2023年高一數(shù)學(xué)教案必修一(模板8篇)

格式:DOC 上傳日期:2023-09-27 18:46:03
2023年高一數(shù)學(xué)教案必修一(模板8篇)
時(shí)間:2023-09-27 18:46:03     小編:ZS文王

作為一名教師,通常需要準(zhǔn)備好一份教案,編寫(xiě)教案助于積累教學(xué)經(jīng)驗(yàn),不斷提高教學(xué)質(zhì)量。教案書(shū)寫(xiě)有哪些要求呢?我們?cè)鯓硬拍軐?xiě)好一篇教案呢?下面是我給大家整理的教案范文,歡迎大家閱讀分享借鑒,希望對(duì)大家能夠有所幫助。

高一數(shù)學(xué)教案必修一篇一

本章的中心內(nèi)容是如何解三角形,正弦定理和余弦定理是解三角形的工具,最后落實(shí)在解三角形的應(yīng)用上。通過(guò)本章學(xué)習(xí),學(xué)生應(yīng)當(dāng)達(dá)到以下學(xué)習(xí)目標(biāo):

(1)通過(guò)對(duì)任意三角形邊長(zhǎng)和角度關(guān)系的探索,掌握正弦定理、余弦定理,并能解決一些簡(jiǎn)單的三角形度量問(wèn)題。

(2)能夠熟練運(yùn)用正弦定理、余弦定理等知識(shí)和方法解決一些與測(cè)量和幾何計(jì)算有關(guān)的生活實(shí)際問(wèn)題。

數(shù)學(xué)思想方法的教學(xué)是中學(xué)數(shù)學(xué)教學(xué)中的重要組成部分,有利于學(xué)生加深數(shù)學(xué)知識(shí)的理解和掌握。

本章重視與內(nèi)容密切相關(guān)的數(shù)學(xué)思想方法的教學(xué),并且在提出問(wèn)題、思考解決問(wèn)題的策略等方面對(duì)學(xué)生進(jìn)行具體示范、引導(dǎo)。本章的兩個(gè)主要數(shù)學(xué)結(jié)論是正弦定理和余弦定理,它們都是關(guān)于三角形的邊角關(guān)系的結(jié)論。在初中,學(xué)生已經(jīng)學(xué)習(xí)了相關(guān)邊角關(guān)系的定性的知識(shí),就是“在任意三角形中有大邊對(duì)大角,小邊對(duì)小角”,“如果已知兩個(gè)三角形的兩條對(duì)應(yīng)邊及其所夾的角相等,那么這兩個(gè)三角形全”等。

教科書(shū)在引入正弦定理內(nèi)容時(shí),讓學(xué)生從已有的幾何知識(shí)出發(fā),提出探究性問(wèn)題:“在任意三角形中有大邊對(duì)大角,小邊對(duì)小角的邊角關(guān)系.我們是否能得到這個(gè)邊、角的關(guān)系準(zhǔn)確量化的表示呢?”,在引入余弦定理內(nèi)容時(shí),提出探究性問(wèn)題“如果已知三角形的兩條邊及其所夾的角,根據(jù)三角形全等的判定方法,這個(gè)三角形是大小、形狀完全確定的三角形.我們?nèi)匀粡牧炕慕嵌葋?lái)研究這個(gè)問(wèn)題,也就是研究如何從已知的兩邊和它們的夾角計(jì)算出三角形的另一邊和兩個(gè)角的問(wèn)題?!痹O(shè)置這些問(wèn)題,都是為了加強(qiáng)數(shù)學(xué)思想方法的教學(xué)。

加強(qiáng)與前后各章教學(xué)內(nèi)容的聯(lián)系,注意復(fù)習(xí)和應(yīng)用已學(xué)內(nèi)容,并為后續(xù)章節(jié)教學(xué)內(nèi)容做好準(zhǔn)備,能使整套教科書(shū)成為一個(gè)有機(jī)整體,提高教學(xué)效益,并有利于學(xué)生對(duì)于數(shù)學(xué)知識(shí)的學(xué)習(xí)和鞏固。

本章內(nèi)容處理三角形中的邊角關(guān)系,與初中學(xué)習(xí)的三角形的邊與角的基本關(guān)系,已知三角形的邊和角相等判定三角形全等的知識(shí)有著密切聯(lián)系。教科書(shū)在引入正弦定理內(nèi)容時(shí),讓學(xué)生從已有的幾何知識(shí)出發(fā),提出探究性問(wèn)題“在任意三角形中有大邊對(duì)大角,小邊對(duì)小角的邊角關(guān)系.我們是否能得到這個(gè)邊、角的關(guān)系準(zhǔn)確量化的表示呢?”,在引入余弦定理內(nèi)容時(shí),提出探究性問(wèn)題“如果已知三角形的兩條邊及其所夾的角,根據(jù)三角形全等的判定方法,這個(gè)三角形是大小、形狀完全確定的三角形.我們?nèi)匀粡牧炕慕嵌葋?lái)研究這個(gè)問(wèn)題,也就是研究如何從已知的兩邊和它們的夾角計(jì)算出三角形的另一邊和兩個(gè)角的問(wèn)題?!边@樣,從聯(lián)系的觀點(diǎn),從新的角度看過(guò)去的問(wèn)題,使學(xué)生對(duì)于過(guò)去的知識(shí)有了新的認(rèn)識(shí),同時(shí)使新知識(shí)建立在已有知識(shí)的堅(jiān)實(shí)基礎(chǔ)上,形成良好的知識(shí)結(jié)構(gòu)。

《課程標(biāo)準(zhǔn)》和教科書(shū)把“解三角形”這部分內(nèi)容安排在數(shù)學(xué)五的第一部分內(nèi)容,

位置相對(duì)靠后,在此內(nèi)容之前學(xué)生已經(jīng)學(xué)習(xí)了三角函數(shù)、平面向量、直線和圓的方程等與本章知識(shí)聯(lián)系密切的內(nèi)容,這使這部分內(nèi)容的處理有了比較多的工具,某些內(nèi)容可以處理得更加簡(jiǎn)潔。比如對(duì)于余弦定理的證明,常用的方法是借助于三角的方法,需要對(duì)于三角形進(jìn)行討論,方法不夠簡(jiǎn)潔,教科書(shū)則用了向量的方法,發(fā)揮了向量方法在解決問(wèn)題中的威力。

在證明了余弦定理及其推論以后,教科書(shū)從余弦定理與勾股定理的比較中,提出了一個(gè)思考問(wèn)題“勾股定理指出了直角三角形中三邊平方之間的關(guān)系,余弦定理則指出了一般三角形中三邊平方之間的關(guān)系,如何看這兩個(gè)定理之間的'關(guān)系?”,并進(jìn)而指出,“從余弦定理以及余弦函數(shù)的性質(zhì)可知,如果一個(gè)三角形兩邊的平方和等于第三邊的平方,那么第三邊所對(duì)的角是直角;如果小于第三邊的平方,那么第三邊所對(duì)的角是鈍角;如果大于第三邊的平方,那么第三邊所對(duì)的角是銳角.從上可知,余弦定理是勾股定理的推廣.”

