2023年高二數(shù)學(xué)知識(shí)點(diǎn)及公式 高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)(大全11篇)

格式:DOC 上傳日期:2023-09-23 08:33:06
2023年高二數(shù)學(xué)知識(shí)點(diǎn)及公式 高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)(大全11篇)
時(shí)間:2023-09-23 08:33:06     小編:QJ墨客

每個(gè)人都曾試圖在平淡的學(xué)習(xí)、工作和生活中寫一篇文章。寫作是培養(yǎng)人的觀察、聯(lián)想、想象、思維和記憶的重要手段。范文書寫有哪些要求呢?我們?cè)鯓硬拍軐懞靡黄段哪??接下?lái)小編就給大家介紹一下優(yōu)秀的范文該怎么寫,我們一起來(lái)看一看吧。

高二數(shù)學(xué)知識(shí)點(diǎn)及公式篇一

【內(nèi)容解讀】了解向量的實(shí)際背景,掌握向量、零向量、平行向量、共線向量、單位向量、相等向量等概念,理解向量的幾何表示,掌握平面向量的基本定理。

注意對(duì)向量概念的理解,向量是可以自由移動(dòng)的,平移后所得向量與原向量相同;兩個(gè)向量無(wú)法比較大小,它們的??杀容^大小。

【內(nèi)容解讀】向量的運(yùn)算要求掌握向量的加減法運(yùn)算,會(huì)用平行四邊形法則、三角形法則進(jìn)行向量的加減運(yùn)算;掌握實(shí)數(shù)與向量的積運(yùn)算,理解兩個(gè)向量共線的含義,會(huì)判斷兩個(gè)向量的平行關(guān)系;掌握向量的數(shù)量積的運(yùn)算,體會(huì)平面向量的數(shù)量積與向量投影的關(guān)系,并理解其幾何意義,掌握數(shù)量積的坐標(biāo)表達(dá)式,會(huì)進(jìn)行平面向量積的運(yùn)算,能運(yùn)用數(shù)量積表示兩個(gè)向量的夾角,會(huì)用向量積判斷兩個(gè)平面向量的垂直關(guān)系。

【命題規(guī)律】命題形式主要以選擇、填空題型出現(xiàn),難度不大,考查重點(diǎn)為模和向量夾角的定義、夾角公式、向量的坐標(biāo)運(yùn)算,有時(shí)也會(huì)與其它內(nèi)容相結(jié)合。

【內(nèi)容解讀】掌握線段的定比分點(diǎn)和中點(diǎn)坐標(biāo)公式,并能熟練應(yīng)用,求點(diǎn)分有向線段所成比時(shí),可借助圖形來(lái)幫助理解。

【命題規(guī)律】重點(diǎn)考查定義和公式,主要以選擇題或填空題型出現(xiàn),難度一般。由于向量應(yīng)用的廣泛性,經(jīng)常也會(huì)與三角函數(shù),解析幾何一并考查,若出現(xiàn)在解答題中,難度以中檔題為主,偶爾也以難度略高的題目。

【內(nèi)容解讀】向量與三角函數(shù)的綜合問(wèn)題是高考經(jīng)常出現(xiàn)的問(wèn)題,考查了向量的知識(shí),三角函數(shù)的知識(shí),達(dá)到了高考中試題的覆蓋面的要求。

【命題規(guī)律】命題以三角函數(shù)作為坐標(biāo),以向量的坐標(biāo)運(yùn)算或向量與解三角形的內(nèi)容相結(jié)合,也有向量與三角函數(shù)圖象平移結(jié)合的問(wèn)題,屬中檔偏易題。

【內(nèi)容解讀】平面向量與函數(shù)交匯的問(wèn)題,主要是向量與二次函數(shù)結(jié)合的問(wèn)題為主,要注意自變量的取值范圍。

【命題規(guī)律】命題多以解答題為主,屬中檔題。

【內(nèi)容解讀】向量的坐標(biāo)表示實(shí)際上就是向量的代數(shù)表示.在引入向量的坐標(biāo)表示后,使向量之間的運(yùn)算代數(shù)化,這樣就可以將“形”和“數(shù)”緊密地結(jié)合在一起.因此,許多平面幾何問(wèn)題中較難解決的問(wèn)題,都可以轉(zhuǎn)化為大家熟悉的代數(shù)運(yùn)算的論證.也就是把平面幾何圖形放到適當(dāng)?shù)淖鴺?biāo)系中,賦予幾何圖形有關(guān)點(diǎn)與平面向量具體的坐標(biāo),這樣將有關(guān)平面幾何問(wèn)題轉(zhuǎn)化為相應(yīng)的代數(shù)運(yùn)算和向量運(yùn)算,從而使問(wèn)題得到解決.

