人的記憶力會隨著歲月的流逝而衰退,寫作可以彌補記憶的不足,將曾經(jīng)的人生經(jīng)歷和感悟記錄下來,也便于保存一份美好的回憶。大家想知道怎么樣才能寫一篇比較優(yōu)質(zhì)的范文嗎?接下來小編就給大家介紹一下優(yōu)秀的范文該怎么寫,我們一起來看一看吧。
高中數(shù)學(xué)課件篇一
概括地講,二次函數(shù)的圖像在教材中起著承上啟下的作用,它的地位體現(xiàn)在它的思想的基礎(chǔ)性。一方面,本節(jié)課是對初中有關(guān)內(nèi)容的深化,為后面進(jìn)一步學(xué)習(xí)二次函數(shù)的性質(zhì)打下基礎(chǔ);另一方面,二次函數(shù)解析式中的系數(shù)由常數(shù)轉(zhuǎn)變?yōu)閰?shù),使學(xué)生對二次函數(shù)的圖像由感性認(rèn)識上升到理性認(rèn)識,能培養(yǎng)學(xué)生利用數(shù)形結(jié)合思想解決問題的能力。
根據(jù)教學(xué)大綱要求、新課程標(biāo)準(zhǔn)精神,我確定了三個層面的教學(xué)目標(biāo)。
(1)基礎(chǔ)知識與能力目標(biāo):理解二次函數(shù)的圖像中a、b、c、k、h的作用,能熟練地對二次函數(shù)的一般式進(jìn)行配方,會對圖像進(jìn)行平移變換,領(lǐng)會研究二次函數(shù)圖像的方法,培養(yǎng)學(xué)生運用數(shù)形結(jié)合與等價轉(zhuǎn)化等數(shù)學(xué)思想方法解決問題的能力,提高運算和作圖能力;
(2)過程和方法:讓學(xué)生經(jīng)歷作圖、觀察、比較、歸納的學(xué)習(xí)過程,使學(xué)生掌握類比、化歸等數(shù)學(xué)思想方法,養(yǎng)成即能自主探索,又能合作探究的良好學(xué)習(xí)習(xí)慣;
(3)情感、態(tài)度和價值觀:在教學(xué)中滲透美的教育,滲透數(shù)形結(jié)合的思想,讓學(xué)生在數(shù)學(xué)活動中學(xué)會與人相處,感受探索與創(chuàng)造,體驗成功的喜悅。
重點是二次函數(shù)各系數(shù)對圖像和形狀的影響,利用二次函數(shù)圖像平移的特例分析過程,培養(yǎng)學(xué)生數(shù)形結(jié)合的思想和劃歸思想。難點是圖像的平移變換,關(guān)鍵是二次函數(shù)頂點式中h、k的正負(fù)取值對函數(shù)圖像平移變換的影響。
數(shù)學(xué)是發(fā)展學(xué)生思維、培養(yǎng)學(xué)生良好意志品質(zhì)和美好情感的重要學(xué)科,在教學(xué)中,我們不僅要使學(xué)生獲得知識、提高解題能力,還要讓學(xué)生在教師的啟發(fā)引導(dǎo)下學(xué)會學(xué)習(xí)、樂于學(xué)習(xí),感受數(shù)學(xué)學(xué)科的人文思想,感受數(shù)學(xué)的自然美。為了更好地體現(xiàn)在課堂教學(xué)中"教師為主導(dǎo),學(xué)生為主體"的教學(xué)關(guān)系和"以人為本,以學(xué)定教"的教學(xué)理念,在本節(jié)課的教學(xué)過程中,我將緊緊圍繞教師組織——啟發(fā)引導(dǎo),學(xué)生探究——交流發(fā)現(xiàn),組織開展教學(xué)活動。為此,我設(shè)計了5個環(huán)節(jié):①創(chuàng)設(shè)情景——引入新課;②交流探究——發(fā)現(xiàn)規(guī)律;③啟發(fā)引導(dǎo)——形成結(jié)論;④訓(xùn)練小結(jié)——深化鞏固;⑤思維拓展——提高能力。這五個環(huán)節(jié)環(huán)環(huán)相扣、層層深入,注重關(guān)注整個過程和全體學(xué)生,充分調(diào)動了學(xué)生的參與性。
