把一個數平均分成幾份,求每一份是多少的應用題:已知一個數和把這個數平均分成幾份的,求每一份是多少。
b 求一個數里包含幾個另一個數的應用題:已知一個數和每份是多少,求可以分成幾份。
c 求一個數是另一個數的的幾倍的應用題:已知甲數乙數各是多少,求較大數是較小數的幾倍。
d 已知一個數的幾倍是多少,求這個數的應用題。
(7)常見的數量關系:
總價= 單價×數量
路程= 速度×時間
工作總量=工作時間×工效
總產量=單產量×數量
(1)有兩個或兩個以上的基本數量關系組成的。
用兩步或兩步以上運算解答的應用題,通常叫做復合應用題。
(2)含有三個已知條件的兩步計算的應用題。
求比兩個數的和多(少)幾個數的應用題。
比較兩數差與倍數關系的應用題。
(3)含有兩個已知條件的兩步計算的應用題。
已知兩數相差多少(或倍數關系)與其中一個數,求兩個數的和(或差)。
已知兩數之和與其中一個數,求兩個數相差多少(或倍數關系)。
(4)解答連乘連除應用題。
(5)解答三步計算的應用題。
(6)解答小數計算的應用題:
小數計算的加法、減法、乘法和除法的應用題,他們的數量關系、結構、和解題方式都與正式應用題基本相同,只是在已知數或未知數中間含有小數。
具有獨特的結構特征的和特定的解題規(guī)律的復合應用題,通常叫做典型應用題。
(1)平均數問題:
平均數是等分除法的發(fā)展。
解題關鍵:在于確定總數量和與之相對應的總份數。
算術平均數:已知幾個不相等的同類量和與之相對應的份數,求平均每份是多少。數量關系式:數量之和÷數量的個數=算術平均數。
加權平均數:已知兩個以上若干份的平均數,求總平均數是多少。
數量關系式 (部分平均數×權數)的總和÷(權數的和)=加權平均數。
差額平均數:是把各個大于或小于標準數的部分之和被總份數均分,求的是標準數與各數相差之和的平均數。
數量關系式:(大數-小數)÷2=小數應得數 最大數與各數之差的和÷總份數=最大數應給數
最大數與個數之差的和÷總份數=最小數應得數。
例:一輛汽車以每小時 100 千米 的速度從甲地開往乙地,又以每小時 60 千米的速度從乙地開往甲地。求這輛車的平均速度。
分析:求汽車的平均速度同樣可以利用
公式。此題可以把甲地到乙地的路程設為“ 1 ”,則汽車行駛的總路程為“ 2 ”,從甲地到乙地的速度為100 ,所用的時間為,汽車從乙地到甲地速度為 60 千米 ,所用的時間是 ,汽車共行的時間為 + = , 汽車的平均速度為2 ÷ =75 (千米)
(2)歸一問題:
已知相互關聯(lián)的兩個量,其中一種量改變,另一種量也隨之而改變,其變化的規(guī)律是相同的,這種問題稱之為歸一問題。
根據求“單一量”的步驟的多少,歸一問題可以分為一次歸一問題,兩次歸一問題。
根據球癡單一量之后,解題采用乘法還是除法,歸一問題可以分為正歸一問題,反歸一問題。
一次歸一問題,用一步運算就能求出“單一量”的歸一問題。又稱“單歸一。”
兩次歸一問題,用兩步運算就能求出“單一量”的歸一問題。又稱“雙歸一?!?/p>
正歸一問題:用等分除法求出“單一量”之后,再用乘法計算結果的歸一問題。
反歸一問題:用等分除法求出“單一量”之后,再用除法計算結果的歸一問題。
解題關鍵:從已知的一組對應量中用等分除法求出一份的數量(單一量),然后以它為標準,根據題目的要求算出結果。
#k12教育#
小升初必考的數學篇六
等差數列:在一列數中,任意相鄰兩個數的差是一定的,這樣的一列數,就叫做等差數列。
基本概念:首項:等差數列的第一個數,一般用a1表示;
項數:等差數列的所有數的個數,一般用n表示;
公差:數列中任意相鄰兩個數的差,一般用d表示;
通項:表示數列中每一個數的公式,一般用an表示;
數列的和:這一數列全部數字的和,一般用sn表示.
基本思路:等差數列中涉及五個量:a1 ,an,d, n, sn,,通項公式中涉及四個量,如果己知其中三個,就可求出第四個;求和公式中涉及四個量,如果己知其中三個,就可以求這第四個。
基本公式:通項公式:an = a1+(n-1)d;
通項=首項+(項數一1) ×公差;
數列和公式:sn,= (a1+ an)×n÷2;
數列和=(首項+末項)×項數÷2;
項數公式:n= (an- a1)÷d+1;
項數=(末項-首項)÷公差+1;
公差公式:d =(an-a1))÷(n-1);
公差=(末項-首項)÷(項數-1);
關鍵問題:確定已知量和未知量,確定使用的公式。
加法原理:如果完成一件任務有n類方法,在第一類方法中有m1種不同方法,在第二類方法中有m2種不同方法……,在第n類方法中有mn種不同方法,那么完成這件任務共有:m1+ m2....... +mn種不同的方法。
關鍵問題:確定工作的分類方法。
基本特征:每一種方法都可完成任務。
乘法原理:如果完成一件任務需要分成n個步驟進行,做第1步有m1種方法,不管第1步用哪一種方法,第2步總有m2種方法……不管前面n-1步用哪種方法,第n步總有mn種方法,那么完成這件任務共有:m1×m2....... ×mn種不同的方法。
關鍵問題:確定工作的完成步驟
基本特征:每一步只能完成任務的一部分。
直線:一點在直線或空間沿一定方向或相反方向運動,形成的軌跡。
直線特點:沒有端點,沒有長度。
線段:直線上任意兩點間的距離。這兩點叫端點。
線段特點:有兩個端點,有長度。
射線:把直線的一端無限延長。
射線特點:只有一個端點;沒有長度
①數線段規(guī)律:總數=1+2+3+…+(點數一1);
②數角規(guī)律=1+2+3+…+(射線數一1);
③數長方形規(guī)律:個數=長的線段數×寬的線段數:
④數長方形規(guī)律:個數=1×1+2×2+3×3+…+行數×列數。
小升初數學知識點:加法乘法原理和幾何計數
質數:一個數除了1和它本身之外,沒有別的約數,這個數叫做質數,也叫做素數。
合數:一個數除了1和它本身之外,還有別的約數,這個數叫做合數。
質因數:如果某個質數是某個數的約數,那么這個質數叫做這個數的質因數。
分解質因數:把一個數用質數相乘的形式表示出來,叫做分解質因數。通常用短除法分解質因數。任何一個合數分解質因數的結果是唯一的。
分解質因數的標準表示形式:n= ,其中a1、a2、a3……an都是合數n的質因數,且a1……。
求約數個數的公式:p=(r1+1)×(r2+1)×(r3+1)×……×(rn+1)
互質數:如果兩個數的最大公約數是1,這兩個數叫做互質數。
約數和倍數:若整數a能夠被b整除,a叫做b的倍數,b就叫做a的約數。
公約數:幾個數公有的約數,叫做這幾個數的公約數;其中最大的一個,叫做這幾個數的最大公約數。
最大公約數的性質:
1、幾個數都除以它們的最大公約數,所得的幾個商是互質數
2、幾個數的最大公約數都是這幾個數的約數
3、幾個數的公約數,都是這幾個數的最大公約數的約數。
4、幾個數都乘以一個自然數m,所得的積的最大公約數等于這幾個數的最大公約數乘以m。
例如:12的約數有1、2、3、4、6、12;
18的約數有:1、2、3、6、9、18;
那么12和18的公約數有:1、2、3、6;
那么12和18最大的公約數是:6,記作(12,18)=6;
求最大公約數基本方法:
1、分解質因數法:先分解質因數,然后把相同的因數連乘起來。
2、短除法:先找公有的約數,然后相乘。
3、輾轉相除法:每一次都用除數和余數相除,能夠整除的那個余數,就是所求的最大公約數。
公倍數:幾個數公有的倍數,叫做這幾個數的公倍數;其中最小的一個,叫做這幾個數的最小公倍數。
12的倍數有:12、24、36、48……;
18的倍數有:18、36、54、72……;
那么12和18的公倍數有:36、72、108……;
那么12和18最小的公倍數是36,記作[12,18]=36;
最小公倍數的性質:
1、兩個數的任意公倍數都是它們最小公倍數的倍數。
2、兩個數最大公約數與最小公倍數的乘積等于這兩個數的乘積。
求最小公倍數基本方法:1、短除法求最小公倍數;2、分解質因數的方法。
20172017小升初數學復習重點大全 :約數與倍數
一、基本概念和符號:
1、整除:如果一個整數a,除以一個自然數b,得到一個整數商c,而且沒有余數,那么叫做a能被b整除或b能整除a,記作b|a。
2、常用符號:整除符號“|”,不能整除符號“ ”;因為符號“∵”,所以的符號“∴”;
二、整除判斷方法:
1. 能被2、5整除:末位上的數字能被2、5整除。
2. 能被4、25整除:末兩位的數字所組成的數能被4、25整除。
3. 能被8、125整除:末三位的數字所組成的數能被8、125整除。
4. 能被3、9整除:各個數位上數字的和能被3、9整除。
5. 能被7整除:
①末三位上數字所組成的數與末三位以前的數字所組成數之差能被7整除
②逐次去掉最后一位數字并減去末位數字的2倍后能被7整除。
6. 能被11整除:
①末三位上數字所組成的數與末三位以前的數字所組成的數之差能被11整除。
②奇數位上的數字和與偶數位數的數字和的差能被11整除。
③逐次去掉最后一位數字并減去末位數字后能被11整除。
7. 能被13整除:
①末三位上數字所組成的數與末三位以前的數字所組成的數之差能被13整除。
②逐次去掉最后一位數字并減去末位數字的9倍后能被13整除
三、整除的性質:
1. 如果a、b能被c整除,那么(a+b)與(a-b)也能被c整除。
2. 如果a能被b整除,c是整數,那么a乘以c也能被b整除。
3. 如果a能被b整除,b又能被c整除,那么a也能被c整除。
4. 如果a能被b、c整除,那么a也能被b和c的最小公倍數整除。
20172017小升初數學復習重點大全 :數的整除
余數的性質:
①余數小于除數。
②若a、b除以c的余數相同,則c|a-b或c|b-a。
③a與b的和除以c的余數等于a除以c的余數加上b除以c的余數的和除以c的余數。
④a與b的積除以c的余數等于a除以c的余數與b除以c的余數的積除以c的余數
余數、同余與周期
一、同余的定義:
①若兩個整數a、b除以m的余數相同,則稱a、b對于模m同余。
②已知三個整數a、b、m,如果m|a-b,就稱a、b對于模m同余,記作a≡b(mod m),讀作a同余于b模m
二、同余的性質:
①自身性:a≡a(mod m);
②對稱性:若a≡b(mod m),則b≡a(mod m);
③傳遞性:若a≡b(mod m),b≡c(mod m),則a≡ c(mod m);
④和差性:若a≡b(mod m),c≡d(mod m),則a+c≡b+d(mod m),a-c≡b-d(mod m);
⑤相乘性:若a≡ b(mod m),c≡d(mod m),則a×c≡ b×d(mod m);
⑥乘方性:若a≡b(mod m),則an≡bn(mod m);
⑦同倍性:若a≡ b(mod m),整數c,則a×c≡ b×c(mod m×c);
三、關于乘方的預備知識:
①若a=a×b,則ma=ma×b=(ma)b
②若b=c+d則mb=mc+d=mc×md
四、被3、9、11除后的余數特征:
①一個自然數m,n表示m的各個數位上數字的和,則m≡n(mod 9)或(mod 3);
②一個自然數m,x表示m的各個奇數位上數字的和,y表示m的各個偶數數位上數字的和,則m≡y-x或m≡11-(x-y)(mod 11);
五、費爾馬小定理:如果p是質數(素數),a是自然數,且a不能被p整除,則ap-1(mod p)。
數學是小升初考試中的一個重要科目,所以我們在小升初總復習的時候,都會把數學作為一個重點。因為相對于其他科目來說,數學是拉分比較大的一個科目。為了使大家能夠更好的復習,我們?yōu)榇蠹艺砹?0xx年小升初數學常見知識點,僅供參考。
小升初必考的數學篇七
*直線
直線沒有端點;長度無限;過一點可以畫無數條,過兩點只能畫一條直線。
*射線
射線只有一個端點;長度無限。
*線段
線段有兩個端點,它是直線的一部分;長度有限;兩點的連線中,線段為最短。
*平行線
在同一平面內,不相交的兩條直線叫做平行線。
兩條平行線之間的垂線長度都相等。
*垂線
兩條直線相交成直角時,這兩條直線叫做互相垂直,其中一條直線叫做另一條直線的垂線,相交的點叫做垂足。
從直線外一點到這條直線所畫的垂線的長叫做這點到直線的距離。
(二)
(1)從一點引出兩條射線,所組成的圖形叫做角。這個點叫做角的頂點,這兩條射線叫做角的邊。
(2)角的分類
銳角:小于90的角叫做銳角。
直角:等于90的角叫做直角。
鈍角:大于90而小于180的角叫做鈍角。
平角:角的兩邊成一條直線,這時所組成的角叫做平角。平角180。
周角:角的一邊旋轉一周,與另一邊重合。周角是360
小升初必考的數學篇八
平均數
基本公式:①平均數=總數量÷總份數
總數量=平均數×總份數
總份數=總數量÷平均數
②平均數=基準數+每一個數與基準數差的和÷總份數
基本算法:
①求出總數量以及總份數,利用基本公式①進行計算。
②基準數法:根據給出的數之間的關系,確定一個基準數;一般選與所有數比較接近的數或者中間數為基準數;以基準數為標準,求所有給出數與基準數的差;再求出所有差的和;再求出這些差的平均數;最后求這個差的平均數和基準數的和,就是所求的平均數,具體關系見基本公式②
經典例題:
例1、一個學習小組在一次數學測驗中,小紅得100分,小明得98分,小蘭得96分,小平得90分,平均每人多少分?