【命題規(guī)律】命題多以解答題為主,屬中等偏難的試題。

高二數(shù)學(xué)知識(shí)點(diǎn)及公式篇二

在自然數(shù)(0和正整數(shù))的范圍內(nèi),

任何正整數(shù)都是0的約數(shù)。

4的正約數(shù)有:1、2、4。

6的正約數(shù)有:1、2、3、6。

10的正約數(shù)有:1、2、5、10。

12的正約數(shù)有:1、2、3、4、6、12。

15的正約數(shù)有:1、3、5、15。

18的正約數(shù)有:1、2、3、6、9、18。

20的正約數(shù)有:1、2、4、5、10、20。

注意:一個(gè)數(shù)的約數(shù)必然包括1及其本身。

2、約數(shù)的個(gè)數(shù)怎么求

要用到約數(shù)個(gè)數(shù)定理

需要指出來(lái)的是,a1,a2,a3……都是a的質(zhì)因數(shù)。r1,r2,r3……是a1,a2,a3……的指數(shù)。

比如,360=2^3_3^2_5(^是次方的意思)

所以個(gè)數(shù)是(3+1)_(2+1)_(1+1)=24個(gè)

高二數(shù)學(xué)知識(shí)點(diǎn)及公式篇三

(1)在具體情境中,了解隨機(jī)事件發(fā)生的不確定性和頻率的穩(wěn)定性,進(jìn)一步了解概率的意義以及頻率與概率的區(qū)別。

(2)通過(guò)實(shí)例,了解兩個(gè)互斥事件的概率加法公式。

(3)通過(guò)實(shí)例,理解古典概型及其概率計(jì)算公式,會(huì)用列舉法計(jì)算一些隨機(jī)事件所含的基本事件數(shù)及事件發(fā)生的概率。

(4)了解隨機(jī)數(shù)的意義,能運(yùn)用模擬方法(包括計(jì)算器產(chǎn)生隨機(jī)數(shù)來(lái)進(jìn)行模擬)估計(jì)概率,初步體會(huì)幾何概型的意義(參見(jiàn)例3)。

(5)通過(guò)閱讀材料,了解人類認(rèn)識(shí)隨機(jī)現(xiàn)象的過(guò)程。

高二數(shù)學(xué)知識(shí)點(diǎn)及公式篇四

1、圓的標(biāo)準(zhǔn)方程:

圓心為a(a,b),半徑為r的圓的方程

2、點(diǎn)與圓的關(guān)系的判斷方法:(1),點(diǎn)在圓外(2),點(diǎn)在圓上(3),點(diǎn)在圓內(nèi)

4.1.2圓的一般方程

1、圓的一般方程:

2、圓的一般方程的特點(diǎn):

(1)①x2和y2的系數(shù)相同,不等于0.

②沒(méi)有xy這樣的二次項(xiàng).

(2)圓的一般方程中有三個(gè)特定的系數(shù)d、e、f,因之只要求出這三個(gè)系數(shù),圓的方程就確定了.

(3)、與圓的標(biāo)準(zhǔn)方程相比較,它是一種特殊的二元二次方程,代數(shù)特征明顯,圓的標(biāo)準(zhǔn)方程則指出了圓心坐標(biāo)與半徑大小,幾何特征較明顯。

4.2.1圓與圓的位置關(guān)系

1、用點(diǎn)到直線的距離來(lái)判斷直線與圓的位置關(guān)系.

