高二數(shù)學(xué)教案全套(6篇)

格式:DOC 上傳日期:2023-04-07 20:12:03
高二數(shù)學(xué)教案全套(6篇)
時(shí)間:2023-04-07 20:12:03     小編:zxfb

作為一位兢兢業(yè)業(yè)的人民教師,常常要寫一份優(yōu)秀的教案,教案是保證教學(xué)取得成功、提高教學(xué)質(zhì)量的基本條件。大家想知道怎么樣才能寫一篇比較優(yōu)質(zhì)的教案嗎?下面是小編整理的優(yōu)秀教案范文,歡迎閱讀分享,希望對(duì)大家有所幫助。

高二數(shù)學(xué)教案全套篇一

一、教學(xué)過(guò)程

1、復(fù)習(xí)。

反函數(shù)的概念、反函數(shù)求法、互為反函數(shù)的函數(shù)定義域值域的關(guān)系。

求出函數(shù)y=x3的反函數(shù)。

2、新課。

先讓學(xué)生用幾何畫板畫出y=x3的圖象,學(xué)生紛紛動(dòng)手,很快畫出了函數(shù)的圖象。有部分學(xué)生發(fā)出了“咦”的一聲,因?yàn)樗麄兊玫搅巳缦碌膱D象(圖1):

教師在畫出上述圖象的學(xué)生中選定生1,將他的屏幕內(nèi)容通過(guò)教學(xué)系統(tǒng)放到其他同學(xué)的屏幕上,很快有學(xué)生作出反應(yīng)。

生2:這是y=x3的反函數(shù)y=的圖象。

師:對(duì),但是怎么會(huì)得到這個(gè)圖象,請(qǐng)大家討論。

(學(xué)生展開討論,但找不出原因。)

師:我們請(qǐng)生1再給大家演示一下,大家?guī)退艺以颉?/p>

(生1將他的制作過(guò)程重新重復(fù)了一次。)

生3:?jiǎn)栴}出在他選擇的次序不對(duì)。

師:哪個(gè)次序?

生3:作點(diǎn)b前,選擇xa和xa3為b的坐標(biāo)時(shí),他先選擇xa3,后選擇xa,作出來(lái)的點(diǎn)的坐標(biāo)為(xa3,xa),而不是(xa,xa3)。

師:是這樣嗎?我們請(qǐng)生1再做一次。

(這次生1在做的過(guò)程當(dāng)中,按xa、xa3的次序選擇,果然得到函數(shù)y=x3的圖象。)

師:看來(lái)問(wèn)題確實(shí)是出在這個(gè)地方,那么請(qǐng)同學(xué)再想想,為什么他采用了錯(cuò)誤的次序后,恰好得到了y=x3的反函數(shù)y=的圖象呢?

(學(xué)生再次陷入思考,一會(huì)兒有學(xué)生舉手。)

師:我們請(qǐng)生4來(lái)告訴大家。

生4:因?yàn)樗@樣做,正好是將y=x3上的點(diǎn)b(x,y)的橫坐標(biāo)x與縱坐標(biāo)y交換,而y=x3的反函數(shù)也正好是將x與y交換。

師:完全正確。下面我們進(jìn)一步研究y=x3的圖象及其反函數(shù)y=的圖象的。關(guān)系,同學(xué)們能不能看出這兩個(gè)函數(shù)的圖象有什么樣的關(guān)系?

(多數(shù)學(xué)生回答可由y=x3的圖象得到y(tǒng)=的圖象,于是教師進(jìn)一步追問(wèn)。)

師:怎么由y=x3的圖象得到y(tǒng)=的圖象?

生5:將y=x3的圖象上點(diǎn)的橫坐標(biāo)與縱坐標(biāo)交換,可得到y(tǒng)=的圖象。

師:將橫坐標(biāo)與縱坐標(biāo)互換?怎么換?

(學(xué)生一時(shí)未能明白教師的意思,場(chǎng)面一下子冷了下來(lái),教師不得不將問(wèn)題進(jìn)一步明確。)

師:我其實(shí)是想問(wèn)大家這兩個(gè)函數(shù)的圖象有沒(méi)有對(duì)稱關(guān)系,有的話,是什么樣的對(duì)稱關(guān)系?