解 (100+98+96+90)÷4=96(分)
答:平均每人96分。
【解題關鍵與提示】
先求出總成績和總人數,然后求出平均數。
例2、 一輛汽車前2小時每小時行42千米,后3小時每小時行40千米,平均每小時行多少千米?
解 (42+40)÷(2+3)
=82÷5
=(千米)
答:平均每小時行千米。
【解題關鍵與提示】
先求出行的總路程和總時間,然后求出平均數。
例3、某校少先隊組織了4個采樹種小組,采摘樹種支援大西北的綠化。第一天采到15千克,第二天采到20千克,第三天采到19千克。(1)平均每天采到樹種多少千克?(2)平均每組采到樹種多少千克?(3)平均每組每天采到樹種多少千克?
解(1)(15+20+19)÷3=18(千克)
(2)(15+20+19)÷4=(千克)
(3)(15+20+19)÷3÷4=(千克)
答:平均每天采到18干克樹種,平均每組采到千克樹種,平均每組每天采到千克樹種。
【解題關鍵與提示】
平均的總數是共采到的樹種數,始終不變;按什么“單位”平均,三個問題的要求各不相同:問題(1)要求按“天數”平均;問題(2)要求按“組數”平均;問題(3)要求按“每組每天”平均。
以上是為大家分享的小升初數學知識點平均數,希望能夠切實的幫助到大家,同時希望大家能夠在考試中取得優(yōu)異的成績!
小升初必考的數學篇九
(一)整數四則運算
1、整數加法:
把兩個數合并成一個數的運算叫做加法。
在加法里,相加的數叫做加數,加得的數叫做和。加數是部分數,和是總數。
加數+加數=和一個加數=和-另一個加數
2、整數減法:
已知兩個加數的和與其中的一個加數,求另一個加數的運算叫做減法。
在減法里,已知的和叫做被減數,已知的加數叫做減數,未知的加數叫做差。被減數是總數,減數和差分別是部分數。
加法和減法互為逆運算。
3、整數乘法:
求幾個相同加數的和的簡便運算叫做乘法。
在乘法里,相同的加數和相同加數的個數都叫做因數。相同加數的和叫做積。
在乘法里,0和任何數相乘都得0. 1和任何數相乘都的任何數。
一個因數× 一個因數=積一個因數=積÷另一個因數
4 、整數除法:
已知兩個因數的積與其中一個因數,求另一個因數的運算叫做除法。
在除法里,已知的積叫做被除數,已知的一個因數叫做除數,所求的因數叫做商。
乘法和除法互為逆運算。
在除法里,0不能做除數。因為0和任何數相乘都得0,所以任何一個數除以0,均得不到一個確定的商。
被除數÷除數=商除數=被除數÷商被除數=商×除數
(二)小數四則運算
1、小數加法:
小數加法的意義與整數加法的意義相同。是把兩個數合并成一個數的運算。
2、小數減法:
小數減法的意義與整數減法的意義相同。已知兩個加數的和與其中的一個加數,求另一個加數的運算。
3、小數乘法:
小數乘整數的意義和整數乘法的意義相同,就是求幾個相同加數和的簡便運算;一個數乘純小數的意義是求這個數的十分之幾、百分之幾、千分之幾……是多少。
4、小數除法:
小數除法的意義與整數除法的意義相同,就是已知兩個因數的積與其中一個因數,求另一個因數的運算。
5、乘方:
求幾個相同因數的積的運算叫做乘方。例如3 × 3 =32
(三)分數四則運算
1、分數加法:
分數加法的意義與整數加法的意義相同。是把兩個數合并成一個數的運算。
2、分數減法:
分數減法的意義與整數減法的意義相同。已知兩個加數的和與其中的一個加數,求另一個加數的運算。
3、分數乘法:
分數乘法的意義與整數乘法的意義相同,就是求幾個相同加數和的簡便運算。
4、乘積是1的兩個數叫做互為倒數。
5、分數除法:
分數除法的意義與整數除法的意義相同。就是已知兩個因數的積與其中一個因數,求另一個因數的運算。
(四)運算定律
1、加法交換律:
兩個數相加,交換加數的位置,它們的和不變,即a+b=b+a 。
2、加法結合律:
三個數相加,先把前兩個數相加,再加上第三個數;或者先把后兩個數相加,再和第一個數相加它們的和不變,即(a+b)+c=a+(b+c) 。
3、 乘法交換律:
兩個數相乘,交換因數的位置它們的積不變,即a×b=b×a。
4、乘法結合律:
三個數相乘,先把前兩個數相乘,再乘以第三個數;或者先把后兩個數相乘,再和第一個數相乘,它們的積不變,即(a×b)×c=a×(b×c) 。
5、乘法分配律:
兩個數的和與一個數相乘,可以把兩個加數分別與這個數相乘再把兩個積相加,即(a+b)×c=a×c+b×c 。
6、減法的性質:
從一個數里連續(xù)減去幾個數,可以從這個數里減去所有減數的和,差不變,即a-b-c=a-(b+c) 。
(五)運算法則
1、整數加法計算法則:
相同數位對齊,從低位加起,哪一位上的數相加滿十,就向前一位進一。
2、整數減法計算法則:
相同數位對齊,從低位加起,哪一位上的數不夠減,就從它的前一位退一作十,和本位上的數合并在一起,再減。
3、整數乘法計算法則:
先用一個因數每一位上的數分別去乘另一個因數各個數位上的數,用因數哪一位上的數去乘,乘得的數的末尾就對齊哪一位,然后把各次乘得的數加起來。
4、整數除法計算法則:
先從被除數的高位除起,除數是幾位數,就看被除數的前幾位;如果不夠除,就多看一位,除到被除數的哪一位,商就寫在哪一位的上面。如果哪一位上不夠商1,要補“0”占位。每次除得的余數要小于除數。
5、小數乘法法則:
先按照整數乘法的計算法則算出積,再看因數xxx有幾位小數,就從積的右邊起數出幾位,點上小數點;如果位數不夠,就用“0”補足。
6、除數是整數的小數除法計算法則:
先按照整數除法的法則去除,商的小數點要和被除數的小數點對齊;如果除到被除數的末尾仍有余數,就在余數后面添“0”,再繼續(xù)除。
7、除數是小數的除法計算法則:
先移動除數的小數點,使它變成整數,除數的小數點也向右移動幾位(位數不夠的補“0”),然后按照除數是整數的除法法則進行計算。
8、同分母分數加減法計算方法:
同分母分數相加減,只把分子相加減,分母不變。
9、異分母分數加減法計算方法:
先通分,然后按照同分母分數加減法的的法則進行計算。
10、帶分數加減法的計算方法:
整數部分和分數部分分別相加減,再把所得的數合并起來。
11、分數乘法的計算法則:
分數乘整數,用分數的分子和整數相乘的積作分子,分母不變;分數乘分數,用分子相乘的積作分子,分母相乘的積作分母。
12、分數除法的計算法則:
甲數除以乙數(0除外),等于甲數乘乙數的倒數。
(六)運算順序
1、小數四則運算的運算順序和整數四則運算順序相同。
2、分數四則運算的運算順序和整數四則運算順序相同。
3、沒有括號的混合運算:
同級運算從左往右依次運算;兩級運算先算乘、除法,后算加減法。
4、有括號的混合運算:
先算小括號里面的,再算中括號里面的,最后算括號外面的。
5、第一級運算:
加法和減法叫做第一級運算。
6、第二級運算:
乘法和除法叫做第二級運算。
五、應用
(一)整數和小數的應用
1、 簡單應用題
(1)簡單應用題:只含有一種基本數量關系,或用一步運算解答的應用題,通常叫做簡單應用題。
(2)解題步驟:
a 審題理解題意:了解應用題的內容,知道應用題的條件和問題。讀題時,不丟字不添字邊讀邊思考,弄明白題中每句話的意思。也可以復述條件和問題,幫助理解題意。
b選擇算法和列式計算:這是解答應用題的中心工作。從題目中告訴什么,要求什么著手,逐步根據所給的條件和問題,聯(lián)系四則運算的含義,分析數量關系,確定算法,進行解答并標明正確的單位名稱。
c檢驗:就是根據應用題的條件和問題進行檢查看所列算式和計算過程是否正確,是否符合題意。如果發(fā)現(xiàn)錯誤,馬上改正。
2 、復合應用題
(1)有兩個或兩個以上的基本數量關系組成的,用兩步或兩步以上運算解答的應用題,通常叫做復合應用題。
(2)含有三個已知條件的兩步計算的應用題。
求比兩個數的和多(少)幾個數的應用題。
比較兩數差與倍數關系的應用題。
(3)含有兩個已知條件的兩步計算的應用題。
已知兩數相差多少(或倍數關系)與其中一個數,求兩個數的和(或差)。
已知兩數之和與其中一個數,求兩個數相差多少(或倍數關系)。
(4)解答連乘連除應用題。
(5)解答三步計算的應用題。
d答案:根據計算的結果,先口答,逐步過渡到筆答。
3、解答加法應用題:
a求總數的應用題:已知甲數是多少,乙數是多少,求甲乙兩數的和是多少。
b求比一個數多幾的數應用題:已知甲數是多少和乙數比甲數多多少,求乙數是多少。
4、解答減法應用題:
a求剩余的應用題:從已知數中去掉一部分,求剩下的部分。
-b求兩個數相差的多少的應用題:已知甲乙兩數各是多少,求甲數比乙數多多少,或乙數比甲數少多少。
c求比一個數少幾的數的應用題:已知甲數是多少,,乙數比甲數少多少,求乙數是多少。
5、解答乘法應用題:
a求相同加數和的應用題:已知相同的加數和相同加數的個數,求總數。
b求一個數的幾倍是多少的應用題:已知一個數是多少,另一個數是它的幾倍,求另一個數是多少。
6、解答除法應用題:
a把一個數平均分成幾份,求每一份是多少的應用題:已知一個數和把這個數平均分成幾份的,求每一份是多少。
b求一個數里包含幾個另一個數的應用題:已知一個數和每份是多少,求可以分成幾份。
c 求一個數是另一個數的的幾倍的應用題:已知甲數乙數各是多少,求較大數是較小數的幾倍。
d已知一個數的幾倍是多少,求這個數的應用題。
7、常見的數量關系:
總價= 單價×數量
路程= 速度×時間
工作總量=工作時間×工效
總產量=單產量×數量
常用的數量關系式
1、每份數×份數=總數總數÷每份數=份數總數÷份數=每份數
2、1倍數×倍數=幾倍數幾倍數÷1倍數=倍數幾倍數÷倍數=1倍數
3、速度×時間=路程路程÷速度=時間路程÷時間=速度
4、單價×數量=總價總價÷單價=數量總價÷數量=單價
5、工作效率×工作時間=工作總量工作總量÷工作效率=工作時間工作總量÷工作時間=工作效率
6、加數+加數=和和-一個加數=另一個加數
7、被減數-減數=差被減數-差=減數差+減數=被減數
8、因數×因數=積積÷一個因數=另一個因數
9、被除數÷除數=商被除數÷商=除數商×除數=被除數
小學數學圖形計算公式
1、正方形(c:周長s:面積a:邊長)周長=邊長×4 c=4a 面積=邊長×邊長s=a×a
2、正方體(v:體積a:棱長)
表面積=棱長×棱長×6 s表=a×a×6
體積=棱長×棱長×棱長v=a×a×a
3、長方形(c:周長s:面積a:邊長)
周長=(長+寬)×2 c=2(a+b)
面積=長×寬s=ab
4、長方體(v:體積s:面積a:長b: 寬h:高)
(1)表面積(長×寬+長×高+寬×高)×2 s=2(ab+ah+bh)
(2)體積=長×寬×高v=abh
5、三角形(s:面積a:底h:高)
面積=底×高÷2 s=ah÷2
三角形高=面積×2÷底三角形底=面積×2÷高
6、平行四邊形(s:面積a:底h:高)
面積=底×高s=ah
7、梯形(s:面積a:上底b:下底h:高)
面積=(上底+下底)×高÷2 s=(a+b)× h÷2
8、圓形(s:面積c:周長л d=直徑r=半徑)
(1)周長=直徑×л=2×л×半徑c=лd=2лr
(2)面積=半徑×半徑×л
9、圓柱體(v:體積h:高s:底面積r:底面半徑c:底面周長)
(1)側面積=底面周長×高=ch(2лr或лd) (2)表面積=側面積+底面積×2
(3)體積=底面積×高(4)體積=側面積÷2×半徑
10、圓錐體(v:體積h:高s:底面積r:底面半徑)
體積=底面積×高÷3
11、總數÷總份數=平均數
12、和差問題的公式
(和+差)÷2=大數(和-差)÷2=小數
13、和倍問題
和÷(倍數-1)=小數小數×倍數=大數(或者和-小數=大數)
14、差倍問題
差÷(倍數-1)=小數小數×倍數=大數(或小數+差=大數)
15、相遇問題
相遇路程=速度和×相遇時間
相遇時間=相遇路程÷速度和
速度和=相遇路程÷相遇時間
16、利潤與折扣問題
利潤=售出價-成本
利潤率=利潤÷成本×100%=(售出價÷成本-1)×100%
漲跌金額=本金×漲跌百分比
利息=本金×利率×時間
稅后利息=本金×利率×時間×(1-20%)