學(xué)數(shù)學(xué)的最終目的是應(yīng)用數(shù)學(xué),而如今比較突出的兩個(gè)問(wèn)題是,學(xué)生應(yīng)用數(shù)學(xué)的意識(shí)不強(qiáng),創(chuàng)造能力較弱。學(xué)生往往不能把實(shí)際問(wèn)題抽象成數(shù)學(xué)問(wèn)題,不能把所學(xué)的數(shù)學(xué)知識(shí)應(yīng)用到實(shí)際問(wèn)題中去,對(duì)所學(xué)數(shù)學(xué)知識(shí)的實(shí)際背景了解不多,雖然學(xué)生機(jī)械地模仿一些常見(jiàn)數(shù)學(xué)問(wèn)題解法的能力較強(qiáng),但當(dāng)面臨一種新的問(wèn)題時(shí)卻辦法不多,對(duì)于諸如觀察、分析、歸納、類比、抽象、概括、猜想等發(fā)現(xiàn)問(wèn)題、解決問(wèn)題的科學(xué)思維方法了解不夠。針對(duì)這些實(shí)際情況,本章重視從實(shí)際問(wèn)題出發(fā),引入數(shù)學(xué)課題,最后把數(shù)學(xué)知識(shí)應(yīng)用于實(shí)際問(wèn)題。

1.1正弦定理和余弦定理(約3課時(shí))

1.2應(yīng)用舉例(約4課時(shí))

1.3實(shí)習(xí)作業(yè)(約1課時(shí))

1.要在本章的教學(xué)中,應(yīng)該根據(jù)教學(xué)實(shí)際,啟發(fā)學(xué)生不斷提出問(wèn)題,研究問(wèn)題。在對(duì)于正弦定理和余弦定理的證明的探究過(guò)程中,應(yīng)該因勢(shì)利導(dǎo),根據(jù)具體教學(xué)過(guò)程中學(xué)生思考問(wèn)題的方向來(lái)啟發(fā)學(xué)生得到自己對(duì)于定理的證明。如對(duì)于正弦定理,可以啟發(fā)得到有應(yīng)用向量方法的證明,對(duì)于余弦定理則可以啟發(fā)得到三角方法和解析的方法。在應(yīng)用兩個(gè)定理解決有關(guān)的解三角形和測(cè)量問(wèn)題的過(guò)程中,一個(gè)問(wèn)題也常常有多種不同的解決方案,應(yīng)該鼓勵(lì)學(xué)生提出自己的解決辦法,并對(duì)于不同的方法進(jìn)行必要的分析和比較。對(duì)于一些常見(jiàn)的測(cè)量問(wèn)題甚至可以鼓勵(lì)學(xué)生設(shè)計(jì)應(yīng)用的程序,得到在實(shí)際中可以直接應(yīng)用的算法。

2.適當(dāng)安排一些實(shí)習(xí)作業(yè),目的是讓學(xué)生進(jìn)一步鞏固所學(xué)的知識(shí),提高學(xué)生分析問(wèn)題的解決實(shí)際問(wèn)題的能力、動(dòng)手操作的能力以及用數(shù)學(xué)語(yǔ)言表達(dá)實(shí)習(xí)過(guò)程和實(shí)習(xí)結(jié)果能力,增強(qiáng)學(xué)生應(yīng)用數(shù)學(xué)的意識(shí)和數(shù)學(xué)實(shí)踐能力。教師要注意對(duì)于學(xué)生實(shí)習(xí)作業(yè)的指導(dǎo),包括對(duì)于實(shí)際測(cè)量問(wèn)題的選擇,及時(shí)糾正實(shí)際操作中的錯(cuò)誤,解決測(cè)量中出現(xiàn)的一些問(wèn)題。

高一數(shù)學(xué)教案必修一篇二

1.把握寫(xiě)景抒情散文情景交融的特點(diǎn),提高對(duì)情景交融意境的鑒賞能力。

2.學(xué)習(xí)作者運(yùn)用語(yǔ)言的技巧:比喻、通感的巧妙運(yùn)用,動(dòng)詞、疊詞的精心選用。

3.訓(xùn)練整體感知、揣摩語(yǔ)言的能力。

過(guò)程與方法

1.本文語(yǔ)言精美,寫(xiě)景狀物傳神,應(yīng)加強(qiáng)朗讀訓(xùn)練,讓學(xué)生自然地受到感染,體會(huì)文章的韻味。

2.理解關(guān)鍵語(yǔ)句,提高對(duì)作者在文中表達(dá)的思想感情的領(lǐng)悟能力。

情感態(tài)度與價(jià)值觀

1.引導(dǎo)學(xué)生關(guān)注社會(huì),追求理想。

2.培養(yǎng)學(xué)生健康的審美情趣。教學(xué)重點(diǎn)體味作品寫(xiě)景語(yǔ)言精練、優(yōu)美的特點(diǎn)及其表達(dá)效果。教學(xué)難點(diǎn)品味、領(lǐng)悟課文情景交融,“景語(yǔ)”“情語(yǔ)”渾然一體的寫(xiě)作特點(diǎn)。

教學(xué)方法誦讀法、感知法、品味法

教具準(zhǔn)備課文錄音帶、多媒體課件

教學(xué)時(shí)間安排二個(gè)課時(shí)

第一課時(shí)

一、導(dǎo)語(yǔ)設(shè)計(jì)

李白在《月下獨(dú)酌》里說(shuō):“花間一壺酒,獨(dú)酌無(wú)相親。舉杯邀明月,對(duì)影成三人?!薄谶@里,“月”成了詩(shī)人排遣內(nèi)心深處孤獨(dú)寂寞的一種載體。