(學(xué)生重新開始觀察這兩個(gè)函數(shù)的圖象,一會(huì)兒有學(xué)生舉手。)

生6:我發(fā)現(xiàn)這兩個(gè)圖象應(yīng)是關(guān)于某條直線對(duì)稱。

師:能說(shuō)說(shuō)是關(guān)于哪條直線對(duì)稱嗎?

生6:我還沒(méi)找出來(lái)。

(接下來(lái),教師引導(dǎo)學(xué)生利用幾何畫板找出兩函數(shù)圖象的對(duì)稱軸,畫出如下圖形,如圖2所示:)

學(xué)生通過(guò)移動(dòng)點(diǎn)a(點(diǎn)b、c隨之移動(dòng))后發(fā)現(xiàn),bc的中點(diǎn)m在同一條直線上,這條直線就是兩函數(shù)圖象的對(duì)稱軸,在追蹤m點(diǎn)后,發(fā)現(xiàn)中點(diǎn)的軌跡是直線y=x。

生7:y=x3的圖象及其反函數(shù)y=的圖象關(guān)于直線y=x對(duì)稱。

師:這個(gè)結(jié)論有一般性嗎?其他函數(shù)及其反函數(shù)的圖象,也有這種對(duì)稱關(guān)系嗎?請(qǐng)同學(xué)們用其他函數(shù)來(lái)試一試。

(學(xué)生紛紛畫出其他函數(shù)與其反函數(shù)的圖象進(jìn)行驗(yàn)證,最后大家一致得出結(jié)論:函數(shù)及其反函數(shù)的圖象關(guān)于直線y=x對(duì)稱。)

還是有部分學(xué)生舉手,因?yàn)樗麄儺嫵隽巳缦聢D象(圖3):

教師巡視全班時(shí)已經(jīng)發(fā)現(xiàn)這個(gè)問(wèn)題,將這個(gè)圖象傳給全班學(xué)生后,幾乎所有人都看出了問(wèn)題所在:圖中函數(shù)y=x2(x∈r)沒(méi)有反函數(shù),②也不是函數(shù)的圖象。

最后教師與學(xué)生一起總結(jié):

點(diǎn)(x,y)與點(diǎn)(y,x)關(guān)于直線y=x對(duì)稱;

函數(shù)及其反函數(shù)的圖象關(guān)于直線y=x對(duì)稱。

二、反思與點(diǎn)評(píng)

1、在開學(xué)初,我就教學(xué)幾何畫板4。0的用法,在教函數(shù)圖象畫法的過(guò)程當(dāng)中,發(fā)現(xiàn)學(xué)生根據(jù)選定坐標(biāo)作點(diǎn)時(shí),不太注意選擇橫坐標(biāo)與縱坐標(biāo)的順序,本課設(shè)計(jì)起源于此。雖然幾何畫板4。04中,能直接根據(jù)函數(shù)解析式畫出圖象,但這樣反而不能揭示圖象對(duì)稱的本質(zhì),所以本節(jié)課教學(xué)中,我有意選擇了幾何畫板4。0進(jìn)行教學(xué)。

2、荷蘭數(shù)學(xué)教育家弗賴登塔爾認(rèn)為,數(shù)學(xué)學(xué)習(xí)過(guò)程當(dāng)中,可借助于生動(dòng)直觀的形象來(lái)引導(dǎo)人們的思想過(guò)程,但常常由于圖形或想象的錯(cuò)誤,使人們的思維誤入歧途,因此我們既要借助直觀,但又必須在一定條件下擺脫直觀而形成抽象概念,要注意過(guò)于直觀的例子常常會(huì)影響學(xué)生正確理解比較抽象的概念。

計(jì)算機(jī)作為一種現(xiàn)代信息技術(shù)工具,在直觀化方面有很強(qiáng)的表現(xiàn)能力,如在函數(shù)的圖象、圖形變換等方面,利用計(jì)算機(jī)都可得到其他直觀工具不可能有的效果;如果只是為了直觀而使用計(jì)算機(jī),但不能達(dá)到更好地理解抽象概念,促進(jìn)學(xué)生思維的目的的話,這樣的教學(xué)中,計(jì)算機(jī)最多只是一種普通的直觀工具而已。

