范文為教學(xué)中作為模范的文章,也常常用來(lái)指寫(xiě)作的模板。常常用于文秘寫(xiě)作的參考,也可以作為演講材料編寫(xiě)前的參考。那么我們?cè)撊绾螌?xiě)一篇較為完美的范文呢?以下是小編為大家收集的優(yōu)秀范文,歡迎大家分享閱讀。
有理數(shù)教學(xué)設(shè)計(jì)人教版篇一
教法:以學(xué)生為主體創(chuàng)設(shè)問(wèn)題情境,通過(guò)設(shè)計(jì)問(wèn)題串,誘導(dǎo)學(xué)生探究、總結(jié)、歸納有理數(shù)的加法法則,并能自主運(yùn)用法則進(jìn)行計(jì)算。重點(diǎn)突出異號(hào)兩數(shù)相加,明確有理數(shù)的加法,名義上是加,但實(shí)際上同號(hào)是加,異號(hào)則要轉(zhuǎn)化成減法。最后將鞏固法則融入游戲中,并將法則編成順口溜,活躍課堂氣氛,讓學(xué)生學(xué)得輕松。
學(xué)法:認(rèn)真聽(tīng)講,積極思考回答老師提出的問(wèn)題,自主分類(lèi)歸納有理數(shù)的加法法則,通過(guò)將法則鞏固融入游戲、順口溜中,讓學(xué)生學(xué)得輕松,樂(lè)于學(xué)習(xí),并提高學(xué)習(xí)的興趣。
1、理解加法的意義。
2、總結(jié)歸納有理數(shù)的加法法則,并能運(yùn)用法則進(jìn)行有理數(shù)的加法運(yùn)算。
3、通過(guò)法則的探索,向?qū)W生滲透分類(lèi)、歸納、轉(zhuǎn)化的數(shù)學(xué)思想。
法則的探索與應(yīng)用
異號(hào)兩數(shù)相加
預(yù)習(xí)教材,填上相應(yīng)的空白,思考并舉出運(yùn)用有理數(shù)加法的實(shí)例。
一、復(fù)習(xí)回顧
1、一個(gè)不為零的有理數(shù)可以看做是由哪兩部分組成的?
2、比較下列各組數(shù)絕對(duì)值哪個(gè)大?
①-22與30;②-與;③-4.5和6
3、小學(xué)里學(xué)過(guò)哪類(lèi)數(shù)的加法?引入負(fù)數(shù)后又該如何進(jìn)行有理數(shù)的加法運(yùn)算呢?
(建立在學(xué)生已有知識(shí)的基礎(chǔ)之上復(fù)習(xí)回顧與本節(jié)課相關(guān)的舊知識(shí)。)
二、新知探究
1、打開(kāi)教材,請(qǐng)一位學(xué)生將他通過(guò)預(yù)習(xí)得到的加法算式說(shuō)出來(lái)寫(xiě)在黑板上,并說(shuō)出該式子表示的實(shí)際意義。
2、你還能舉出類(lèi)似用加法運(yùn)算的實(shí)例嗎?
3、觀察這些算式,從加數(shù)上看你可以將它們分成幾類(lèi)?每一類(lèi)和的符號(hào)與加數(shù)的符號(hào)有何關(guān)系?和的絕對(duì)值與加數(shù)的絕對(duì)值有何關(guān)系?