二、文本解讀

(一)知識(shí)積累

1、朱自清的生平和創(chuàng)作。朱自清,原名自華,字佩弦,號(hào)秋實(shí)。祖籍浙江紹興,1898年生于江蘇東海。1903年隨家定居揚(yáng)州。1916年中學(xué)畢業(yè)后,考入北京大學(xué)預(yù)科班,次年更名“自清”,考入本科哲學(xué)系。畢業(yè)后在江蘇、浙江等地的中學(xué)任教。上大學(xué)時(shí),朱自清開(kāi)始創(chuàng)作新詩(shī),1923年發(fā)表的長(zhǎng)詩(shī)《毀滅》,震動(dòng)了當(dāng)時(shí)的詩(shī)壇。1924年出版詩(shī)與散文集《蹤跡》,1925年任清華大學(xué)教授,創(chuàng)作轉(zhuǎn)向散文,同時(shí)開(kāi)始研究古典。1928年出版散文集《背影》,成了著名的散文家。1948年8月病逝于北京。他是詩(shī)人、散文家、學(xué)者,又是民主戰(zhàn)士、愛(ài)國(guó)知識(shí)分子。毛澤東稱他“表現(xiàn)了我們民族的英雄氣概”。著作有《朱自清全集》。

3、借助注解和詞典讀懂《采蓮賦》。

(二)信息篩選播放錄音(或教師朗讀)

1、學(xué)生邊聽(tīng)邊思考如何劃分層次,并歸納大意。

明確:全文分三部分:

第一部分(1):月夜漫步荷塘的緣由。(點(diǎn)明題旨)

第二部分(2-6):荷塘月色的恬靜迷人。(主體)

第三部分(7-10):荷塘月色的美景引動(dòng)鄉(xiāng)思。(偏重抒情)

(三)合作探究

師生共同解析第四段,看作者是怎樣從多角度來(lái)描摹荷塘美景的?明確:先寫(xiě)滿眼茂密的荷葉,次寫(xiě)多姿多態(tài)的荷花、荷香,最后寫(xiě)葉子和花的一絲顫動(dòng)以及流水。層次井然,形象精確?!@是按觀察的角度,視線由近及遠(yuǎn)、由上而下的空間順序來(lái)寫(xiě)的。以上是順序特點(diǎn),細(xì)分析,還可以看出作者的匠心:a.抓靜態(tài)與動(dòng)態(tài)的結(jié)合,把荷塘寫(xiě)“活”。而且,作者筆下的景物都是“動(dòng)”的,“靜”不過(guò)是“動(dòng)”的瞬間表現(xiàn),揚(yáng)靜而情動(dòng)。

b.抓可見(jiàn)與可想的結(jié)合,寫(xiě)出了散文的神韻。所謂“可想”,是指由“可見(jiàn)”引起的合理聯(lián)想,把不可見(jiàn)的景物寫(xiě)得很有風(fēng)采。

(四)能力提升

學(xué)生自己閱讀第五段,合作討論作者在這里是如何描寫(xiě)月色的。

明確:作者把荷葉和荷花放在月光下面,一個(gè)“瀉”字,給人一種乳白色而又鮮艷欲滴的實(shí)感;一個(gè)“浮”字又表現(xiàn)出月光下荷葉、荷花那種縹緲輕柔的姿容。文章似乎仍在寫(xiě)荷葉、荷花,其實(shí)不然,作者是通過(guò)寫(xiě)葉、花的安謐、恬靜,襯托出月色的朦朧柔和。又如文章寫(xiě)“黑影”和“倩影”,也是寫(xiě)月色,因?yàn)橛笆窃鹿庹丈湓谖矬w上產(chǎn)生的。樹(shù)影明暗掩映,錯(cuò)落有致,反襯月光輕盈蕩漾。月色本是難以描摹的',所以作者透過(guò)不同的景物,從不同的角度去寫(xiě)月色,使難狀之景如在眼前。

(五)分析鑒賞

1、第五段“酣眠”“小睡”各指什么?有無(wú)深層含義?

明確:“酣眠”比喻朗照,“小睡”比喻被一層淡淡的云遮住的月光。至于它的深層含義應(yīng)該聯(lián)系作者的心態(tài)來(lái)看,他不希望過(guò)于激烈的行為,他喜歡一種平和的心態(tài),正如我們前面分析的那樣,他做不到投筆從戎,他要尋找安寧平和的生活。對(duì)景物的喜好折射出作者的心態(tài)。

2、課文第五段,寫(xiě)月光用“瀉”不用“照”“鋪”,其好處是什么?(解答這個(gè)問(wèn)題,不妨請(qǐng)學(xué)生把“照”和“鋪”字代入句中讀一遍,學(xué)生就知道了。

明確:“瀉”是承上面比喻句“如流水一般”而來(lái)的,“瀉”字有向下傾的勢(shì)態(tài)?!罢铡弊趾汀颁仭弊志蜎](méi)有這個(gè)效果。

3、作者為什么會(huì)由光和影聯(lián)想到名曲?

明確:這是使用通感的修辭手法,光與影是視覺(jué)形象,作者卻用聽(tīng)覺(jué)形象來(lái)比喻,這就是通感的一種,其相似點(diǎn)就是和諧。第四段寫(xiě)荷花的縷縷清香,微風(fēng)傳送,像遠(yuǎn)方飄來(lái)歌聲一樣動(dòng)人心懷,這幽雅淡遠(yuǎn)的感受也只有在月夜獨(dú)處時(shí)才會(huì)有,這也是通感,把嗅覺(jué)形象轉(zhuǎn)化為聽(tīng)覺(jué)形象,它們之間的相似點(diǎn)就是似有似無(wú)、時(shí)斷時(shí)續(xù)、捉摸不定。

三、課堂小結(jié)

所謂“意境”,指的是外界的人事景物(客觀)與人的思想感情(主觀)相融合而形成的一種天人合一、情景交融的境界。這種天人合一、情景交融越是天衣無(wú)縫、水乳交融,散文就越具有美感。《荷塘月色》做到了這一點(diǎn),所以它具有一種意境美。

四、作業(yè)設(shè)計(jì)

背誦第四、五、六段。

第二課時(shí)

一、導(dǎo)語(yǔ)設(shè)計(jì)

二、文本解讀

(一)合作探究指導(dǎo)學(xué)生理解“通感”的特點(diǎn)及其作用。明確:通感:就是人的各種感覺(jué)之間的交流、溝通、轉(zhuǎn)移。錢鐘書(shū)先生說(shuō)過(guò),“在日常經(jīng)驗(yàn)里,視覺(jué)、聽(tīng)覺(jué)、觸覺(jué)、嗅覺(jué)、味覺(jué)往往可以彼此打通或交通,眼、耳、舌、鼻、身,各個(gè)官能的領(lǐng)域可以不分界限。顏色似乎會(huì)有溫度,聲音似乎會(huì)有形象,冷暖似乎會(huì)有重量,氣味似乎會(huì)有鋒芒……”(《通感》。)例如:“微風(fēng)過(guò)處,送來(lái)縷縷清香,仿佛遠(yuǎn)處高樓上渺茫的歌聲似的?!?/p>

a.本體——花香(嗅覺(jué))喻體——渺茫的歌聲(聽(tīng)覺(jué))b.作用:把花香的特點(diǎn)寫(xiě)清了,生動(dòng)形象。

c.相似點(diǎn):立于微風(fēng)中嗅馨香(時(shí)有時(shí)無(wú))——聽(tīng)遠(yuǎn)處高樓傳來(lái)的歌聲(時(shí)斷時(shí)續(xù))再如:“但光與影有著和諧的旋律,如梵婀玲上奏著的名曲?!?/p>

(二)能力提升

1、文章抒情的語(yǔ)句主要有哪些?