在本節(jié)課的教學(xué)中,計(jì)算機(jī)更多的是作為學(xué)生探索發(fā)現(xiàn)的工具,學(xué)生不但發(fā)現(xiàn)了函數(shù)與其反函數(shù)圖象間的對(duì)稱關(guān)系,而且在更深層次上理解了反函數(shù)的概念,對(duì)反函數(shù)的存在性、反函數(shù)的求法等方面也有了更深刻的理解。

當(dāng)前計(jì)算機(jī)用于中學(xué)數(shù)學(xué)的主要形式還是以輔助為主,更多的是把計(jì)算機(jī)作為一種直觀工具,有時(shí)甚至只是作為電子黑板使用,今后的發(fā)展方向應(yīng)是:將計(jì)算機(jī)作為學(xué)生的認(rèn)知工具,讓學(xué)生通過(guò)計(jì)算機(jī)發(fā)現(xiàn)探索,甚至利用計(jì)算機(jī)來(lái)做數(shù)學(xué),在此過(guò)程當(dāng)中更好地理解數(shù)學(xué)概念,促進(jìn)數(shù)學(xué)思維,發(fā)展數(shù)學(xué)創(chuàng)新能力。

3、在引出兩個(gè)函數(shù)圖象對(duì)稱關(guān)系的時(shí)候,問(wèn)題設(shè)計(jì)不甚妥當(dāng),本來(lái)是想要學(xué)生回答兩個(gè)函數(shù)圖象對(duì)稱的關(guān)系,但學(xué)生誤以為是問(wèn)如何由y=x3的圖象得到y(tǒng)=的圖象,以致將學(xué)生引入歧途。這樣的問(wèn)題在今后的教學(xué)中是必須力求避免的。

高二數(shù)學(xué)教案全套篇二

【自主梳理】

1.對(duì)數(shù):

(1) 一般地,如果 ,那么實(shí)數(shù) 叫做________________,記為________,其中 叫做對(duì)數(shù)的_______, 叫做________.

(2)以10為底的對(duì)數(shù)記為________,以 為底的對(duì)數(shù)記為_______.

(3) , .

2.對(duì)數(shù)的運(yùn)算性質(zhì):

(1)如果 ,那么 ,

.

(2)對(duì)數(shù)的換底公式: .

3.對(duì)數(shù)函數(shù):

一般地,我們把函數(shù)____________叫做對(duì)數(shù)函數(shù),其中 是自變量,函數(shù)的定義域是______.

4.對(duì)數(shù)函數(shù)的圖像與性質(zhì):

a1 0

圖象性

質(zhì) 定義域:___________

值域:_____________

過(guò)點(diǎn)(1,0),即當(dāng)x=1時(shí),y=0

x(0,1)時(shí)_________

x(1,+)時(shí)________ x(0,1)時(shí)_________

x(1,+)時(shí)________

在___________上是增函數(shù) 在__________上是減函數(shù)

【自我檢測(cè)】

1. 的定義域?yàn)開________.

2.化簡(jiǎn): .

3.不等式 的解集為________________.

4.利用對(duì)數(shù)的換底公式計(jì)算: .

5.函數(shù) 的奇偶性是____________.

6.對(duì)于任意的 ,若函數(shù) ,則 與 的大小關(guān)系是___________________________.

【例1】填空題:

(1) .

(2)比較 與 的大小為___________.

(3)如果函數(shù) ,那么 的 最大值是_____________.

(4)函數(shù) 的奇偶性是___________.

【例2】求函數(shù) 的定義域和值域。

【例3】已知函數(shù) 滿足 .

(1)求 的解析式;

(2)判斷 的奇偶性;

(3)解不等式 .

課堂小結(jié)

1. .略

2.函數(shù) 的定義域?yàn)開______________.

3.函數(shù) 的值域是_____________.

4.若 ,則 的取值范圍是_____________.

5.設(shè) 則 的大小關(guān)系是_____________.

6.設(shè)函數(shù) ,若 ,則 的取值范圍為_________________.

7.當(dāng) 時(shí),不等式 恒成立,則 的取值范圍為______________.

8.函數(shù) 在區(qū)間 上的值域?yàn)?,則 的最小值為____________.

9.已知 .