4、總結(jié)歸納有理數(shù)的加法法則。
突破難點(diǎn):異號(hào)相加好比正數(shù)和負(fù)數(shù)進(jìn)行拔河比賽,誰(shuí)的力量(絕對(duì)值)大,誰(shuí)勝(用誰(shuí)的符號(hào)),結(jié)果考察力量懸殊有多大(較大絕對(duì)值減較小絕對(duì)值)。
(設(shè)置問(wèn)題情境,探究、總結(jié)、歸納法則。對(duì)比了華東師大版教材和北師版教材,都是以數(shù)軸為載體探究法則的,并且這種載體非常有利于理解加法的意義,以前也聽(tīng)過(guò)其他老師上這節(jié)課,用多媒體課件展示向東走、向西走,要么一晃而過(guò),要么總是糾纏不清,法則剛出來(lái),便下課了,所以,我就更換了一種模式,讓學(xué)生先預(yù)習(xí),然后說(shuō)出這些算式的實(shí)際意義更利于理解加法的意義。我認(rèn)為只要理解了加法的意義,應(yīng)該說(shuō)理解法則中“和”的符號(hào)與“和”的絕對(duì)值的由來(lái)更容易一些。)
三、運(yùn)用法則
例:計(jì)算
(1)(+2)+(-11)
(2)(-12)+(+12)
(3)(+20)+(+12)
(4)(- )+(- )
(5)(-3.4)+(+4.3)
(6)(-5.9)+0
思維過(guò)程:一“看”二“定”三“和差”
(主要是通過(guò)設(shè)置一組題目,理解法則,并展現(xiàn)思維過(guò)程“一看、二定、三和差”,規(guī)范學(xué)生的解題過(guò)程)
四、鞏固法則
1、開(kāi)火車(chē)游戲。
第一位同學(xué)說(shuō)一個(gè)算式,第二位同學(xué)說(shuō)答案,第三位同學(xué)接著說(shuō)一個(gè)加法算式,第四位同學(xué)說(shuō)答案,依次類(lèi)推,誰(shuí)卡住,誰(shuí)表演節(jié)目。
2、填數(shù)游戲。
將-8,-6,-4,-2,0,2,4,6,8這9個(gè)數(shù)分別填入右圖的9個(gè)空格中,使得每行的三個(gè)數(shù),每列的三個(gè)數(shù),斜對(duì)角的三個(gè)數(shù)相加均為0
3、思考:兩個(gè)有理數(shù)相加,和一定大于每一個(gè)加數(shù)嗎?
(設(shè)置了兩個(gè)游戲:開(kāi)火車(chē)和填數(shù),另外就是打破了小學(xué)的思維定勢(shì)“和總是大于加數(shù)”,引入負(fù)數(shù)后,是有變化的。設(shè)置問(wèn)題“兩個(gè)有理數(shù)相加,和一定大于每一個(gè)加數(shù)嗎?”讓學(xué)生對(duì)有理數(shù)加法理解的更深一些。)
五、小結(jié)
加法順口溜:有理加減不含糊,同號(hào)異號(hào)分清楚;同號(hào)相加號(hào)相隨,異號(hào)相減號(hào)大絕;相反數(shù)、和為0;碰見(jiàn)0、不變形。
(用一段“順口溜”識(shí)記加法法則)
六、作業(yè)設(shè)計(jì)
1、練習(xí)完成在書(shū)上,習(xí)題1~2完成在作業(yè)本上。
2、在圓圈內(nèi)填上彼此都不相等的數(shù),使得每條線上的三個(gè)數(shù)之和為0。
五、小結(jié):用一段“順口溜”識(shí)記加法法則。