明確:第一段:這幾天心里頗不寧?kù)o。

第二段:沒(méi)有月光的晚上,這路上陰森森的,有些怕人。今晚卻很好,雖然月光也還是淡淡的。

第三段:我也像超出了平常的自己,到了另一世界里。我愛(ài)熱鬧,也愛(ài)冷靜;愛(ài)群居,也愛(ài)獨(dú)處……便覺(jué)是個(gè)自由的人?!仪沂苡眠@無(wú)邊的荷香月色好了。

第六段:但熱鬧是它們的,我什么也沒(méi)有。

第八段:這真是有趣的事,可惜我們現(xiàn)在早已無(wú)福消受了。

第十段:這令我到底惦著江南了。

2、作者的思想感情在文中是怎樣變化的?

明確:因?yàn)檫@幾天心里頗不寧?kù)o,忽然想起日日走過(guò)的荷塘,在滿月的光里,總該另有一番樣子,于是就想去看看,沿荷塘的路平常是有些怕人的,但今晚卻很好,我可以享受這無(wú)邊的荷香月色。荷塘月色的確很美,月光下的荷塘美景清幽淡雅,荷塘上的迷人月色朦朧和諧,令人心醉。荷塘四周非常幽靜,只有樹(shù)上的蟬聲和水里的蛙聲最熱鬧,而我什么也沒(méi)有。忽然又想起采蓮的事情來(lái)了,那真是有趣的事,可惜我們現(xiàn)在早已無(wú)福消受了。采蓮令我惦著江南了,這樣想著回到了家里。有人把這篇文章所表現(xiàn)的思想感情概括為“淡淡的喜悅,淡淡的哀愁”,是很貼切的,但作者的感情底色是“不寧?kù)o”。

(三)分析鑒賞

1、第六段寫(xiě)“熱鬧是它們的,我什么也沒(méi)有”,作者為什么會(huì)如此傷感?

明確:作者想尋找美景,使自己寧?kù)o,平息自己矛盾的心情而不得,當(dāng)然傷感。

2、第七段采蓮與文章主體有什么關(guān)系?為什么會(huì)想起采蓮的事情?

明確:以采蓮的熱鬧襯托自己的孤寂,且荷蓮?fù)?,作者又是揚(yáng)州人,對(duì)江南習(xí)俗很了解。

明確:一方面有照應(yīng)文章開(kāi)頭的作用,但主要目的還是以靜寫(xiě)動(dòng),以靜來(lái)反襯自己心里的極不寧?kù)o。心里的不寧?kù)o,是社會(huì)現(xiàn)實(shí)的劇烈動(dòng)蕩在作者心中引起的波瀾。全篇充滿著動(dòng)與靜的對(duì)立統(tǒng)一:社會(huì)的動(dòng)蕩與荷塘一隅的寂靜,內(nèi)心的動(dòng)蕩與內(nèi)心的寧?kù)o形成對(duì)立統(tǒng)一,文章開(kāi)頭心里不寧?kù)o,在月夜荷塘幽美的景色的感染下趨于心靜,走出荷塘又回到不寧?kù)o的現(xiàn)實(shí)中來(lái),也形成對(duì)立、轉(zhuǎn)化。

三、課堂小結(jié)

這篇作品獲得人們特別贊賞的原因,就在于它寫(xiě)景特別工細(xì)。朱自清在表現(xiàn)月色下的荷塘和荷塘上的月色這兩個(gè)組成部分的時(shí)候,還進(jìn)一步作更精細(xì)的分解剖析,把這兩個(gè)部分再分解剖析成許多更小的部分,然后逐一描寫(xiě)并且從景物觀賞者的視覺(jué)、嗅覺(jué)、聽(tīng)覺(jué),以及景物的靜態(tài)、動(dòng)態(tài)等角度,寫(xiě)出它們的種種性狀,從而把景物表現(xiàn)得格外細(xì)膩。

四、作業(yè)設(shè)計(jì)

研究性學(xué)習(xí)參考論題。請(qǐng)你就以下論題中的一個(gè)或另擬論題,從網(wǎng)絡(luò)上尋找有關(guān)資料,寫(xiě)出你的研究結(jié)果。

1、走近朱自清

2、朱自清為什么“不寧?kù)o”?

3、談《荷塘月色》的寫(xiě)景藝術(shù)

4、談《荷塘月色》的感情線索

高一數(shù)學(xué)教案必修一篇三

(1)掌握與()型的絕對(duì)值不等式的解法.

(2)掌握與()型的絕對(duì)值不等式的解法.

(3)通過(guò)用數(shù)軸來(lái)表示含絕對(duì)值不等式的解集,培養(yǎng)學(xué)生數(shù)形結(jié)合的能力;

教學(xué)重點(diǎn):型的不等式的解法;

教學(xué)難點(diǎn):利用絕對(duì)值的意義分析、解決問(wèn)題.

教學(xué)過(guò)程設(shè)計(jì)

教師活動(dòng)

學(xué)生活動(dòng)

設(shè)計(jì)意圖

一、導(dǎo)入新課

【提問(wèn)】正數(shù)的絕對(duì)值什么?負(fù)數(shù)的絕對(duì)值是什么?零的絕對(duì)值是什么?舉例說(shuō)明?

【概括】

口答

絕對(duì)值的概念是解與()型絕對(duì)值不等值的概念,為解這種類型的絕對(duì)值不等式做好鋪墊.

二、新課

【提問(wèn)】如何解絕對(duì)值方程.

【質(zhì)疑】的解集有幾部分?為什么也是它的解集?

【練習(xí)】解下列不等式:

(1);

(2)

【設(shè)問(wèn)】如果在中的,也就是怎樣解?

【點(diǎn)撥】可以把看成一個(gè)整體,也就是把看成,按照的解法來(lái)解.

所以,原不等式的解集是

【設(shè)問(wèn)】如果中的是,也就是怎樣解?

【點(diǎn)撥】可以把看成一個(gè)整體,也就是把看成,按照的解法來(lái)解.

,或,

由得

由得

所以,原不等式的解集是

口答.畫(huà)出數(shù)軸后在數(shù)軸上表示絕對(duì)值等于2的數(shù).