常用單位換算
1、長度單位換算
1千米=1000米1米=10分米1分米=10厘米1米=100厘米1厘米=10毫米
2、面積單位換算
1平方千米=100公頃1公頃=10000平方米1平方米=100平方分米
1平方分米=100平方厘米1平方厘米=100平方毫米
3、體(容)積單位換算
1立方米=1000立方分米1立方分米=1000立方厘米1立方分米=1升
1立方厘米=1毫升1立方米=1000升
4、重量單位換算
1噸=1000 千克1千克=1000克1千克=1公斤
5、人民幣單位換算
1元=10角1角=10分1元=100分
6、時間單位換算
1世紀=100年1年=12月大月(31天)有:135781012月小月(30天)的有:46911月
平年2月28天, 閏年2月29天平年全年365天, 閏年全年366天1日=24小時
1時=60分1分=60秒1時=3600秒
小升初必考的數學篇十
(一)數的讀法和寫法
1、整數的讀法:從高位到低位,一級一級地讀。讀億級、萬級時,先按照個級的讀法去讀,再在后面加一個“億”或“萬”字。每一級末尾的0都不讀出來,其它數位連續(xù)有幾個0都只讀一個零。
2、整數的寫法:從高位到低位,一級一級地寫,哪一個數位上一個單位也沒有,就在那個數位上寫0。
3、小數的讀法:讀小數的時候,整數部分按照整數的讀法讀,小數點讀作“點”,小數部分從左向右順次讀出每一位數位上的數字。
4、小數的寫法:寫小數的時候,整數部分按照整數的寫法來寫,小數點寫在個位右下角,小數部分順次寫出每一個數位上的數字。
5、分數的讀法:讀分數時,先讀分母再讀“分之”然后讀分子,分子和分母按照整數的讀法來讀。
6、分數的寫法:先寫分數線,再寫分母,最后寫分子,按照整數的寫法來寫。
7、百分數的讀法:讀百分數時,先讀百分之,再讀百分號前面的數,讀數時按照整數的讀法來讀。
8、百分數的寫法:百分數通常不寫成分數形式,而在原來的分子后面加上百分號“%”來表示。
(二)數的改寫
一個較大的多位數,為了讀寫方便,常常把它改寫成用“萬”或“億”作單位的數。有時還可以根據需要,省略這個數某一位后面的數,寫成近似數。
1、準確數:在實際生活中,為了計數的簡便,可以把一個較大的數改寫成以萬或億為單位的數。改寫后的數是原數的準確數。例如把1254300000 改寫成以萬做單位的數是125430 萬;改寫成以億做單位的數 億。
2、近似數:根據實際需要,我們還可以把一個較大的數,省略某一位后面的尾數,用一個近似數來表示。例如:1302490015 省略億后面的尾數是13 億。
3、 四舍五入法:要省略的尾數的最高位上的數是4 或者比4小,就把尾數去掉;如果尾數的最高位上的數是5或者比5大,就把尾數舍去,并向它的前一位進1。例如:省略345900 萬后面的尾數約是35 萬。省略4725097420 億后面的尾數約是47 億。
4、大小比較
比較小數的大?。合瓤此鼈兊恼麛挡糠郑?,整數部分大的那個數就大;整數部分相同的,十分位上的數大的那個數就大;十分位上的數也相同的,百分位上的數大的那個數就大……
比較分數的大小:分母相同的分數,分子大的分數比較大;分子相同的數,分母小的分數大。分數的分母和分子都不相同的,先通分,再比較兩個數的大小。
(三)數的互化
1、小數化成分數:原來有幾位小數,就在1的后面寫幾個零作分母,把原來的小數去掉小數點作分子,能約分的要約分。
2、分數化成小數:用分母去除分子。能除盡的就化成有限小數,有的不能除盡,不能化成有限小數的,一般保留三位小數。
3、一個最簡分數,如果分母中除了2和5以外,不含有其他的質因數,這個分數就能化成有限小數;如果分母中含有2和5 以外的質因數,這個分數就不能化成有限小數。
4、小數化成百分數:只要把小數點向右移動兩位,同時在后面添上百分號。
5、百分數化成小數:把百分數化成小數,只要把百分號去掉,同時把小數點向左移動兩位。
6、分數化成百分數:通常先把分數化成小數(除不盡時,通常保留三位小數),再把小數化成百分數。
7、百分數化成小數:先把百分數改寫成分數,能約分的要約成最簡分數。
(四)數的整除
1、把一個合數分解質因數,通常用短除法。先用能整除這個合數的質數去除,一直除到商是質數為止,再把除數和商寫成連乘的形式。
2、求幾個數的最大公約數的方法是:先用這幾個數的公約數連續(xù)去除,一直除到所得的商只有公約數1為止,然后把所有的除數連乘求積,這個積就是這幾個數的的最大公約數。
3、求幾個數的最小公倍數的方法是:先用這幾個數(或其中的部分數)的公約數去除,一直除到互質(或兩兩互質)為止,然后把所有的除數和商連乘求積,這個積就是這幾個數的最小公倍數。
4、成為互質關系的兩個數:1和任何自然數互質;相鄰的兩個自然數互質;當合數不是質數的倍數時,這個合數和這個質數互質;兩個合數的公約數只有1時,這兩個合數互質。
(五)約分和通分
約分的方法:用分子和分母的公約數(1除外)去除分子、分母;通常要除到得出最簡分數為止。
通分的方法:先求出原來的幾個分數分母的最小公倍數,然后把各分數化成用這個最小公倍數作分母的分數。
小升初必考的數學篇十一
a除以b或a被b除列式為:a÷b,a除b,
或用a去除b,列式為:b÷a
這兩個看似相同,實則不同,因為半圓的周長還多出一個直徑。
壓路機滾動一周前進多少米?是求它的周長。壓路機滾動一周壓路的面積,就是求滾筒的側面積。
無蓋的水桶,水池,金魚缸,水槽等求表面積時一定要減少一個底面積。
(大數—小數)÷單位“1”的量。
兩根同樣長的繩子,一根剪去1/2米另一根剪去1/2,剩下的長度無法比較。
÷商是3,余數不是1而是
求××率或百分之幾的列式中,最后必須“×100%”
在求總人數、總只數、總棵樹……的應用題時,結果不可能是分數和小數
改寫一個準確數,不要求“四舍五入”取近似值時,一定要把“萬”或“億”后面的數寫到小數部分;只有大約或省略 “萬”或“億”位后面的尾數時,才用“四舍五入”求近似值,末尾一定要寫“萬”或“億”
【相關例題】10,0070,0008讀幾個0?