4.2.2圓與圓的位置關(guān)系

4.2.3直線與圓的方程的應(yīng)用

1、利用平面直角坐標(biāo)系解決直線與圓的位置關(guān)系;

2、過(guò)程與方法

用坐標(biāo)法解決幾何問(wèn)題的步驟:

第二步:通過(guò)代數(shù)運(yùn)算,解決代數(shù)問(wèn)題;

第三步:將代數(shù)運(yùn)算結(jié)果“翻譯”成幾何結(jié)論.

4.3.1空間直角坐標(biāo)系

4.3.2空間兩點(diǎn)間的距離公式

高二數(shù)學(xué)知識(shí)點(diǎn)及公式篇五

表示求解某一問(wèn)題的數(shù)據(jù)通路。同時(shí)規(guī)定了處理的主要階段和所有的各種數(shù)據(jù)媒體。

數(shù)據(jù)流程圖包括:

a 指明數(shù)據(jù)存在的數(shù)據(jù)符號(hào),這些數(shù)據(jù)符號(hào)也可能只能改數(shù)據(jù)所使用的媒體。

b 指明對(duì)數(shù)據(jù)執(zhí)行的處理的處理符號(hào),這些符號(hào)也可能指明該處理所用到的機(jī)器功能。

c 指明幾個(gè)處理和數(shù)據(jù)媒體之間的數(shù)據(jù)流的流線符號(hào)。

d 便于讀寫數(shù)據(jù)流程圖的特殊符號(hào)。

在處理符號(hào)的前后都應(yīng)該是數(shù)據(jù)符號(hào)。數(shù)據(jù)流程圖以數(shù)據(jù)符號(hào)開(kāi)始和結(jié)束。

表示程序中的操作順序。

a 指明實(shí)際處理操作的處理符號(hào),它包括根據(jù)邏輯條件確定要執(zhí)行的.路徑的符號(hào)。

b 指明控制流的流線符號(hào)

c 便于讀、寫程序流程圖的特殊符號(hào)

系統(tǒng)流程圖表示系統(tǒng)的操作控制和數(shù)據(jù)流。

a 指明數(shù)據(jù)存在的數(shù)據(jù)符號(hào),這些數(shù)據(jù)符號(hào)也可指明該數(shù)據(jù)所使用的媒體。

b 定義要執(zhí)行的邏輯路徑以及指明對(duì)數(shù)據(jù)執(zhí)行的操作的處理符號(hào)

c 指明個(gè)處理和(或)數(shù)據(jù)媒體間數(shù)據(jù)流的流線符號(hào)。

d 便于讀、寫系統(tǒng)流程圖的特殊符號(hào)

高二數(shù)學(xué)知識(shí)點(diǎn)及公式篇六

高中的數(shù)學(xué)有選修,雖然是選修,但是高考還是會(huì)考的,所以我們還是得學(xué)好這部分內(nèi)容。小編整理了相關(guān)資料,希望能幫助到您。

真命題:判斷為真的語(yǔ)句.

假命題:判斷為假的語(yǔ)句.

2、“若,則”形式的命題中的稱為命題的條件,稱為命題的結(jié)論.

3、對(duì)于兩個(gè)命題,如果一個(gè)命題的條件和結(jié)論分別是另一個(gè)命題的結(jié)論和條件,則這兩個(gè)命題稱為互逆命題.其中一個(gè)命題稱為原命題,另一個(gè)稱為原命題的逆命題.

若原命題為“若,則”,它的逆命題為“若,則”.

4、對(duì)于兩個(gè)命題,如果一個(gè)命題的條件和結(jié)論恰好是另一個(gè)命題的條件的否定和結(jié)論的否定,則這兩個(gè)命題稱為互否命題.中一個(gè)命題稱為原命題,另一個(gè)稱為原命題的否命題.

若原命題為“若,則”,則它的否命題為“若,則”.

5、對(duì)于兩個(gè)命題,如果一個(gè)命題的條件和結(jié)論恰好是另一個(gè)命題的結(jié)論的否定和條件的否定,則這兩個(gè)命題稱為互為逆否命題.其中一個(gè)命題稱為原命題,另一個(gè)稱為原命題的逆否命題.

若原命題為“若,則”,則它的否命題為“若,則”.