反思:“運(yùn)算能力”是修訂后的課程標(biāo)準(zhǔn)提出的“十大核心概念”之一,而“有理數(shù)加法”是有理數(shù)運(yùn)算的基礎(chǔ),也是實(shí)數(shù)運(yùn)算的基礎(chǔ),也就是一切運(yùn)算的基礎(chǔ),有理數(shù)加法法則是有理數(shù)加法運(yùn)算的準(zhǔn)繩,更是難倒了一大片初學(xué)者,有的同學(xué)學(xué)習(xí)了有理數(shù)的加法法則不但不能敘述法則,反倒連小學(xué)學(xué)過(guò)的非負(fù)數(shù)的加法運(yùn)算也不會(huì)了,如何突破這個(gè)障礙,我認(rèn)為關(guān)鍵還是加法意義的理解,應(yīng)讓學(xué)生置身于現(xiàn)實(shí)情境中搞清楚加法究竟是怎么回事,這樣一來(lái)“和”的符號(hào)的確定與“和”的絕對(duì)值的確定也就是順理成章的事兒了。
對(duì)比了華東師大版教材和北師版教材,都是以數(shù)軸為載體探究法則的,并且這種載體非常有利于理解加法的意義,以前也聽(tīng)過(guò)其他老師上這節(jié)課,用多媒體課件展示向東走、向西走,要么一晃而過(guò),要么總是糾纏不清,法則剛出來(lái),便下課了,所以,我就更換了一種模式,讓學(xué)生先預(yù)習(xí),熟知加法就是連續(xù)兩次變化的總結(jié)果,然后再給這些算式賦予新的實(shí)際意義更利于理解加法的意義。其實(shí),只要理解了加法的意義,應(yīng)該說(shuō)理解法則中“和”的符號(hào)與“和”的絕對(duì)值的'由來(lái)更容易一些,通過(guò)操作,學(xué)生對(duì)于將算式置于實(shí)際情景非常感興趣。
對(duì)于接下來(lái)將算式按加數(shù)分類(lèi),探究和的符號(hào)與加數(shù)符號(hào)的關(guān)系,還有和的絕對(duì)值與加數(shù)絕對(duì)值的關(guān)系都有著濃厚的興趣,尤其是得到“互為相反的兩數(shù)相加和為零”時(shí)就有學(xué)生提到:異號(hào)兩數(shù)相加其實(shí)就是正負(fù)一抵消,余下的部分就是和??磥?lái)只要在課堂上通過(guò)適當(dāng)?shù)囊龑?dǎo)讓學(xué)生自身釋放出琢磨的能量比讓學(xué)生打開(kāi)大腦的錄音系統(tǒng)錄音要好得多。通過(guò)后續(xù)學(xué)習(xí)的考察,學(xué)生對(duì)于加法法則的記憶與應(yīng)用并非停留在表面的記憶上,而是對(duì)法則有了更深層次的理解,也沒(méi)有學(xué)生刻意追求用教材上的句子一字不漏地來(lái)敘述加法法則,他們都能用自己理解的語(yǔ)言來(lái)說(shuō)明到底是為什么。
再思考:這節(jié)課是我調(diào)入新的學(xué)校上的匯報(bào)課,領(lǐng)導(dǎo)還有同事們對(duì)我的課都做出了中肯的點(diǎn)評(píng),最后一位頗有資歷的領(lǐng)導(dǎo)談到:數(shù)學(xué)教學(xué)應(yīng)體現(xiàn)其本質(zhì),用“數(shù)軸”探究有理數(shù)的的加法更能體現(xiàn)加法的本質(zhì),授課者應(yīng)做好合理的應(yīng)用。換言之,本節(jié)課未能很好體現(xiàn)加法的本質(zhì)。個(gè)人思考再三認(rèn)為加法的本質(zhì)就是“連續(xù)兩次變化的總結(jié)果”,用數(shù)軸表示向東走向西走,還是舉生活中的盈虧實(shí)例等都體現(xiàn)了加法的本質(zhì)。新舊版本的華師大教材都是以“數(shù)軸”為載體探究有理數(shù)加法法則的,這種載體的應(yīng)用主要凸顯了直觀,變化的結(jié)果一清二楚,也體現(xiàn)了數(shù)與形的有效結(jié)合,無(wú)疑是一種很好而有效的載體,但我們?yōu)槭裁床辉诮滩默F(xiàn)有載體的基礎(chǔ)上做一些突破,讓學(xué)生從多角度多方位理解加法運(yùn)算呢!其實(shí)現(xiàn)實(shí)生活中的“盈”與“虧”生活氣息濃郁,且學(xué)生熟知,會(huì)吸引眾多的學(xué)生參與,“同號(hào)相加”就是“盈盈”型或“虧虧”型,“異號(hào)兩數(shù)相加”就是“盈虧”型,(+5)+(-5)為什么是0?顯然盈虧一樣,最終兜里沒(méi)錢(qián)!而(+3)+(-10)為什么結(jié)果取“-”且用“10-3”,盈少虧多唄!最終還是虧了7元!將加法置身于這樣的情景更有利于理解加法的意義,總結(jié)加法法則,理解加法法則。