【正確答案】2個
【例題評析】大數的讀法是四年級學的一個知識點,尤其是讀幾個零的問題,容易犯錯。
【相關例題】一個數的近似數是1萬,這個數最大是_______
【錯誤答案】9999
【正確答案】14999
【例題評析】四舍五入得出的近似值,不僅可能是“五入”得來的,還有可能是“四舍”得來的。
【相關例題】把,π,22/7按照從大往小的順序排列________
【錯誤答案】π>
【例題評析】題目怎么要求就怎么來,別瞎胡鬧。并且一定要寫原數排序。
【相關例題】在比例尺為1:20xx的沙盤上,實際面積為800000平方米的生態(tài)公園為_____平方米
【錯誤答案】400
【正確答案】
【例題評析】很多同學直接用800000÷20xx,得出了錯誤答案。
切記,比例尺=圖上距離:實際距離,是長度的比例尺,即圖上1長度單位是實際中的
20xx長度單位。但是本題牽扯到面積,需要轉化為面積的比例尺。需要把長度的比例尺平方,即圖上1面積單位是實際中的4000000面積單位。
【相關例題】判斷對錯:圓的面積與半徑成正比例
【錯誤答案】√
【正確答案】×
【例題評析】若兩個量乘積是定值,則成反比;若兩個量的商是定值,則成正比。嚴格卡定義,原題改為“圓的面積與半徑的平方成正比”,才是正確的。
【相關例題】一個正方形邊長增加它的1/3后,則原正方形與新正方形面積的比為_______
【錯誤答案】16:9
【正確答案】9:16
【例題評析】誰是比的前項,誰是比的后項,一定要睜大眼睛看清楚!
【相關例題】一個正方形邊長增加它的1/3后,則原正方形與新正方形面積的比值為_______
【錯誤答案】9:16
【正確答案】9/16
【例題評析】比值是一個結果,是一個數。
【相關例題】邊長為4厘米的正方形,面積為________
【錯誤答案】16
【正確答案】16平方厘米
【例題評析】面積問題,結果算對了,但沒有寫該寫的單位,猶如沙漠中的旅行者,渴死在近在咫尺的河邊??上?可悲!可笑!可嘆!
【相關例題】某種面粉袋上標有(25kg加減50g)的標記,這種面粉最重是________kg.
【錯誤答案】75
【正確答案】
【例題評析】很多同學沒有看到kg與g的單位不一致,直接給出了75的錯誤答案。
【相關例題】1900年是閏年還是平年?
【錯誤答案】閏年
【正確答案】平年
【例題評析】四年一閏,百年不閏,四百年再閏。如果一個年份是4的倍數,則為閏年;否則是平年。但是如果是整百的年份(如1900年,20xx年),則必須為400的倍數才是閏年,否則為平年。
【相關例題】6—2(2x—3)=4
【錯誤答案】其他
【正確答案】x=2
【例題評析】去括號,若括號前面是減號,要變號!移項(某個數在等號的兩邊左右移動)要變號,切記!
【相關例題】20÷
小升初必考的數學篇十二
1、整除:如果一個整數a,除以一個自然數b,得到一個整數商c,而且沒有余數,那么叫做a能被b整除或b能整除a,記作b|a。
2、常用符號:整除符號“|”,不能整除符號“ ”;因為符號“∵”,所以的符號“∴”;
1.能被2、5整除:末位上的數字能被2、5整除。
2.能被4、25整除:末兩位的數字所組成的數能被4、25整除。
3.能被8、125整除:末三位的數字所組成的數能被8、125整除。
4.能被3、9整除:各個數位上數字的和能被3、9整除。
5.能被7整除:
①末三位上數字所組成的數與末三位以前的數字所組成數之差能被7整除。
②逐次去掉最后一位數字并減去末位數字的2倍后能被7整除。
6.能被11整除:
①末三位上數字所組成的數與末三位以前的數字所組成的數之差能被11整除。
②奇數位上的數字和與偶數位數的數字和的差能被11整除。
③逐次去掉最后一位數字并減去末位數字后能被11整除。
7.能被13整除:
①末三位上數字所組成的數與末三位以前的數字所組成的數之差能被13整除。
②逐次去掉最后一位數字并減去末位數字的9倍后能被13整除。
1.如果a、b能被c整除,那么(a+b)與(a-b)也能被c整除。
2.如果a能被b整除,c是整數,那么a乘以c也能被b整除。
3.如果a能被b整除,b又能被c整除,那么a也能被c整除。
4. 如果a能被b、c整除,那么a也能被b和c的最小公倍數整除。
例、在1992后面補上三個數字,組成一個七位數,使它們分別能被2、3、5、11整除,這個七位數最小值是多少?
考點:數的整除特征.
分析:設補上的三個數字組成三位數是abc,由這個七位數能被2,5整除,說明c=0;由這個七位數能被3整除知1+9+9+2+a+b+c=21+a+b+c能被11整除,從而a+b能被3整除;再由這個七位數又能被11整除,可知(1+9+a+c)-(9+2+b)=a-b-1能被11整除;最后由所組成的七位數應該最小,因而取a+b=3,a-b=1,從而a=2,b=1.進而解答即可;
解答:解:設補上的三個數字組成三位數是abc,由這個七位數能被2,5整除,說明c=0;
由這個七位數能被3整除知1+9+9+2+a+b+c=21+a+b+c能被11整除,從而a+b能被3整除;
由這個七位數又能被11整除,可知(1+9+a+c)-(9+2+b)=a-b-1能被11整除;
由所組成的七位數應該最小,因而取a+b=3,a-b=1,從而a=2,b=1.
所以這個最小七位數是1992210.
[注]學生通常的解法是:根據這個七位數分別能被2,3,5,11整除的條件,這個七位數必定是2,3,5,11的公倍數,而2,3,5,11的最小公倍數是2×3×5×11=330.
這樣,1992000÷330=6036…120,因此符合題意的七位數應是(6036+1)倍的數,即1992000+(330-120)=1992210.