教學(xué)應(yīng)充分考慮學(xué)生的情感和需要,想方設(shè)法讓學(xué)生在學(xué)習(xí)中樹立信心,感受學(xué)習(xí)樂趣。根據(jù)教材內(nèi)容,我首先出示一道題目,以需要畫y=2x?圖像為引子,讓學(xué)生畫y=x?和y=2x?圖像,進(jìn)而比較這兩個圖像的相同點和不同點為背景切入,一方面讓學(xué)生總結(jié)復(fù)習(xí)已有知識,為后面的學(xué)習(xí)做好鋪墊,另一方面,使學(xué)生在自己熟悉的問題中首先獲得解題成功的快樂體驗,最后引導(dǎo)學(xué)生總結(jié)出函數(shù)y=x?與y=ax?圖像的關(guān)系,得出本節(jié)課的第一個知識點,即二次項系數(shù)a決定圖像的開口方向和開口大小。
由淺入深,下面讓學(xué)生畫y=2x?,y=2(x+1)?與y=2(x+1)?+3的圖像并尋找它們的聯(lián)系,再讓學(xué)生與多媒體課件展示出的圖像進(jìn)行對比,最后總結(jié)出圖像的變換規(guī)律:a決定開口方向、h決定左右平移、k決定上下平移。由于二次函數(shù)的重要性,本節(jié)課我以考題為背景引入新課,可以提高學(xué)生的學(xué)習(xí)興趣,吸引學(xué)生的課堂注意力,可以讓學(xué)生實實在在感受到高考題就在我們的課本中,就在我們平常的練習(xí)中。
從特別到一般是我們發(fā)現(xiàn)問題、尋求規(guī)律、揭示本質(zhì)最常用的方法之一。讓學(xué)生做出y=2x?與y=2x?+4x-1的圖像,再與課件上的圖像對比并敘述二者之間的位置關(guān)系,得出結(jié)論:若二次函數(shù)的解析式為y=ax?+bx+c,先將其化成y=a(x+h)?+k的形式,從而判斷出y=ax?+bx+c的圖像是如何由y=ax?變換得到的。在課本第42頁例1(1)中要提醒學(xué)生注意,在含有參數(shù)的解析式y(tǒng)=a(x+h)?+k中,頂點坐標(biāo)應(yīng)是(-h,k),而不是(h,k)。所以,例1(1)中二次函數(shù)f(x)頂點的橫坐標(biāo)是4,即-h=4,h=-4,括號里面就是x-4(這里容易出錯)。例1(2)中h、k的值是已知的,只需要確定a的值就可以了。
前面的練習(xí)和例題,基本涵蓋了二次函數(shù)圖像平移變換的各種情況,啟發(fā)并引導(dǎo)了學(xué)生將實例的結(jié)論進(jìn)行總結(jié),得出y=x?到y(tǒng)=ax?,y=ax?到y(tǒng)=a(x+h)?+k,y=ax?到y(tǒng)=ax?+bx+c(其中,a均不為0)的圖像變化過程,即a>0開口向上,a<0開口向下;h正左移,h負(fù)右移;k正上移,k負(fù)下移。
為了鞏固和加深二次函數(shù)y=ax?+bx+c中的a.b.c對圖像的影響,接下來組織學(xué)生進(jìn)行課題練習(xí),完成課本44頁練習(xí)1—3題。上課時間有限,為保證在完成教學(xué)任務(wù)的前提下,讓學(xué)生充分練習(xí)和討論,我一直堅持讓學(xué)生規(guī)范使用演草本。課堂上需要學(xué)生動手演練的地方不急于安排學(xué)生馬上討論,而是讓學(xué)生思考后將自己的答案整齊地寫在演草本上,然后小組內(nèi)四人相互交換進(jìn)行量分,因為是在課堂上,量分標(biāo)準(zhǔn)要簡單,我要求用30分的整分制。用時較短10分,書寫整齊規(guī)范10分,解答正確10分。這個過程中會產(chǎn)生學(xué)生之間的三次競爭:①看誰解的快、用時最短;②看誰書寫的整齊;③看誰做的對。這個自己做和批閱的過程,也是學(xué)生對題目加深理解的過程。量完分后組織學(xué)生對不同解法進(jìn)行探究,這又會產(chǎn)生學(xué)生之間的第四次競爭,看誰的方法簡便,思維更嚴(yán)密。當(dāng)然做題時有的學(xué)生會做的很快,可以讓他們判斷黑板上演示學(xué)生的解題得分情況,這也促進(jìn)在黑板上演示的學(xué)生同下面學(xué)生之間的競爭。這個充滿競爭的過程其實也是教師通過演草本無形引導(dǎo)學(xué)生解決問題、收獲新知的過程,也是一個培養(yǎng)學(xué)生探究精神和思考、比較、辨別能力的過程,使學(xué)生成為學(xué)習(xí)上的主人。這樣每節(jié)課都有競爭,能使學(xué)生發(fā)現(xiàn)自己在學(xué)習(xí)的長處,增強了自己的自信心,切實感受到了學(xué)習(xí)的樂趣,課堂才能真正的活起來??荚囍?,成績必然會逐步提高,能避免現(xiàn)在我們教學(xué)中學(xué)生"考試什么都不會,考完后什么都會"以及閱卷中發(fā)現(xiàn)的學(xué)生書寫凌亂的通病,經(jīng)過長期這樣的練習(xí),每個學(xué)生練就了快思考、求準(zhǔn)確、寫整齊的能力。