畫(huà)出數(shù)軸,思考答案

不等式的解集表示為

畫(huà)出數(shù)軸

思考答案

不等式的解集為

或表示為,或

筆答

(1)

(2),或

筆答

筆答

根據(jù)絕對(duì)值的意義自然引出絕對(duì)值方程()的解法.

由淺入深,循序漸進(jìn),在型絕對(duì)值方程的基礎(chǔ)上引出()型絕對(duì)值方程的解法.

針對(duì)解()絕對(duì)值不等式學(xué)生常出現(xiàn)的情況,運(yùn)用數(shù)軸質(zhì)疑、解惑.

落實(shí)會(huì)正確解出與()絕對(duì)值不等式的教學(xué)目標(biāo).

在將看成一個(gè)整體的關(guān)鍵處點(diǎn)撥、啟發(fā),使學(xué)生主動(dòng)地進(jìn)行練習(xí).

繼續(xù)強(qiáng)化將看成一個(gè)整體繼續(xù)強(qiáng)化解不等式時(shí)不要犯丟掉這部分解的錯(cuò)誤.

三、課堂練習(xí)

解下列不等式:

(1);

(2)

筆答

(1);

(2)

檢查教學(xué)目標(biāo)落實(shí)情況.

四、小結(jié)

的解集是;的解集是

解絕對(duì)值不等式注意不要丟掉這部分解集.

五、作業(yè)

1.閱讀課本含絕對(duì)值不等式解法.

2.習(xí)題2、3、4

課堂教學(xué)設(shè)計(jì)說(shuō)明

1.抓住解型絕對(duì)值不等式的關(guān)鍵是絕對(duì)值的意義,為此首先通過(guò)復(fù)習(xí)讓學(xué)生掌握好絕對(duì)值的意義,為解絕對(duì)值不等式打下牢固的基礎(chǔ).

2.在解與絕對(duì)值不等式中的關(guān)鍵處設(shè)問(wèn)、質(zhì)疑、點(diǎn)撥,讓學(xué)生融會(huì)貫通的掌握它們解法之間的內(nèi)在聯(lián)系,以達(dá)到提高學(xué)生解題能力的目的.

3.針對(duì)學(xué)生解()絕對(duì)值不等式容易出現(xiàn)丟掉這部分解集的錯(cuò)誤,在教學(xué)中應(yīng)根據(jù)絕對(duì)值的意義從數(shù)軸進(jìn)行突破,并在練習(xí)中糾正這個(gè)錯(cuò)誤,以提高學(xué)生的運(yùn)算能力.

高一數(shù)學(xué)教案必修一篇四

對(duì)重點(diǎn)內(nèi)容應(yīng)重點(diǎn)復(fù)習(xí).首先擬出主要內(nèi)容,然后有目的有針對(duì)性地做相關(guān)內(nèi)容的題目,著重收集主要題型和技巧解法,像小論文式地重組知識(shí),不要盲目地做題,要有針對(duì)性地選題,回味練習(xí).

重視高中數(shù)學(xué)中的基本方法

高考數(shù)學(xué)命題除了著重考查基礎(chǔ)知識(shí)外,還十分重視對(duì)數(shù)學(xué)方法的考查,如配方法、換元法、分離常數(shù)法等操作性較強(qiáng)的數(shù)學(xué)方法.同學(xué)們?cè)趶?fù)習(xí)時(shí)應(yīng)對(duì)每一種方法的實(shí)質(zhì),它所適應(yīng)的題型,包括解題步驟都熟練掌握.其次應(yīng)重視對(duì)數(shù)學(xué)思想的理解及運(yùn)用,如函數(shù)思想、數(shù)形結(jié)合思想.

應(yīng)注意實(shí)際問(wèn)題的解決和探索性試題的研究

現(xiàn)在各地風(fēng)行素質(zhì)教育,呼吁改革考試命題.增強(qiáng)運(yùn)用數(shù)學(xué)知識(shí)解決實(shí)際問(wèn)題的試題,在其他省市的高考命題中已經(jīng)體現(xiàn),而且難度較大,這一部分尤其是探索性命題在平時(shí)學(xué)習(xí)中較少涉及,希望同學(xué)們把近幾年其他省、市高考試題中有關(guān)此內(nèi)容的題目集中研究一下,有備無(wú)患.這一階段,重點(diǎn)是提高學(xué)生的綜合解題能力,訓(xùn)練學(xué)生的解題策略,加強(qiáng)解題指導(dǎo),提高應(yīng)試能力.

高一數(shù)學(xué)教案必修一篇五

立體幾何的證明是數(shù)學(xué)學(xué)科中任一分之也替代不了的。因此,歷年高考中都有立體幾何論證的考察。論證時(shí),首先要保持嚴(yán)密性,對(duì)任何一個(gè)定義、定理及推論的理解要做到準(zhǔn)確無(wú)誤。符號(hào)表示與定理完全一致,定理的所有條件都具備了,才能推出相關(guān)結(jié)論。切忌條件不全就下結(jié)論。其次,在論證問(wèn)題時(shí),思考應(yīng)多用分析法,即逐步地找到結(jié)論成立的充分條件,向已知靠攏,然后用綜合法(“推出法”)形式寫(xiě)出。

二、立足課本,夯實(shí)基礎(chǔ)

學(xué)習(xí)立體幾何的一個(gè)捷徑就是認(rèn)真學(xué)習(xí)課本中定理的證明,尤其是一些很關(guān)鍵的定理的證明。定理的內(nèi)容都很簡(jiǎn)單,就是線與線,線與面,面與面之間的聯(lián)系的闡述。但定理的證明在初學(xué)的時(shí)候一般都很復(fù)雜,甚至很抽象。深刻掌握定理的內(nèi)容,明確定理的作用是什么,多用在那些地方,怎么用。

三、培養(yǎng)空間想象力

為了培養(yǎng)空間想象力,可以在剛開(kāi)始學(xué)習(xí)時(shí),動(dòng)手制作一些簡(jiǎn)單的模型用以幫助想象。例如:正方體或長(zhǎng)方體。在正方體中尋找線與線、線與面、面與面之間的關(guān)系。通過(guò)模型中的點(diǎn)、線、面之間的位置關(guān)系的觀察,逐步培養(yǎng)自己對(duì)空間圖形的想象能力和識(shí)別能力。其次,要培養(yǎng)自己的畫(huà)圖能力??梢詮暮?jiǎn)單的圖形(如:直線和平面)、簡(jiǎn)單的幾何體(如:正方體)開(kāi)始畫(huà)起。最后要做的就是樹(shù)立起立體觀念,做到能想象出空間圖形并把它畫(huà)在一個(gè)平面(如:紙、黑板)上,還要能根據(jù)畫(huà)在平面上的“立體”圖形,想象出原來(lái)空間圖形的真實(shí)形狀??臻g想象力并不是漫無(wú)邊際的胡思亂想,而是以提設(shè)為根據(jù),以幾何體為依托,這樣就會(huì)給空間想象力插上翱翔的翅膀。