原命題

逆命題

否命題

逆否命題

四種命題的真假性之間的關(guān)系:

兩個(gè)命題互為逆否命題,它們有相同的真假性;

兩個(gè)命題為互逆命題或互否命題,它們的真假性沒(méi)有關(guān)系.

7、若,則是的充分條件,是的必要條件.

若,則是的充要條件(充分必要條件).

8、用聯(lián)結(jié)詞“且”把命題和命題聯(lián)結(jié)起來(lái),得到一個(gè)新命題,記作.

當(dāng)、都是真命題時(shí),是真命題;當(dāng)、兩個(gè)命題中有一個(gè)命題是假命題時(shí),是假命題.

用聯(lián)結(jié)詞“或”把命題和命題聯(lián)結(jié)起來(lái),得到一個(gè)新命題,記作.

當(dāng)、兩個(gè)命題中有一個(gè)命題是真命題時(shí),是真命題;當(dāng)、兩個(gè)命題都是假命題時(shí),是假命題.

對(duì)一個(gè)命題全盤否定,得到一個(gè)新命題,記作.

若是真命題,則必是假命題;若是假命題,則必是真命題.

9、短語(yǔ)“對(duì)所有的”、“對(duì)任意一個(gè)”在邏輯中通常稱為全稱量詞,用“”表示.

含有全稱量詞的命題稱為全稱命題.

全稱命題“對(duì)中任意一個(gè),有成立”,記作“,”.

短語(yǔ)“存在一個(gè)”、“至少有一個(gè)”在邏輯中通常稱為存在量詞,用“”表示.

含有存在量詞的命題稱為特稱命題.

特稱命題“存在中的一個(gè),使成立”,記作“,”.

10、全稱命題:,,它的否定:,.全稱命題的否定是特稱命題.

12、橢圓的幾何性質(zhì):

焦點(diǎn)的位置

焦點(diǎn)在

軸上

焦點(diǎn)在

軸上

圖形

?

?

標(biāo)準(zhǔn)方程

?

?

范圍

頂點(diǎn)

、

、

、

軸長(zhǎng)

短軸的長(zhǎng)

長(zhǎng)軸的長(zhǎng)

焦點(diǎn)

、

焦距

?

對(duì)稱性

關(guān)于

軸、軸、原點(diǎn)對(duì)稱

離心率

?

準(zhǔn)線方程

#formatimgid_3#

?

?

?

13、設(shè)是橢圓上任一點(diǎn),點(diǎn)到對(duì)應(yīng)準(zhǔn)線的距離為,點(diǎn)到對(duì)應(yīng)準(zhǔn)線的距離為,則.

14、平面內(nèi)與兩個(gè)定點(diǎn),的距離之差的絕對(duì)值等于常數(shù)(小于)的點(diǎn)的軌跡稱為雙曲線.這兩個(gè)定點(diǎn)稱為雙曲線的焦點(diǎn),兩焦點(diǎn)的距離稱為雙曲線的焦距.

15、雙曲線的幾何性質(zhì):

焦點(diǎn)的位置

焦點(diǎn)在

軸上

焦點(diǎn)在

軸上

圖形

?

?

標(biāo)準(zhǔn)方程

?

?

范圍

或,

或,

頂點(diǎn)

、

軸長(zhǎng)

虛軸的長(zhǎng)

實(shí)軸的長(zhǎng)

焦點(diǎn)

、

、

焦距

?

對(duì)稱性

關(guān)于

軸、軸對(duì)稱,關(guān)于原點(diǎn)中心對(duì)稱

離心率

?

準(zhǔn)線方程

?

?

漸近線方程

?

?

17、設(shè)是雙曲線上任一點(diǎn),點(diǎn)到對(duì)應(yīng)準(zhǔn)線的距離為,點(diǎn)到對(duì)應(yīng)準(zhǔn)線的距離為,則.

18、平面內(nèi)與一個(gè)定點(diǎn)和一條定直線的距離相等的點(diǎn)的軌跡稱為拋物線.定點(diǎn)稱為拋物線的焦點(diǎn),定直線稱為拋物線的準(zhǔn)線.