5.延伸拓廣——提高能力
課堂教學(xué)既要面對全體學(xué)生,又應(yīng)關(guān)注學(xué)生的個體差異,體現(xiàn)分類推進(jìn),分層教學(xué)原則。為此,我設(shè)計了一個提高練習(xí)題組,共兩道被選題目,以供學(xué)有余力的學(xué)生能夠更好的展示自己的解題能力,取得進(jìn)一步提高。
高中數(shù)學(xué)課件篇二
知識與技能:
理解任意角的概念(包括正角、負(fù)角、零角)與區(qū)間角的概念。
過程與方法:
會建立直角坐標(biāo)系討論任意角,能判斷象限角,會書寫終邊相同角的集合;掌握區(qū)間角的集合的書寫。
情感態(tài)度與價值觀:
1、提高學(xué)生的推理能力;
2、培養(yǎng)學(xué)生應(yīng)用意識。
教學(xué)重點:
任意角概念的理解;區(qū)間角的集合的書寫。
教學(xué)難點:
終邊相同角的集合的表示;區(qū)間角的集合的書寫。
(一)導(dǎo)入新課
1、回顧角的定義
①角的第一種定義是有公共端點的兩條射線組成的圖形叫做角。
②角的第二種定義是角可以看成平面內(nèi)一條射線繞著端點從一個位置旋轉(zhuǎn)到另一個位置所形成的圖形。
(二)教學(xué)新課
1、角的有關(guān)概念:
①角的定義:
角可以看成平面內(nèi)一條射線繞著端點從一個位置旋轉(zhuǎn)到另一個位置所形成的圖形。
②角的名稱:
注意:
⑴在不引起混淆的情況下,“角α”或“∠α”可以簡化成“α”;
⑵零角的終邊與始邊重合,如果α是零角α=0°;
⑶角的概念經(jīng)過推廣后,已包括正角、負(fù)角和零角。
⑤練習(xí):請說出角α、β、γ各是多少度?
2、象限角的概念:
①定義:若將角頂點與原點重合,角的始邊與x軸的非負(fù)半軸重合,那么角的終邊(端點除外)在第幾象限,我們就說這個角是第幾象限角。
例1、如圖⑴⑵中的角分別屬于第幾象限角?
高中數(shù)學(xué)課件篇三
1.知識目標(biāo):研究曲線的切線,從幾何學(xué)的角度了解導(dǎo)數(shù)概念的背景,明確瞬時變化率就是導(dǎo)數(shù),掌握求曲線切線斜率的一般方法。
2.能力目標(biāo):通過嫦娥一號繞月探測衛(wèi)星變軌瞬間的瞬時速度和運動的方向為背景,從極限入手,培養(yǎng)學(xué)生的創(chuàng)新意識和數(shù)形轉(zhuǎn)化能力。
3.情感目標(biāo):通過運動的觀點,體會曲線切線的內(nèi)涵,挖掘數(shù)形關(guān)系,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的熱情。
曲線切線的概念形成,導(dǎo)數(shù)公式的理解和運用。
理解曲線切線的形成是通過逼近的方法得出的。引導(dǎo)學(xué)生在平均變化率的基礎(chǔ)上探求瞬時變化率。
①(大屏幕顯示)嫦娥一號繞月探測衛(wèi)星運行軌跡以及四次變軌的全過程。
②討論問題:()衛(wèi)星在每次變軌的瞬間不僅有瞬時速度,而且要研究它運動的方向。引出本節(jié)課主要研究的課題——曲線的切線。
①(大屏幕顯示)分析衛(wèi)星在變軌瞬間與變軌前的位置關(guān)系,引出曲線的割線。
②由運動的觀點、極限的思想,歸納出曲線切線的概念。以及求曲線切線斜率的一種方法。
①引入增量的概念,在曲線c上取p(x0、y0)及鄰近的一點q(x0+△x,y0+△y),過p、q兩點作割線,分別過p、q作y軸,x軸的垂線相交于點m,設(shè)割線pq的傾斜角β, .