四、“轉(zhuǎn)化”思想的應(yīng)用

解立體幾何的問(wèn)題,主要是充分運(yùn)用“轉(zhuǎn)化”這種數(shù)學(xué)思想,要明確在轉(zhuǎn)化過(guò)程中什么變了,什么沒(méi)變,有什么聯(lián)系,這是非常關(guān)鍵的。例如:

(1)兩條異面直線所成的角轉(zhuǎn)化為兩條相交直線的夾角即過(guò)空間任意一點(diǎn)引兩條異面直線的平行線。斜線與平面所成的角轉(zhuǎn)化為直線與直線所成的角即斜線與斜線在該平面內(nèi)的射影所成的角。

(2)異面直線的距離可以轉(zhuǎn)化為直線和與它平行的平面間的距離,也可以轉(zhuǎn)化為兩平行平面的距離,即異面直線的距離與線面距離、面面距離三者可以相互轉(zhuǎn)化。而面面距離可以轉(zhuǎn)化為線面距離,再轉(zhuǎn)化為點(diǎn)面距離,點(diǎn)面距離又可轉(zhuǎn)化為點(diǎn)線距離。

(3)面和面平行可以轉(zhuǎn)化為線面平行,線面平行又可轉(zhuǎn)化為線線平行。而線線平行又可以由線面平行或面面平行得到,它們之間可以相互轉(zhuǎn)化。同樣面面垂直可以轉(zhuǎn)化為線面垂直,進(jìn)而轉(zhuǎn)化為線線垂直。

五、建立數(shù)學(xué)模型

新課程標(biāo)準(zhǔn)中多次提到“數(shù)學(xué)模型”一詞,目的是進(jìn)一步加強(qiáng)數(shù)學(xué)與現(xiàn)實(shí)世界的聯(lián)系。數(shù)學(xué)模型是把實(shí)際問(wèn)題用數(shù)學(xué)語(yǔ)言抽象概括,再?gòu)臄?shù)學(xué)角度來(lái)反映或近似地反映實(shí)際問(wèn)題時(shí),所得出的關(guān)于實(shí)際問(wèn)題的描述。數(shù)學(xué)模型的形式是多樣的,它們可以是幾何圖形,也可以是方程式,函數(shù)解析式等等。實(shí)際問(wèn)題越復(fù)雜,相應(yīng)的數(shù)學(xué)模型也越復(fù)雜。

從形狀的角度反映現(xiàn)實(shí)世界的物體時(shí),經(jīng)過(guò)抽象得到的空間幾何體就是現(xiàn)實(shí)世界物體的幾何模型。由于立體幾何學(xué)習(xí)的知識(shí)內(nèi)容與學(xué)生的聯(lián)系非常密切,空間幾何體是很多物體的幾何模型,這些模型可以描述現(xiàn)實(shí)世界中的許多物體。他們直觀、具體、對(duì)培養(yǎng)大家的幾何直觀能力有很大的幫助。空間幾何體,特別是長(zhǎng)方體,其中的棱與棱、棱與面、面與面之間的位置關(guān)系,是研究直線與直線、直線與平面、平面與平面位置關(guān)系的直觀載體。學(xué)習(xí)時(shí),一方面要注意從實(shí)際出發(fā),把學(xué)習(xí)的知識(shí)與周圍的實(shí)物聯(lián)系起來(lái),另一方面,也要注意經(jīng)歷從現(xiàn)實(shí)的生活抽象空間圖形的過(guò)程,注重探索空間圖形的位置關(guān)系,歸納、概括它們的判定定理和性質(zhì)定理。

高一數(shù)學(xué)教案必修一篇六

教學(xué)目標(biāo)

1、數(shù)學(xué)知識(shí):掌握等比數(shù)列的概念,通項(xiàng)公式,及其有關(guān)性質(zhì);

2、數(shù)學(xué)能力:通過(guò)等差數(shù)列和等比數(shù)列的類比學(xué)習(xí),培養(yǎng)學(xué)生類比歸納的能力;

歸納——猜想——證明的數(shù)學(xué)研究方法;

3、數(shù)學(xué)思想:培養(yǎng)學(xué)生分類討論,函數(shù)的數(shù)學(xué)思想。

教學(xué)重難點(diǎn)

重點(diǎn):等比數(shù)列的概念及其通項(xiàng)公式,如何通過(guò)類比利用等差數(shù)列學(xué)習(xí)等比數(shù)列;

難點(diǎn):等比數(shù)列的性質(zhì)的探索過(guò)程。

教學(xué)過(guò)程

教學(xué)過(guò)程:

1、 問(wèn)題引入:

前面我們已經(jīng)研究了一類特殊的數(shù)列——等差數(shù)列。

問(wèn)題1:滿足什么條件的數(shù)列是等差數(shù)列?如何確定一個(gè)等差數(shù)列?

(學(xué)生口述,并投影):如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差等于同一個(gè)常數(shù),那么這個(gè)數(shù)列就叫做等差數(shù)列。

要想確定一個(gè)等差數(shù)列,只要知道它的首項(xiàng)a1和公差d。

已知等差數(shù)列的首項(xiàng)a1和d,那么等差數(shù)列的通項(xiàng)公式為:(板書(shū))an=a1+(n-1)d。

師:事實(shí)上,等差數(shù)列的關(guān)鍵是一個(gè)“差”字,即如果一個(gè)數(shù)列,從第2項(xiàng)起,每一項(xiàng)與它前一項(xiàng)的差等于同一個(gè)常數(shù),那么這個(gè)數(shù)列就叫做等差數(shù)列。

(第一次類比)類似的,我們提出這樣一個(gè)問(wèn)題。

問(wèn)題2:如果一個(gè)數(shù)列,從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的……等于同一個(gè)常數(shù),那么這個(gè)數(shù)列叫做……數(shù)列。

(這里以填空的形式引導(dǎo)學(xué)生發(fā)揮自己的想法,對(duì)于“和”與“積”的情況,可以利用具體的例子予以說(shuō)明:如果一個(gè)數(shù)列,從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的“和”(或“積”)等于同一個(gè)常數(shù)的話,這個(gè)數(shù)列是一個(gè)各項(xiàng)重復(fù)出現(xiàn)的“周期數(shù)列”,而與等差數(shù)列最相似的是“比”為同一個(gè)常數(shù)的情況。而這個(gè)數(shù)列就是我們今天要研究的等比數(shù)列了。)