19、過(guò)拋物線的焦點(diǎn)作垂直于對(duì)稱軸且交拋物線于、兩點(diǎn)的線段,稱為拋物線的“通徑”,即.

20、焦半徑公式:

若點(diǎn)在拋物線上,焦點(diǎn)為,則;

若點(diǎn)在拋物線上,焦點(diǎn)為,則;

若點(diǎn)在拋物線上,焦點(diǎn)為,則;

若點(diǎn)在拋物線上,焦點(diǎn)為,則.

標(biāo)準(zhǔn)方程

?

?

?

?

圖形

?

?

?

?

頂點(diǎn)

?

對(duì)稱軸

焦點(diǎn)

?

?

?

?

準(zhǔn)線方程

?

?

?

?

離心率

?

范圍

?

?

?

?

?

22、空間向量的概念:

在空間,具有大小和方向的量稱為空間向量.

向量可用一條有向線段來(lái)表示.有向線段的長(zhǎng)度表示向量的大小,箭頭所指的方向表示向量的方向.

向量的大小稱為向量的模(或長(zhǎng)度),記作.

模(或長(zhǎng)度)為的向量稱為零向量;模為的向量稱為單位向量.

與向量長(zhǎng)度相等且方向相反的向量稱為的相反向量,記作.

方向相同且模相等的向量稱為相等向量.

23、空間向量的加法和減法:

求兩個(gè)向量和的運(yùn)算稱為向量的加法,它遵循平行四邊形法則.即:在空間以同一點(diǎn)為起點(diǎn)的兩個(gè)已知向量、為鄰邊作平行四邊形,則以起點(diǎn)的對(duì)角線就是與的和,這種求向量和的方法,稱為向量加法的平行四邊形法則.

求兩個(gè)向量差的運(yùn)算稱為向量的減法,它遵循三角形法則.即:在空間任取一點(diǎn),作,,則.

24、實(shí)數(shù)與空間向量的乘積是一個(gè)向量,稱為向量的數(shù)乘運(yùn)算.當(dāng)時(shí),與方向相同;當(dāng)時(shí),與方向相反;當(dāng)時(shí),為零向量,記為.的長(zhǎng)度是的長(zhǎng)度的倍.

25、設(shè),為實(shí)數(shù),,是空間任意兩個(gè)向量,則數(shù)乘運(yùn)算滿足分配律及結(jié)合律.

分配律:;結(jié)合律:.

27、向量共線的充要條件:對(duì)于空間任意兩個(gè)向量,,的充要條件是存在實(shí)數(shù),使.

28、平行于同一個(gè)平面的向量稱為共面向量.

29、向量共面定理:空間一點(diǎn)位于平面內(nèi)的充要條件是存在有序?qū)崝?shù)對(duì),,使;或?qū)臻g任一定點(diǎn),有;或若四點(diǎn),,,共面,則.

30、已知兩個(gè)非零向量和,在空間任取一點(diǎn),作,,則稱為向量,的夾角,記作.兩個(gè)向量夾角的取值范圍是:.

32、已知兩個(gè)非零向量和,則稱為,的數(shù)量積,記作.即.零向量與任何向量的數(shù)量積為.

33、等于的長(zhǎng)度與在的方向上的投影的乘積.

34、若,為非零向量,為單位向量,則有;

;,,;

;.

35、向量數(shù)乘積的運(yùn)算律:;;

.

36、若,,是空間三個(gè)兩兩垂直的向量,則對(duì)空間任一向量,存在有序?qū)崝?shù)組,使得,稱,,為向量在,,上的分量.

37、空間向量基本定理:若三個(gè)向量,,不共面,則對(duì)空間任一向量,存在實(shí)數(shù)組,使得.

38、若三個(gè)向量,,不共面,則所有空間向量組成的集合是

.這個(gè)集合可看作是由向量,,生成的,

稱為空間的一個(gè)基底,,,稱為基向量.空間任意三個(gè)不共面的向量都可以構(gòu)成空間的一個(gè)基底.