小升初必考的數學篇十三
專題一:計算
我一直強調計算,扎實的算功是學好數學的必要條件。聰明在于勤奮,知識在于積累。積累一些常見數是必要的。如1/8,1/4,3/8,1/2,5/8,3/4,7/8的分數,小數,百分數,比的互化要脫口而出。100以內的質數要信手拈來。1-30的平方,1-10的立方的結果要能提筆就寫。對于整除的判定僅僅積累2,3,5的是不夠的。9的整除判定和3的方法是一樣的。還有就是2和5的n次方整除的判定只要看末n位。如4和25的整除都是看末2位,末2位能被4或25整除則這個數可以被4或25整除。8和125就看末3位。7,11,13的整除判定就是割開三位。前面部分減去末三位就可以了如果能整除7或11或13,這個數就是7或11或13的倍數。這其實是判定1001的方法。此外還有一種方法是割個位法,望同學們至少掌握20以內整除的判定方法。
接下來講下數論的積累。1搞清楚什么是完全平方數,完全平方數個位只能是0,1,4,5,6,9.奇數的平方除以8余1,偶數的平方是4的倍數。要掌握如何求一個數的約數個數,所有約數的和,小于這個數且和這個數互質數的個數如何求。如何估計一個數是否為質數。
計算分為一般計算和技巧計算。到底用哪個呢?首先基本的運算法則必須很熟悉。不要被簡便運算假象迷惑。這里重點說下技巧計算。首先要熟練乘法和除法的分配律,其次要熟練a-b-c=a-(b+c)a-(b-c)=a-b+c
還有連除就是除以所有除數的積等。再者對于結合交換律都應該很熟悉。分配律有直接提公因數,和移動小數點或擴大縮小倍數來湊出公因數。甚至有時候要強行創(chuàng)造公因數。再單獨算尾巴。
分數的裂項:裂和與裂差等差數列求和,平方差,配對,換元,拆項約分,等比定理的轉化等都要很熟悉。還有就是放縮與估計都要熟練。在計算中到底運用小數還是分數要看情況。如果既有分數又有小數的題,如果不能化成有限小數的分數出現(xiàn)的話整個計算應該用分數。當小數位數不超過2位且分數可以化為3位以內的小數時候可以用小數。計算時候學會湊整??吹?5找4,看到125找8,看到2找5這些要形成條件反射。如7992乘以25
很多孩子用豎式算很久,而實際上只要7992除以4再乘以100=(8000-8)除以4再乘以100=199800運用下除法分配律。這些簡便的方法不要要求簡便的時候才用,平時就要多用才熟能生巧。
最后講下公比是1/2的等比數列。很多孩子做1/2+1/4+...+1/64能很快1-1/64=63/64,但如果是1/4+1/8+1/16+..+1/256就不會了。實際上一樣的裂項,為1/2-1/4+1/4-1/8+...+1/128-1/256=1/2-1/256=127/256.所以要學活總結裂項的幾種形式。最后一般化。
專題二:解方程
解方程一般是運用等式性質,由于小學生沒學過移項。所以稍復雜的方程容易錯符號。如37-2x=39-3x
解這樣方程建議先把兩邊加3x得到37+x=39 x=2有的直接做容易搞成5x=2,所以做完后要檢驗。解含有分母的方程建議首先把分子的多項式加括號。然后左右兩邊每個加數或減數都乘以最小公倍數。注意凡是整體加上括號,最后用分配律和加減的簡便運算方法去掉括號。這樣不會錯符號和漏乘調理也清楚。還有注意訓練整體意識如解60(100-x)=72(97-x)就應該兩邊首先約去12計算更好。對于機構復雜出現(xiàn)重復部分的方程還要注意換元。平時還可以多解一些稍微復雜的百分數方程。
專題三:分數,比,百分數應用題
解決這類題關鍵在于搞清楚標準。明白1倍是什么,比的一份是什么。如60比---多1/5,60比----少1/5,60是---的1/5,---是60的1/5,---比60多1/5,----比60少1/5.這個準備題能全對說明標準吃透了否則還要在找標準量上加強訓練。注意分數帶單位表示具體數量,不帶單位表示的實際上是倍數。只是同學們習慣看整數和小數倍不習慣看分數倍數。百分數就只能表示倍數,不能表示數量是不可以帶單位的。如果用比解決問題就務必吃透1份是多少。其實分數應用題都可以轉化為a是b的多少倍?已知1倍求多倍乘法,已知多倍求1倍除法。比如a比b多1/3,這時候標準是b a比1倍多1/3倍就是a是b的4/3倍。馬上有a:b=4:3,對于應用題中分數和比的轉化要清晰。很多題我們用分數抽象但用比很好理解。因為孩子熟悉整數,不喜歡分數這時事實。對于百分數應用題我們可以化為比轉化為孩子喜歡的東西。其實很多有不變數量的題就是找到不變量,統(tǒng)一不變量對應份數,求出1份是多少,按比例分配這4步曲一般分數,百分數比的應用題就搞定了。對于濃度問題和商品利潤問題我講了十字交叉法。對于有些孩子可能難理解,考試在大題中也不適宜用。其實濃度問題列方程就從溶質入手就可以了。
小升初必考的數學篇十四
一、小學數學算術定義定理公式:理解并會應用是關鍵;
二、小學數學基礎運算公式:記準公式并會靈活應用,關鍵是公式的逆用和變形應用;
三、運用四則運算規(guī)則巧算:題型不同,方法不同,抓住特點,靈活應用;
四、小學數學常見幾何圖形的周長、面積(陰影部分的面積計算是關鍵)、體積計算公式
公式的推導是關鍵,并會進行逆用和變形應用;
五、小學數學單位換算公式:
記準進率是關鍵,大變小乘定律,小變大除定率;
六、小學數學熱點問題運算公式(常見奧數題公式):
重點和難點
1、和差問題的公式:
(和+差)÷2=大數(和-差)÷2=小數
2、和倍問題:
和÷(倍數+1)=小數小數×倍數=大數或(和-小數=大數)
3、差倍問題:
差÷(倍數-1)=小數小數×倍數=大數或(小數+差=大數)
4、植樹問題:
(1)非封閉線路上的植樹問題主要可分為以下三種情形:
①如果在非封閉線路的兩端都要植樹,那么:
株數=段數+1=全長÷株距+1全長=株距×(株數-1)株距=全長÷(株數-1)
②如果在非封閉線路的一端要植樹,另一端不要植樹,那么:
株數=段數=全長÷株距全長=株距×株數株距=全長÷株數
③如果在非封閉線路的兩端都不要植樹,那:株數=段數-1=全長÷株距-1
全長=株距×(株數+1)株距=全長÷(株數+1)
(2)封閉線路上的植樹問題的數量關系如下
株數=段數=全長÷株距全長=株距×株數株距=全長÷株數
5、盈虧問題