2、新課:

1)等比數(shù)列的定義:如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的比等于同一個(gè)常數(shù),那么這個(gè)數(shù)列就叫做等比數(shù)列。這個(gè)常數(shù)叫做公比。

師生共同簡(jiǎn)要回顧等差數(shù)列的通項(xiàng)公式推導(dǎo)的方法:累加法和迭代法。

公式的推導(dǎo):(師生共同完成)

若設(shè)等比數(shù)列的公比為q和首項(xiàng)為a1,則有:

方法一:(累乘法)

3)等比數(shù)列的性質(zhì):

下面我們一起來(lái)研究一下等比數(shù)列的性質(zhì)

通過(guò)上面的研究,我們發(fā)現(xiàn)等比數(shù)列和等差數(shù)列之間似乎有著相似的地方,這為我們研究等比數(shù)列的性質(zhì)提供了一條思路:我們可以利用等差數(shù)列的性質(zhì),通過(guò)類比得到等比數(shù)列的性質(zhì)。

問(wèn)題4:如果{an}是一個(gè)等差數(shù)列,它有哪些性質(zhì)?

(根據(jù)學(xué)生實(shí)際情況,可引導(dǎo)學(xué)生通過(guò)具體例子,尋找規(guī)律,如:

3、例題鞏固:

例1、一個(gè)等比數(shù)列的第二項(xiàng)是2,第三項(xiàng)與第四項(xiàng)的和是12,求它的第八項(xiàng)的值。

答案:1458或128。

例2、正項(xiàng)等比數(shù)列{an}中,a6·a15+a9·a12=30,則log15a1a2a3 …a20 =_ 10 ____.

(本題為開(kāi)放題,沒(méi)有唯一的答案,如對(duì)于{cn}:2,4,8,16,……,2n,……,則ck=2k=2×2k-1,所以{cn}中的第k項(xiàng)是等差數(shù)列中的第2k-1項(xiàng)。關(guān)鍵是對(duì)通項(xiàng)公式的理解)

1、 小結(jié):

今天我們主要學(xué)習(xí)了有關(guān)等比數(shù)列的概念、通項(xiàng)公式、以及它的性質(zhì),通過(guò)今天的學(xué)習(xí)

我們不僅學(xué)到了關(guān)于等比數(shù)列的有關(guān)知識(shí),更重要的是我們學(xué)會(huì)了由類比——猜想——證明的科學(xué)思維的過(guò)程。

2、 作業(yè):

p129:1,2,3

教學(xué)設(shè)計(jì)說(shuō)明:

1、 教學(xué)目標(biāo)和重難點(diǎn):首先作為等比數(shù)列的第一節(jié)課,對(duì)于等比數(shù)列的概念、通項(xiàng)公式及其性質(zhì)是學(xué)生接下來(lái)學(xué)習(xí)等比數(shù)列的基礎(chǔ),是必須要落實(shí)的;其次,數(shù)學(xué)教學(xué)除了要傳授知識(shí),更重要的是傳授科學(xué)的研究方法,等比數(shù)列是在等差數(shù)列之后學(xué)習(xí)的因此對(duì)等比數(shù)列的學(xué)習(xí)必然要和等差數(shù)列結(jié)合起來(lái),通過(guò)等比數(shù)列和等差數(shù)列的類比學(xué)習(xí),對(duì)培養(yǎng)學(xué)生類比——猜想——證明的科學(xué)研究方法是有利的。這也就成了本節(jié)課的重點(diǎn)。

2、 教學(xué)設(shè)計(jì)過(guò)程:本節(jié)課主要從以下幾個(gè)方面展開(kāi):

1) 通過(guò)復(fù)習(xí)等差數(shù)列的定義,類比得出等比數(shù)列的定義;

2) 等比數(shù)列的通項(xiàng)公式的推導(dǎo);

3) 等比數(shù)列的性質(zhì);

有意識(shí)的引導(dǎo)學(xué)生復(fù)習(xí)等差數(shù)列的定義及其通項(xiàng)公式的探求思路,一方面使學(xué)生回顧舊

知識(shí),另一方面使學(xué)生通過(guò)聯(lián)想,為類比地探索等比數(shù)列的定義、通項(xiàng)公式奠定基礎(chǔ)。

在類比得到等比數(shù)列的定義之后,再對(duì)幾個(gè)具體的數(shù)列進(jìn)行鑒別,旨在遵循“特殊——一般——特殊”的認(rèn)識(shí)規(guī)律,使學(xué)生體會(huì)觀察、類比、歸納等合情推理方法的應(yīng)用。培養(yǎng)學(xué)生應(yīng)用知識(shí)的能力。

在得到等比數(shù)列的定義之后,探索等比數(shù)列的通項(xiàng)公式又是一個(gè)重點(diǎn)。這里通過(guò)問(wèn)題3的設(shè)計(jì),使學(xué)生產(chǎn)生不得不考慮通項(xiàng)公式的心理傾向,造成學(xué)生認(rèn)知上的沖突,從而使學(xué)生主動(dòng)完成對(duì)知識(shí)的接受。

通過(guò)等差數(shù)列和等比數(shù)列的通項(xiàng)公式的比較使學(xué)生初步體會(huì)到等差和等比的相似性,為下面類比學(xué)習(xí)等比數(shù)列的性質(zhì),做好鋪墊。

等比性質(zhì)的研究是本節(jié)課的高潮,通過(guò)類比

關(guān)于例題設(shè)計(jì):重知識(shí)的應(yīng)用,具有開(kāi)放性,為使學(xué)生更好的掌握本節(jié)課的內(nèi)容。

高一數(shù)學(xué)教案必修一篇七

教學(xué)目標(biāo)

掌握等差數(shù)列與等比數(shù)列的概念,通項(xiàng)公式與前n項(xiàng)和公式,等差中項(xiàng)與等比中項(xiàng)的概念,并能運(yùn)用這些知識(shí)解決一些基本問(wèn)題.

教學(xué)重難點(diǎn)

掌握等差數(shù)列與等比數(shù)列的概念,通項(xiàng)公式與前n項(xiàng)和公式,等差中項(xiàng)與等比中項(xiàng)的概念,

教學(xué)過(guò)程

等比數(shù)列性質(zhì)請(qǐng)同學(xué)們類比得出.

【方法規(guī)律】

1、通項(xiàng)公式與前n項(xiàng)和公式聯(lián)系著五個(gè)基本量,“知三求二”是一類最基本的運(yùn)算題.方程觀點(diǎn)是解決這類問(wèn)題的基本數(shù)學(xué)思想和方法.