39、設(shè),,為有公共起點(diǎn)的三個(gè)兩兩垂直的單位向量(稱它們?yōu)閱挝徽换?,以,,的公共起點(diǎn)為原點(diǎn),分別以,,的方向?yàn)檩S,軸,軸的正方向建立空間直角坐標(biāo)系.則對(duì)于空間任意一個(gè)向量,一定可以把它平移,使它的起點(diǎn)與原點(diǎn)重合,得到向量.存在有序?qū)崝?shù)組,使得.把,,稱作向量在單位正交基底,,下的坐標(biāo),記作.此時(shí),向量的坐標(biāo)是點(diǎn)在空間直角坐標(biāo)系中的坐標(biāo).

40、設(shè),,則.

.

.

若、為非零向量,則.

若,則.

.

.

,,則.

42、空間中任意一條直線的位置可以由上一個(gè)定點(diǎn)以及一個(gè)定方向確定.點(diǎn)是直線上一點(diǎn),向量表示直線的方向向量,則對(duì)于直線上的任意一點(diǎn),有,這樣點(diǎn)和向量不僅可以確定直線的位置,還可以具體表示出直線上的任意一點(diǎn).

43、空間中平面的位置可以由內(nèi)的兩條相交直線來(lái)確定.設(shè)這兩條相交直線相交于點(diǎn),它們的方向向量分別為,.為平面上任意一點(diǎn),存在有序?qū)崝?shù)對(duì),使得,這樣點(diǎn)與向量,就確定了平面的位置.

44、直線垂直,取直線的方向向量,則向量稱為平面的法向量.

45、若空間不重合兩條直線,的方向向量分別為,,則

,.

,.

47、若空間不重合的兩個(gè)平面,的法向量分別為,,則

,.

48、設(shè)異面直線,的夾角為,方向向量為,,其夾角為,則有

.

49、設(shè)直線的方向向量為,平面的法向量為,與所成的角為,與的夾角為,則有.

50、設(shè),是二面角的兩個(gè)面,的法向量,則向量,的夾角(或其補(bǔ)角)就是二面角的平面角的大小.若二面角的平面角為,則.

52、在直線上找一點(diǎn),過(guò)定點(diǎn)且垂直于直線的向量為,則定點(diǎn)到直線的距離為.

53、點(diǎn)是平面外一點(diǎn),是平面內(nèi)的一定點(diǎn),為平面的一個(gè)法向量,則點(diǎn)到平面的距離為.

高二數(shù)學(xué)選修2-1知識(shí)點(diǎn)

高二數(shù)學(xué)知識(shí)點(diǎn)及公式篇七

1.橢圓

橢圓的定義是橢圓章節(jié)的基礎(chǔ)內(nèi)容,高考對(duì)本節(jié)內(nèi)容的考查可能仍然將以求橢圓的方程和研究橢圓的性質(zhì)為主,兩種題型均有可能出現(xiàn).橢圓方面的知識(shí)與向量等知識(shí)的綜合考查命題趨勢(shì)較強(qiáng)。

2.雙曲線

標(biāo)準(zhǔn)方程的求法:雙曲線標(biāo)準(zhǔn)方程最常用的兩種方法是定義法和待定系數(shù)法.利用定義法求解,首先要熟悉雙曲線的定義,只要知道雙曲線的焦點(diǎn)和雙曲線上的任意一點(diǎn)的坐標(biāo)都可以運(yùn)用定義法求解其標(biāo)準(zhǔn)方程;解法二是利用待定系數(shù)法求解,是求雙曲線方程的根本方法之一,其思想是根據(jù)題目中的條件確定雙曲線方程中的系數(shù)a,b,主要是解方程組;解法三是利用共焦點(diǎn)曲線系方程求解,其要點(diǎn)是根據(jù)題目中的一個(gè)條件寫出含一個(gè)參數(shù)的共焦點(diǎn)的二次曲線系方程,再根據(jù)另外一個(gè)條件求出這個(gè)參數(shù).