一盈一虧問題:(盈+虧)÷兩次分配量之差=參加分配的份數
兩盈問題:(大盈-小盈)÷兩次分配量之差=參加分配的份數
兩虧問題:(大虧-小虧)÷兩次分配量之差=參加分配的份數
6、行程問題:
相遇問題:相遇路程=速度和÷相遇時間相遇時間=相遇路程÷速度和
速度和=相遇路程÷相遇時間
追及問題:追及路程=速度差×追及時間追及時間=追及路程÷速度差
速度差=追及路程÷追及時間
7、流水問題
順流速度=靜水速度+水流速度逆流速度=靜水速度-水流速度
靜水速度=(順流速度+逆流速度)÷2水流速度=(順流速度-逆流速度)÷2
8、濃度問題
溶質的重量+溶劑的重量=溶液的重量濃度=溶質的重量÷溶液的重量×100%
溶液的重量×濃度=溶質的重量溶質的重量÷濃度=溶液的重量
9、銷售問題:(利潤與折扣問題)
利潤=售出價-成本利潤率=利潤÷成本×100%=(售出價÷成本-1)×100%漲跌金額=本金×漲跌百分比折扣=實際售價÷原售價×100%(折扣<1)利息=本金×利率×時間稅后利息=本金×利率×時間×(1-20%)
10、工程問題
工作效率×工作時間=工作總量工作總量÷工作效率=工作時間
工作總量÷工作時間=工作效率
以上應用題的類型在往年的小升初考試中反復出現(xiàn),要善于從題目中提取有用的信息,弄清各個量之間的關系,并正確解答。
小升初備考建議
針對幾年的考題特點和趨勢,小學六年級學生20xx年小升初的數學復習應該注意以下幾個方面:
1、復習的時候要“博而精”,不能一味的追求“深度”,不能只看重歷年來的重要考點。學習最根本的任務是把基礎知識掌握透,一味鉆研難題、偏題對整式考試的幫助并不大。
2、平時練習、復習的時候要注重綜合能力的提升。只會一道題是不行的,要舉一反三,推廣到一類題;會一類題也不能淺嘗輒止,要多看多練多研究,學會把各類型的題和考點點整合在一起,遇到什么問題都能夠找到思路。
3、多練多總結,認真對待錯題,準備錯題集。
小升初必考的數學篇十五
一、算術
1、加法交換律:兩數相加交換加數的位置,和不變。
2、加法結合律:a + b = b + a
3、乘法交換律:a × b = b × a
4、乘法結合律:a × b × c = a ×(b × c)
5、乘法分配律:a × b + a × c = a × b + c
6、除法的性質:a ÷ b ÷ c = a ÷(b × c)
7、除法的性質:在除法里,被除數和除數同時擴大(或縮小)相同的倍數,商不變。 o除以任何不是o的數都得o。 簡便乘法:被乘數、乘數末尾有o的乘法,可以先把o前面的相乘,零不參加運算,有幾個零都落下,添在積的末尾。
8、有余數的除法: 被除數=商×除數+余數
二、方程、代數與等式
等式:等號左邊的數值與等號右邊的數值相等的式子叫做等式。 等式的基本性質:等式兩邊同時乘以(或除以)一個相同的數,等式仍然成立。
方程式:含有未知數的`等式叫方程式。
一元一次方程式:含有一個未知數,并且未知數的次 數是一次的等式叫做一元一次方程式。學會一元一次方程式的例法及計算。即例出代有的算式并計算。
代數: 代數就是用字母代替數。
代數式:用字母表示的式子叫做代數式。如:3x =ab+c
三、分數
分數:把單位“1”平均分成若干份,表示這樣的一份或幾分的數,叫做分數。
分數大小的比較:同分母的分數相比較,分子大的大,分子小的小。異分母的分數相比較,先通分然后再比較;若分子相同,分母大的反而小。
分數的加減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然后再加減。
分數乘整數,用分數的分子和整數相乘的積作分子,分母不變。
分數乘分數,用分子相乘的積作分子,分母相乘的積作為分母。
分數的加、減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然后再加減。
倒數的概念:1.如果兩個數乘積是1,我們稱一個是另一個的倒數。這兩個數互為倒數。1的倒數是1,0沒有倒數。
分數除以整數(0除外),等于分數乘以這個整數的倒數。
分數的基本性質:分數的分子和分母同時乘以或除以同一個數(0除外),分數的大小
分數的除法則:除以一個數(0除外),等于乘這個數的倒數。
真分數:分子比分母小的分數叫做真分數。
假分數:分子比分母大或者分子和分母相等的分數叫做假分數。假分數大于或等于1。
帶分數:把假分數寫成整數和真分數的形式,叫做帶分數。
分數的基本性質:分數的分子和分母同時乘以或除以同一個數(0除外),分數的大小不變。
四、體積和表面積
三角形的面積=底×高÷2。 公式 s= a×h÷2
正方形的面積=邊長×邊長 公式 s= a2
長方形的面積=長×寬 公式 s= a×b
平行四邊形的面積=底×高 公式 s= a×h
梯形的面積=(上底+下底)×高÷2 公式 s=(a+b)h÷2
內角和:三角形的內角和=180度。
長方體的表面積=(長×寬+長×高+寬×高 ) ×2 公式:s=(a×b+a×c+b×c)×2
正方體的表面積=棱長×棱長×6 公式: s=6a2
長方體的體積=長×寬×高 公式:v = abh
長方體(或正方體)的體積=底面積×高 公式:v = abh
正方體的體積=棱長×棱長×棱長 公式:v = a3
圓的周長=直徑×π 公式:l=πd=2πr
圓的面積=半徑×半徑×π 公式:s=πr2
圓柱的表(側)面積:圓柱的表(側)面積等于底面的周長乘高。公式:s=ch=πdh=2πrh
圓柱的表面積:圓柱的表面積等于底面的周長乘高再加上兩頭的圓的面積。 公式:s=ch+2s=ch+2πr2
圓柱的體積:圓柱的體積等于底面積乘高。公式:v=sh
圓錐的體積=1/3底面×積高。公式:v=1/3sh
五、數量關系計算公式
單價×數量=總價 2、單產量×數量=總產量
速度×時間=路程 4、工效×時間=工作總量
加數+加數=和 一個加數=和+另一個加數
被減數-減數=差 減數=被減數-差 被減數=減數+差
因數×因數=積 一個因數=積÷另一個因數
被除數÷除數=商 除數=被除數÷商 被除數=商×除數
小升初數學分數與百分數的應用知識點總結
【本文地址:http://www.aiweibaby.com/zuowen/2228336.html】