2、判斷一個(gè)數(shù)列是等差數(shù)列或等比數(shù)列,常用的方法使用定義.特別地,在判斷三個(gè)實(shí)數(shù)

a,b,c成等差(比)數(shù)列時(shí),常用(注:若為等比數(shù)列,則a,b,c均不為0)

3、在求等差數(shù)列前n項(xiàng)和的最大(小)值時(shí),常用函數(shù)的思想和方法加以解決.

【示范舉例】

例1:(1)設(shè)等差數(shù)列的前n項(xiàng)和為30,前2n項(xiàng)和為100,則前3n項(xiàng)和為 .

(2)一個(gè)等比數(shù)列的前三項(xiàng)之和為26,前六項(xiàng)之和為728,則a1= ,q= .

例2:四數(shù)中前三個(gè)數(shù)成等比數(shù)列,后三個(gè)數(shù)成等差數(shù)列,首末兩項(xiàng)之和為21,中間兩項(xiàng)之和為18,求此四個(gè)數(shù).

例3:項(xiàng)數(shù)為奇數(shù)的等差數(shù)列,奇數(shù)項(xiàng)之和為44,偶數(shù)項(xiàng)之和為33,求該數(shù)列的中間項(xiàng).

高一數(shù)學(xué)教案必修一篇八

學(xué)生全面認(rèn)識(shí)數(shù)學(xué)的科學(xué)價(jià)值、應(yīng)用價(jià)值和文化價(jià)值。

2。通過(guò)實(shí)際問(wèn)題的研究,促進(jìn)學(xué)生分析問(wèn)題、解決問(wèn)題以及數(shù)學(xué)建模能力的提高。

教學(xué)重點(diǎn):

如何建立實(shí)際問(wèn)題的目標(biāo)函數(shù)是教學(xué)的重點(diǎn)與難點(diǎn)。

教學(xué)過(guò)程:

一、問(wèn)題情境

問(wèn)題1把長(zhǎng)為60cm的鐵絲圍成矩形,長(zhǎng)寬各為多少時(shí)面積最大?

問(wèn)題3做一個(gè)容積為256l的方底無(wú)蓋水箱,它的高為多少時(shí)材料最???

二、新課引入

導(dǎo)數(shù)在實(shí)際生活中有著廣泛的應(yīng)用,利用導(dǎo)數(shù)求最值的方法,可以求出實(shí)際生活中的某些最值問(wèn)題。

1。幾何方面的應(yīng)用(面積和體積等的最值)。

2。物理方面的應(yīng)用(功和功率等最值)。

3。經(jīng)濟(jì)學(xué)方面的應(yīng)用(利潤(rùn)方面最值)。

三、知識(shí)建構(gòu)

說(shuō)明1解應(yīng)用題一般有四個(gè)要點(diǎn)步驟:設(shè)——列——解——答。

說(shuō)明2用導(dǎo)數(shù)法求函數(shù)的最值,與求函數(shù)極值方法類似,加一步與幾個(gè)極

值及端點(diǎn)值比較即可。

例2圓柱形金屬飲料罐的容積一定時(shí),它的高與底與半徑應(yīng)怎樣選取,才

能使所用的材料最?。?/p>

說(shuō)明1這種在定義域內(nèi)僅有一個(gè)極值的函數(shù)稱單峰函數(shù)。

說(shuō)明2用導(dǎo)數(shù)法求單峰函數(shù)最值,可以對(duì)一般的求法加以簡(jiǎn)化,其步驟為:

s1列:列出函數(shù)關(guān)系式。

s2求:求函數(shù)的導(dǎo)數(shù)。

s3述:說(shuō)明函數(shù)在定義域內(nèi)僅有一個(gè)極大(小)值,從而斷定為函數(shù)的最大(小)值,必要時(shí)作答。

例3在如圖所示的電路中,已知電源的內(nèi)阻為,電動(dòng)勢(shì)為。外電阻為

多大時(shí),才能使電功率最大?最大電功率是多少?

說(shuō)明求最值要注意驗(yàn)證等號(hào)成立的條件,也就是說(shuō)取得這樣的值時(shí)對(duì)應(yīng)的自變量必須有解。

例4強(qiáng)度分別為a,b的兩個(gè)光源a,b,它們間的距離為d,試問(wèn):在連接這兩個(gè)光源的線段ab上,何處照度最?。吭嚲蚢=8,b=1,d=3時(shí)回答上述問(wèn)題(照度與光的強(qiáng)度成正比,與光源的距離的平方成反比)。

例5在經(jīng)濟(jì)學(xué)中,生產(chǎn)單位產(chǎn)品的成本稱為成本函數(shù),記為;出售單位產(chǎn)品的收益稱為收益函數(shù),記為;稱為利潤(rùn)函數(shù),記為。

(1)設(shè),生產(chǎn)多少單位產(chǎn)品時(shí),邊際成本最低?

(2)設(shè),產(chǎn)品的單價(jià),怎樣的定價(jià)可使利潤(rùn)最大?

四、課堂練習(xí)

1。將正數(shù)a分成兩部分,使其立方和為最小,這兩部分應(yīng)分成____和___。

2。在半徑為r的圓內(nèi),作內(nèi)接等腰三角形,當(dāng)?shù)走吷细邽?時(shí),它的面積最大。

4。一條水渠,斷面為等腰梯形,如圖所示,在確定斷面尺寸時(shí),希望在斷面abcd的面積為定值s時(shí),使得濕周l=ab+bc+cd最小,這樣可使水流阻力小,滲透少,求此時(shí)的高h(yuǎn)和下底邊長(zhǎng)b。

五、回顧反思

(1)解有關(guān)函數(shù)最大值、最小值的實(shí)際問(wèn)題,需要分析問(wèn)題中各個(gè)變量之間的關(guān)系,找出適當(dāng)?shù)暮瘮?shù)關(guān)系式,并確定函數(shù)的定義區(qū)間;所得結(jié)果要符合問(wèn)題的實(shí)際意義。

(2)根據(jù)問(wèn)題的實(shí)際意義來(lái)判斷函數(shù)最值時(shí),如果函數(shù)在此區(qū)間上只有一個(gè)極值點(diǎn),那么這個(gè)極值就是所求最值,不必再與端點(diǎn)值比較。

(3)相當(dāng)多有關(guān)最值的實(shí)際問(wèn)題用導(dǎo)數(shù)方法解決較簡(jiǎn)單。

六、課外作業(yè)

課本第38頁(yè)第1,2,3,4題。

【本文地址:http://www.aiweibaby.com/zuowen/3581337.html】

全文閱讀已結(jié)束,如果需要下載本文請(qǐng)點(diǎn)擊

下載此文檔