3.拋物線

1)利用已知條件求拋物線方程,一般有兩種方法:待定系數(shù)法和軌跡法。

2)韋達(dá)定理的熟練運(yùn)用,可以防止運(yùn)算復(fù)雜的焦點(diǎn)坐標(biāo),巧妙利用拋物線的性質(zhì)進(jìn)行解題。

3)焦點(diǎn)弦的幾何性質(zhì)是答題中容易忽略的問(wèn)題,在復(fù)雜的求解拋物線方程中,運(yùn)用好這方面的知識(shí)能夠少走很多彎路。

用點(diǎn)差法解圓錐曲線的中點(diǎn)弦問(wèn)題

1.空間幾何體的考查主要以其識(shí)別和應(yīng)用為主,以填空題的形式出現(xiàn),分值大約在5分。對(duì)空間幾何體的形狀、位置關(guān)系、數(shù)量特征、表面積和體積的命題需要加以關(guān)注。

2.球的面積和體積:計(jì)算球的面積和體積就要求出球的半徑,在具體的空間幾何體中,首先要確定球心的位置,這樣才能根據(jù)已知數(shù)據(jù)求出半徑,除球以外的空間幾何體在求體積時(shí)都離不開(kāi)”高“,要注意使用線面垂直的相關(guān)定理確定高線。

高二數(shù)學(xué)知識(shí)點(diǎn)及公式篇八

數(shù)列:

1.數(shù)列的有關(guān)概念:

(1)數(shù)列:按照一定次序排列的一列數(shù)。數(shù)列是有序的。數(shù)列是定義在自然數(shù)n_它的有限子集{1,2,3,…,n}上的函數(shù)。

(2)通項(xiàng)公式:數(shù)列的第n項(xiàng)an與n之間的函數(shù)關(guān)系用一個(gè)公式來(lái)表示,這個(gè)公式即是該數(shù)列的通項(xiàng)公式。如:。

(3)遞推公式:已知數(shù)列{an}的第1項(xiàng)(或前幾項(xiàng)),且任一項(xiàng)an與他的前一項(xiàng)an-1(或前幾項(xiàng))可以用一個(gè)公式來(lái)表示,這個(gè)公式即是該數(shù)列的遞推公式。

如:。

2.數(shù)列的表示方法:

(1)列舉法:如1,3,5,7,9,…(2)圖象法:用(n,an)孤立點(diǎn)表示。

(3)解析法:用通項(xiàng)公式表示。(4)遞推法:用遞推公式表示。

3.數(shù)列的分類:

4.數(shù)列{an}及前n項(xiàng)和之間的關(guān)系:

高二數(shù)學(xué)知識(shí)點(diǎn)及公式篇九

在第一輪復(fù)習(xí)的過(guò)程中,心浮氣躁是一個(gè)非常普遍的現(xiàn)象。這主要是因?yàn)閷?duì)復(fù)習(xí)的知識(shí)點(diǎn)缺乏系統(tǒng)的理解。第一輪復(fù)習(xí)著重對(duì)基礎(chǔ)知識(shí)點(diǎn)的挖掘,如果不重視對(duì)知識(shí)點(diǎn)的系統(tǒng)化分析,不能構(gòu)成一個(gè)整體的知識(shí)網(wǎng)絡(luò)構(gòu)架,自然在解題時(shí)就不能擁有整體的構(gòu)思。

復(fù)習(xí)的時(shí)候心不靜就會(huì)導(dǎo)致思維不清晰,而思維不清晰就會(huì)促使復(fù)習(xí)沒(méi)有效率。建議在開(kāi)始一個(gè)學(xué)科的復(fù)習(xí)之前,先靜下心來(lái)認(rèn)真想一想,接下來(lái)需要復(fù)習(xí)哪一塊兒,需要做多少事情,然后認(rèn)真去做,同時(shí)需要很高的注意力,只有這樣才會(huì)有很好的效果。

二、注重教材、注重基礎(chǔ)

要把書本中的常規(guī)題型做好,所謂做好就是要用最少的時(shí)間把題目做對(duì)。數(shù)學(xué)的基本概念、定義、公式,數(shù)學(xué)知識(shí)點(diǎn)的聯(lián)系,基本的數(shù)學(xué)解題思路與方法,是第一輪復(fù)習(xí)的重中之重。