(1)求 的定義域;

(2)判斷 的奇偶性并予以證明;

(3)求使 的 的取值范圍。

10.對(duì)于函數(shù) ,回答下列問(wèn)題:

(1)若 的定義域?yàn)?,求實(shí)數(shù) 的取值范圍;

(2)若 的值域?yàn)?,求實(shí)數(shù) 的取值范圍;

(3)若函數(shù) 在 內(nèi)有意義,求實(shí)數(shù) 的取值范圍。

四、糾錯(cuò)分析

錯(cuò)題卡 題 號(hào) 錯(cuò) 題 原 因 分 析

【自主梳理】

1.對(duì)數(shù)

(1)以 為底的 的對(duì)數(shù), ,底數(shù),真數(shù)。

(2) , .

(3)0,1.

2.對(duì)數(shù)的運(yùn)算性質(zhì)

(1) , , .

(2) .

3.對(duì)數(shù)函數(shù)

, .

4.對(duì)數(shù)函數(shù)的圖像與性質(zhì)

a1 0

圖象性質(zhì) 定義域:(0,+)

值域:r

過(guò)點(diǎn)(1,0),即當(dāng)x=1時(shí),y=0

x(0,1)時(shí)y0

x(1,+)時(shí)y0 x(0,1)時(shí)y0

x(1,+)時(shí)y0

在(0,+)上是增函數(shù) 在(0,+)上是減函數(shù)

1. 2. 3.

4. 5.奇函數(shù) 6. .

【例1】填空題:

(1)3.

(2) .

(3)0.

(4)奇函數(shù)。

【例2】解:由 得 .所以函數(shù) 的定義域是(0,1).

因?yàn)?,所以,當(dāng) 時(shí), ,函數(shù) 的值域?yàn)?;當(dāng) 時(shí), ,函數(shù) 的值域?yàn)?.

【例3】解:(1) ,所以 .

(2)定義域(-3,3)關(guān)于原點(diǎn)對(duì)稱,所以

,所以 為奇函數(shù)。

(3) ,所以當(dāng) 時(shí), 解得

當(dāng) 時(shí), 解得 .

高二數(shù)學(xué)教案全套篇三

1、知識(shí)與技能:

(1)推廣角的概念、引入大于角和負(fù)角;

(2)理解并掌握正角、負(fù)角、零角的定義;

(3)理解任意角以及象限角的概念;

(4)掌握所有與角終邊相同的角(包括角)的表示方法;

(5)樹立運(yùn)動(dòng)變化觀點(diǎn),深刻理解推廣后的角的概念;

(6)揭示知識(shí)背景,引發(fā)學(xué)生學(xué)習(xí)興趣;

(7)創(chuàng)設(shè)問(wèn)題情景,激發(fā)學(xué)生分析、探求的學(xué)習(xí)態(tài)度,強(qiáng)化學(xué)生的參與意識(shí)。

2、過(guò)程與方法:

通過(guò)創(chuàng)設(shè)情境:“轉(zhuǎn)體,逆(順)時(shí)針旋轉(zhuǎn)”,角有大于角、零角和旋轉(zhuǎn)方向不同所形成的角等,引入正角、負(fù)角和零角的概念;角的概念得到推廣以后,將角放入平面直角坐標(biāo)系,引入象限角、非象限角的概念及象限角的判定方法;列出幾個(gè)終邊相同的角,畫出終邊所在的位置,找出它們的關(guān)系,探索具有相同終邊的角的表示;講解例題,總結(jié)方法,鞏固練習(xí)。

3、情態(tài)與價(jià)值:

通過(guò)本節(jié)的學(xué)習(xí),使同學(xué)們對(duì)角的概念有了一個(gè)新的認(rèn)識(shí),即有正角、負(fù)角和零角之分。角的概念推廣以后,知道角之間的關(guān)系。理解掌握終邊相同角的表示方法,學(xué)會(huì)運(yùn)用運(yùn)動(dòng)變化的觀點(diǎn)認(rèn)識(shí)事物。

重點(diǎn):理解正角、負(fù)角和零角的定義,掌握終邊相同角的表示法。

難點(diǎn):終邊相同的角的表示。

投影儀等。

【創(chuàng)設(shè)情境】

思考:你的手表慢了5分鐘,你是怎樣將它校準(zhǔn)的?假如你的手表快了1。25小時(shí),你應(yīng)當(dāng)如何將它校準(zhǔn)?當(dāng)時(shí)間校準(zhǔn)以后,分針轉(zhuǎn)了多少度?