有理數(shù)教學(xué)設(shè)計(jì)人教版篇二
掌握有理數(shù)乘法法則,能利用乘法法則正確進(jìn)行有理數(shù)乘法運(yùn)算。
經(jīng)歷探索、歸納有理數(shù)乘法法則的過(guò)程,發(fā)展學(xué)生觀察、歸納、猜測(cè)、驗(yàn)證等能力。
通過(guò)學(xué)生自己探索出法則,讓學(xué)生獲得成功的喜悅。
運(yùn)用有理數(shù)乘法法則正確進(jìn)行計(jì)算。
有理數(shù)乘法法則的探索過(guò)程,符號(hào)法則及對(duì)法則的理解。
1、 創(chuàng)設(shè)問(wèn)題情景,激發(fā)學(xué)生的求知欲望,導(dǎo)入新課。
教師:由于長(zhǎng)期干旱,水庫(kù)放水抗旱。每天放水2米,已經(jīng)放了3天,現(xiàn)在水深20米,問(wèn)放水抗旱前水庫(kù)水深多少米?
學(xué)生:26米。
教師:能寫(xiě)出算式嗎?學(xué)生:……
教師:這涉及有理數(shù)乘法運(yùn)算法則,正是我們今天需要討論的問(wèn)題
2、 小組探索、歸納法則
(1)教師出示以下問(wèn)題,學(xué)生以組為單位探索。
以原點(diǎn)為起點(diǎn),規(guī)定向東的方向?yàn)檎较?,向西的方向?yàn)樨?fù)方向。
① 2 ×3
2看作向東運(yùn)動(dòng)2米,×3看作向原方向運(yùn)動(dòng)3次。
結(jié)果:向 運(yùn)動(dòng) 米
2 ×3=
② -2 ×3
-2看作向西運(yùn)動(dòng)2米,×3看作向原方向運(yùn)動(dòng)3次。
結(jié)果:向 運(yùn)動(dòng) 米
-2 ×3=
③ 2 ×(-3)
2看作向東運(yùn)動(dòng)2米,×(-3)看作向反方向運(yùn)動(dòng)3次。
結(jié)果:向 運(yùn)動(dòng) 米
2 ×(-3)=
④ (-2) ×(-3)
-2看作向西運(yùn)動(dòng)2米,×(-3)看作向反方向運(yùn)動(dòng)3次。
結(jié)果:向 運(yùn)動(dòng) 米
(-2) ×(-3)=
(2)學(xué)生歸納法則
①符號(hào):在上述4個(gè)式子中,我們只看符號(hào),有什么規(guī)律?
(+)×(+)=( ) 同號(hào)得
(-)×(+)=( ) 異號(hào)得
(+)×(-)=( ) 異號(hào)得
(-)×(-)=( ) 同號(hào)得
②積的絕對(duì)值等于 。
③任何數(shù)與零相乘,積仍為 。
(3)師生共同用文字?jǐn)⑹鲇欣頂?shù)乘法法則。
3、運(yùn)用法則計(jì)算,鞏固法則。
(1)教師按課本p75例1板書(shū),要求學(xué)生述說(shuō)每一步理由。
(2)引導(dǎo)學(xué)生觀察、分析例子中兩因數(shù)的關(guān)系,得出兩個(gè)有理數(shù)互為倒數(shù),它們的積為 。
(3)學(xué)生做練習(xí),教師評(píng)析。
(4)教師引導(dǎo)學(xué)生做例題,讓學(xué)生說(shuō)出每步法則,使之進(jìn)一步熟悉法則,同時(shí)讓學(xué)生總結(jié)出多因數(shù)相乘的符號(hào)法則。
【本文地址:http://www.aiweibaby.com/zuowen/3046564.html】