三、抓薄弱環(huán)節(jié),做好復(fù)習(xí)的針對(duì)性

多問(wèn)老師,要敢于問(wèn)。必須了解自己掌握了什么,還有哪些問(wèn)題沒(méi)有解決,要明確只有把漏洞一一補(bǔ)上才能提高。復(fù)習(xí)的過(guò)程,實(shí)質(zhì)就是解決問(wèn)題的過(guò)程。第一輪復(fù)習(xí)非常具有針對(duì)性,對(duì)于所有知識(shí)點(diǎn)的地毯式轟炸,一定要做到不缺不漏。因此,在概念模糊的情況下一定要回歸課本,注意教材上最清晰的概念與原理,注重對(duì)知識(shí)點(diǎn)運(yùn)用方法的總結(jié)。

四、在平時(shí)做題中要養(yǎng)成良好的解題習(xí)慣

養(yǎng)成良好的運(yùn)算習(xí)慣。部分同學(xué)平時(shí)學(xué)習(xí)過(guò)程中自信心不足,做作業(yè)時(shí)免不了互相對(duì)答案,也不認(rèn)真找出錯(cuò)誤原因并加以改正。其實(shí)這就是一種非常不好的習(xí)慣,必須在第一輪復(fù)習(xí)中逐步克服??山Y(jié)合平時(shí)解題中存在的具體問(wèn)題,逐題找出原因,必要時(shí)作些記錄,也就是錯(cuò)題本,每位同學(xué)必備的,以便以后查詢。

高二數(shù)學(xué)知識(shí)點(diǎn)及公式篇十

必然事件

確定事件

1、事件不可能事件

不確定事件(隨機(jī)事件)

2、什么叫概率?

表示一個(gè)事件發(fā)生可能性的大小,記為p(事件名稱)=a;

練習(xí)一:判斷下列事件的類型

(1)今天是星期二,明天是星期三;

(2)擲一枚質(zhì)地均勻的正方體骰子,得到點(diǎn)數(shù)7;

(3)買彩票中了500萬(wàn)大獎(jiǎng);

(4)拋兩枚硬幣都是正面朝上;

(5)從一副洗好的牌中(54張)中抽出紅桃a。

(二)預(yù)測(cè)隨機(jī)事件的概率

1、步驟:

(1)找出所有機(jī)會(huì)均等的結(jié)果,作為概率的分母

注:不能僅憑主觀判斷,而應(yīng)利用列舉法、樹狀圖、列表法等方法找。

(2)明確關(guān)注結(jié)果,作為分子

2、用列表法或樹狀圖分析復(fù)雜情況下機(jī)會(huì)均等結(jié)果

高二數(shù)學(xué)知識(shí)點(diǎn)及公式篇十一

解不等式的途徑,利用函數(shù)的`性質(zhì)。對(duì)指無(wú)理不等式,化為有理不等式。

高次向著低次代,步步轉(zhuǎn)化要等價(jià)。數(shù)形之間互轉(zhuǎn)化,幫助解答作用大。

證不等式的方法,實(shí)數(shù)性質(zhì)威力大。求差與0比大小,作商和1爭(zhēng)高下。

直接困難分析好,思路清晰綜合法。非負(fù)常用基本式,正面難則反證法。

還有重要不等式,以及數(shù)學(xué)歸納法。圖形函數(shù)來(lái)幫助,畫圖建模構(gòu)造法。

點(diǎn)線面三位一體,柱錐臺(tái)球?yàn)榇怼>嚯x都從點(diǎn)出發(fā),角度皆為線線成。

垂直平行是重點(diǎn),證明須弄清概念。線線線面和面面、三對(duì)之間循環(huán)現(xiàn)。

方程思想整體求,化歸意識(shí)動(dòng)割補(bǔ)。計(jì)算之前須證明,畫好移出的圖形。

立體幾何輔助線,常用垂線和平面。射影概念很重要,對(duì)于解題最關(guān)鍵。

異面直線二面角,體積射影公式活。公理性質(zhì)三垂線,解決問(wèn)題一大片。

【本文地址:http://www.aiweibaby.com/zuowen/3537613.html】

全文閱讀已結(jié)束,如果需要下載本文請(qǐng)點(diǎn)擊

下載此文檔