我們發(fā)現(xiàn),校正過(guò)程中分針需要正向或反向旋轉(zhuǎn),有時(shí)轉(zhuǎn)不到一周,有時(shí)轉(zhuǎn)一周以上,這就是說(shuō)角已不僅僅局限于之間,這正是我們這節(jié)課要研究的主要內(nèi)容——任意角。

【探究新知】

1、初中時(shí),我們已學(xué)習(xí)了角的概念,它是如何定義的呢?

[展示投影]角可以看成平面內(nèi)一條射線繞著端點(diǎn)從一個(gè)位置旋轉(zhuǎn)到另一個(gè)位置所成的圖形。如圖1.1—1,一條射線由原來(lái)的位置,繞著它的端點(diǎn)o按逆時(shí)針?lè)较蛐D(zhuǎn)到終止位置ob,就形成角a。旋轉(zhuǎn)開始時(shí)的射線叫做角的始邊,ob叫終邊,射線的端點(diǎn)o叫做叫a的頂點(diǎn)。

2、如上述情境中所說(shuō)的校準(zhǔn)時(shí)鐘問(wèn)題以及在體操比賽中我們經(jīng)常聽到這樣的術(shù)語(yǔ):“轉(zhuǎn)體”(即轉(zhuǎn)體2周),“轉(zhuǎn)體”(即轉(zhuǎn)體3周)等,都是遇到大于的角以及按不同方向旋轉(zhuǎn)而成的角。同學(xué)們思考一下:能否再舉出幾個(gè)現(xiàn)實(shí)生活中“大于的角或按不同方向旋轉(zhuǎn)而成的角”的例子,這些說(shuō)明了什么問(wèn)題?又該如何區(qū)分和表示這些角呢?

[展示課件]如自行車車輪、螺絲扳手等按不同方向旋轉(zhuǎn)時(shí)成不同的角,這些都說(shuō)明了我們研究推廣角概念的必要性。為了區(qū)別起見(jiàn),我們規(guī)定:按逆時(shí)針?lè)较蛐D(zhuǎn)所形成的角叫正角(positiveangle),按順時(shí)針?lè)较蛐D(zhuǎn)所形成的角叫負(fù)角(negativeangle)。如果一條射線沒(méi)有做任何旋轉(zhuǎn),我們稱它形成了一個(gè)零角(zeroangle)。

3、學(xué)習(xí)小結(jié):

(1)你知道角是如何推廣的嗎?

(2)象限角是如何定義的呢?

(3)你熟練掌握具有相同終邊角的表示了嗎?會(huì)寫終邊落在x軸、y軸、直線上的角的集合。

課后習(xí)題

作業(yè):

1、習(xí)題1.1a組第1,2,3題。

2。多舉出一些日常生活中的“大于的角和負(fù)角”的例子,熟練掌握他們的表示,

進(jìn)一步理解具有相同終邊的角的特點(diǎn)。

高二數(shù)學(xué)教案全套篇四

1、預(yù)習(xí)教材,問(wèn)題導(dǎo)入

根據(jù)以下提綱,預(yù)習(xí)教材p2~p5,回答下列問(wèn)題。

(1)對(duì)于一般的二元一次方程組a1x+b1y=c1,①a2x+b2y=c2,②其中a1b2-a2b1≠0,如何寫出它的求解步驟?

提示:分五步完成:

第一步,①×b2-②×b1,得(a1b2-a2b1)x=b2c1-b1c2,③

第二步,解③,得x=b2c1-b1c2a1b2-a2b1.

第三步,②×a1-①×a2,得(a1b2-a2b1)y=a1c2-a2c1,④

第四步,解④,得y=a1c2-a2c1a1b2-a2b1.

第五步,得到方程組的解為x=b2c1-b1c2a1b2-a2b1,y=a1c2-a2c1a1b2-a2b1.

(2)在數(shù)學(xué)中算法通常指什么?