②割線斜率用增量表示的形式不變。(大屏幕顯示) 改變p的鄰近點q的位置、曲線的類型、傾斜角的性質(zhì),發(fā)現(xiàn)tanβ 表示的形式始終不變。左、右鄰近點的討論,為下面說明極限的存在做準(zhǔn)備。
①(大屏幕顯示)由于△x可正可負(fù),
但△x≠0,研究△x無限趨近于0,
用極限的觀點導(dǎo)出曲線切線的斜率。
②討論問題:引導(dǎo)學(xué)生將這一運動過程 轉(zhuǎn)化為已學(xué)的代數(shù)問題。
k==
點評公式,重點強調(diào)平均變化率和瞬時變化率之間的關(guān)系,提出導(dǎo)數(shù)。同時引導(dǎo)學(xué)生歸納出求曲線切線斜率的一般方法和步驟
例:曲線的方程f(x)=x2+1 求此曲線在點p(1,2)處的切線的方程
①已知曲線y=2x2上一點a(1,2),求
(1)點a處的切線的斜率;
(2)點a處的切線的方程。
②求曲線y=x2+1在點p(-2,5)處的切線方程。
p125 第6、7、8、9題
高中數(shù)學(xué)課件篇四
掌握向量的概念、坐標(biāo)表示、運算性質(zhì),做到融會貫通,能應(yīng)用向量的有關(guān)性質(zhì)解決諸如平面幾何、解析幾何等的問題。
向量的性質(zhì)及相關(guān)知識的綜合應(yīng)用。
(一)主要知識:
1、掌握向量的概念、坐標(biāo)表示、運算性質(zhì),做到融會貫通,能應(yīng)用向量的有關(guān)性質(zhì)解決諸如平面幾何、解析幾何等的'問題。
(二)例題分析:略
1、進(jìn)一步熟練有關(guān)向量的運算和證明;能運用解三角形的知識解決有關(guān)應(yīng)用問題,
2、滲透數(shù)學(xué)建模的思想,切實培養(yǎng)分析和解決問題的能力。
略
高中數(shù)學(xué)課件篇五
(1)會用坐標(biāo)法及距離公式證明cα+β;
(2)會用替代法、誘導(dǎo)公式、同角三角函數(shù)關(guān)系式,由cα+β推導(dǎo)cα—β、sα±β、tα±β,切實理解上述公式間的關(guān)系與相互轉(zhuǎn)化;
(3)掌握公式cα±β、sα±β、tα±β,并利用簡單的三角變換,解決求值、化簡三角式、證明三角恒等式等問題。
兩角和與差的正弦、余弦、正切公式
余弦和角公式的推導(dǎo)
1、兩角和的余弦公式是三角函數(shù)一章和、差、倍公式系列的基礎(chǔ)。其公式的證明是用坐標(biāo)法,利用三角函數(shù)定義及平面內(nèi)兩點間的距離公式,把兩角和α+β的余弦,化為單角α、β的三角函數(shù)(證明過程見課本)
2、通過下面各組數(shù)的值的比較:①cos(30°—90°)與cos30°—cos90°②sin(30°+60°)和sin30°+sin60°。我們應(yīng)該得出如下結(jié)論:一般情況下,cos(α±β)≠cosα±cosβ,sin(α±β)≠sinα±sinβ。但不排除一些特例,如sin(0+α)=sin0+sinα=sinα。
3、當(dāng)α、β中有一個是的整數(shù)倍時,應(yīng)首選誘導(dǎo)公式進(jìn)行變形。注意兩角和與差的三角函數(shù)是誘導(dǎo)公式等的基礎(chǔ),而誘導(dǎo)公式是兩角和與差的三角函數(shù)的特例。
4、關(guān)于公式的正用、逆用及變用
高中數(shù)學(xué)課件篇六
【知識與技能】
在掌握圓的標(biāo)準(zhǔn)方程的基礎(chǔ)上,理解記憶圓的一般方程的代數(shù)特征,由圓的一般方程確定圓的圓心半徑,掌握方程x+y+dx+ey+f=0表示圓的條件。
【過程與方法】
通過對方程x+y+dx+ey+f=0表示圓的的條件的探究,學(xué)生探索發(fā)現(xiàn)及分析解決問題的實際能力得到提高。
【情感態(tài)度與價值觀】
滲透數(shù)形結(jié)合、化歸與轉(zhuǎn)化等數(shù)學(xué)思想方法,提高學(xué)生的整體素質(zhì),激勵學(xué)生創(chuàng)新,勇于探索。
【重點】
掌握圓的一般方程,以及用待定系數(shù)法求圓的一般方程。
【難點】
二元二次方程與圓的一般方程及標(biāo)準(zhǔn)圓方程的關(guān)系。
(一)復(fù)習(xí)舊知,引出課題
1、復(fù)習(xí)圓的標(biāo)準(zhǔn)方程,圓心、半徑。
2、提問1:已知圓心為(1,—2)、半徑為2的圓的方程是什么?
【本文地址:http://aiweibaby.com/zuowen/2517856.html】