提示:在數(shù)學(xué)中,算法通常是指按照一定規(guī)則解決某一類問(wèn)題的明確和有限的步驟。

2、歸納總結(jié),核心必記

(1)算法的概念

12世紀(jì)的算法指的是用阿拉伯?dāng)?shù)字進(jìn)行算術(shù)運(yùn)算的過(guò)程續(xù)表

數(shù)學(xué)中的算法通常是指按照一定規(guī)則解決某一類問(wèn)題的明確和有限的步驟

現(xiàn)代算法通常可以編成計(jì)算機(jī)程序,讓計(jì)算機(jī)執(zhí)行并解決問(wèn)題

(2)設(shè)計(jì)算法的目的

計(jì)算機(jī)解決任何問(wèn)題都要依賴于算法。只有將解決問(wèn)題的過(guò)程分解為若干個(gè)明確的步驟,即算法,并用計(jì)算機(jī)能夠接受的“語(yǔ)言”準(zhǔn)確地描述出來(lái),計(jì)算機(jī)才能夠解決問(wèn)題。

(1)求解某一個(gè)問(wèn)題的算法是否是的?

提示:不是。

(2)任何問(wèn)題都可以設(shè)計(jì)算法解決嗎?

提示:不一定。

高二數(shù)學(xué)教案全套篇五

1、進(jìn)一步理解和掌握數(shù)列的有關(guān)概念和性質(zhì);

2、在對(duì)一個(gè)數(shù)列的探究過(guò)程中,提高提出問(wèn)題、分析問(wèn)題和解決問(wèn)題的能力;

3、進(jìn)一步提高問(wèn)題探究意識(shí)、知識(shí)應(yīng)用意識(shí)和同伴合作意識(shí)。

問(wèn)題的提出與解決

如何進(jìn)行問(wèn)題的探究

啟發(fā)探究式

問(wèn)題:已知{an}是首項(xiàng)為1,公比為的無(wú)窮等比數(shù)列。對(duì)于數(shù)列{an},提出你的問(wèn)題,并進(jìn)行研究,你能得到一些什么樣的結(jié)論?

1、數(shù)列{an}是一個(gè)等比數(shù)列,可以從等比數(shù)列角度來(lái)進(jìn)行研究;

2、研究所給數(shù)列的項(xiàng)之間的關(guān)系;

3、研究所給數(shù)列的子數(shù)列;

4、研究所給數(shù)列能構(gòu)造的新數(shù)列;

5、數(shù)列是一種特殊的函數(shù),可以從函數(shù)性質(zhì)角度來(lái)進(jìn)行研究;

6、研究所給數(shù)列與其它知識(shí)的聯(lián)系(組合數(shù)、復(fù)數(shù)、圖形、實(shí)際意義等)。

針對(duì)學(xué)生的研究情況,對(duì)所提問(wèn)題進(jìn)行歸類,選擇部分類型問(wèn)題共同進(jìn)行研究、分析與解決。

1、研究一個(gè)數(shù)列可以從哪些方面提出問(wèn)題并進(jìn)行研究?

2、你最喜歡哪位同學(xué)的研究?為什么?

高二數(shù)學(xué)教案全套篇六

掌握向量的概念、坐標(biāo)表示、運(yùn)算性質(zhì),做到融會(huì)貫通,能應(yīng)用向量的有關(guān)性質(zhì)解決諸如平面幾何、解析幾何等的問(wèn)題。

向量的性質(zhì)及相關(guān)知識(shí)的綜合應(yīng)用。

(一)主要知識(shí):

1、掌握向量的概念、坐標(biāo)表示、運(yùn)算性質(zhì),做到融會(huì)貫通,能應(yīng)用向量的有關(guān)性質(zhì)解決諸如平面幾何、解析幾何等的問(wèn)題。

(二)例題分析:

1、進(jìn)一步熟練有關(guān)向量的運(yùn)算和證明;能運(yùn)用解三角形的知識(shí)解決有關(guān)應(yīng)用問(wèn)題,

2、滲透數(shù)學(xué)建模的思想,切實(shí)培養(yǎng)分析和解決問(wèn)題的能力。

【本文地址:http://www.aiweibaby.com/zuowen/2429489.html】

全文閱讀已結(jié)束,如果需要下載本文請(qǐng)點(diǎn)擊

下載此文檔