精選高一數(shù)學(xué)教案必修(通用19篇)

格式:DOC 上傳日期:2023-11-03 08:52:07
精選高一數(shù)學(xué)教案必修(通用19篇)
時間:2023-11-03 08:52:07     小編:靈魂曲

教案是教學(xué)過程中規(guī)范教學(xué)行為的工具,有助于確保教學(xué)的連貫性和系統(tǒng)性。設(shè)計教案要從簡單到難,逐步推進,以便學(xué)生能夠逐步掌握知識。教案的多樣性和創(chuàng)新性可以通過以下范文進行解讀,希望能激發(fā)更多教師的教學(xué)思路。

高一數(shù)學(xué)教案必修篇一

3.通過參與編題解題,激發(fā)學(xué)生學(xué)習(xí)的愛好.

教學(xué)重點是通項公式的熟悉;教學(xué)難點是對公式的靈活運用.

實物投影儀,多媒體軟件,電腦.

研探式.

一.復(fù)習(xí)提問

等差數(shù)列的概念是從相鄰兩項的關(guān)系加以定義的,這個關(guān)系用遞推公式來表示比較簡單,但我們要圍繞通項公式作進一步的理解與應(yīng)用.

二.主體設(shè)計

通項公式反映了項與項數(shù)之間的函數(shù)關(guān)系,當(dāng)?shù)炔顢?shù)列的首項與公差確定后,數(shù)列的每一項便確定了,可以求指定的項(即已知求).找學(xué)生試舉一例如:“已知等差數(shù)列中,首項,公差,求.”這是通項公式的簡單應(yīng)用,由學(xué)生解答后,要求每個學(xué)生出一些運用等差數(shù)列通項公式的題目,包括正用、反用與變用,簡單、復(fù)雜,定量、定性的均可,教師巡視將好題搜集起來,分類投影在屏幕上.

1.方程思想的運用

(1)已知等差數(shù)列中,首項,公差,則-397是該數(shù)列的第x項.

(2)已知等差數(shù)列中,首項,則公差

(3)已知等差數(shù)列中,公差,則首項

這一類問題先由學(xué)生解決,之后教師點評,四個量,在一個等式中,運用方程的思想方法,已知其中三個量的值,可以求得第四個量.

2.基本量方法的使用

(1)已知等差數(shù)列中,求的值.

(2)已知等差數(shù)列中,求.

若學(xué)生的題目只有這兩種類型,教師可以小結(jié)(請出題者、解題者概括):因為已知條件可以化為關(guān)于和的二元方程組,所以這些等差數(shù)列是確定的,由和寫出通項公式,便可歸結(jié)為前一類問題.解決這類問題只需把兩個條件(等式)化為關(guān)于和的二元方程組,以求得和,和稱作基本量.

教師提出新的問題,已知等差數(shù)列的一個條件(等式),能否確定一個等差數(shù)列?學(xué)生回答后,教師再啟發(fā),由這一個條件可得到關(guān)于和的二元方程,這是一個和的`制約關(guān)系,從這個關(guān)系可以得到什么結(jié)論?舉例說明(例題可由學(xué)生或教師給出,視具體情況而定).

如:已知等差數(shù)列中,…

由條件可得即,可知,這是比較顯然的,與之相關(guān)的還能有什么結(jié)論?若學(xué)生答不出可提示,一定得某一項的值么?能否與兩項有關(guān)?多項有關(guān)?由學(xué)生發(fā)現(xiàn)規(guī)律,完善問題(3)已知等差數(shù)列中,求;;;;….

類似的還有

(4)已知等差數(shù)列中,求的值.

以上屬于對數(shù)列的項進行定量的研究,有無定性的判定?引出

3.研究等差數(shù)列的單調(diào)性

4.研究項的符號

這是為研究等差數(shù)列前項和的最值所做的預(yù)備工作.可配備的題目如

(1)已知數(shù)列的通項公式為,問數(shù)列從第幾項開始小于0?

(2)等差數(shù)列從第x項起以后每項均為負(fù)數(shù).

三.小結(jié)

1.用方程思想熟悉等差數(shù)列通項公式;

2.用函數(shù)思想解決等差數(shù)列問題.

四.板書設(shè)計

等差數(shù)列通項公式1.方程思想的運用

2.基本量方法的使用

3.研究等差數(shù)列的單調(diào)性

4.研究項的符號

高一數(shù)學(xué)教案必修篇二

(1)掌握畫三視圖的基本技能。

(2)豐富學(xué)生的'空間想象力。

2.過程與方法。

主要通過學(xué)生自己的親身實踐,動手作圖,體會三視圖的作用。

3.情感態(tài)度與價值觀。

(1)提高學(xué)生空間想象力。

(2)體會三視圖的作用。

二、教學(xué)重點、難點。

重點:畫出簡單組合體的三視圖。

難點:識別三視圖所表示的空間幾何體。

三、學(xué)法與教學(xué)用具。

1.學(xué)法:觀察、動手實踐、討論、類比。

2.教學(xué)用具:實物模型、三角板。

四、教學(xué)思路。

(一)創(chuàng)設(shè)情景,揭開課題。

“橫看成嶺側(cè)看成峰”,這說明從不同的角度看同一物體視覺的效果可能不同,要比較真實反映出物體,我們可從多角度觀看物體,這堂課我們主要學(xué)習(xí)空間幾何體的三視圖。

(二)實踐動手作圖。

2.教師引導(dǎo)學(xué)生用類比方法畫出簡單組合體的三視圖。

(1)畫出球放在長方體上的三視圖。

(2)畫出礦泉水瓶(實物放在桌面上)的三視圖。

學(xué)生畫完后,可把自己的作品展示并與同學(xué)交流,總結(jié)自己的作圖心得。

作三視圖之前應(yīng)當(dāng)細(xì)心觀察,認(rèn)識了它的基本結(jié)構(gòu)特征后,再動手作圖。

3.三視圖與幾何體之間的相互轉(zhuǎn)化。

(1)投影出示圖片(課本p10,圖1.2-3)。

請同學(xué)們思考圖中的三視圖表示的幾何體是什么?

(2)你能畫出圓臺的三視圖嗎?

(3)三視圖對于認(rèn)識空間幾何體有何作用?你有何體會?

教師巡視指導(dǎo),解答學(xué)生在學(xué)習(xí)中遇到的困難,然后讓學(xué)生發(fā)表對上述問題的看法。

4.請同學(xué)們畫出1.2-4中其他物體表示的空間幾何體的三視圖,并與其他同學(xué)交流。

(三)鞏固練習(xí)。

課本p12練習(xí)1、2p18習(xí)題1.2a組1。

(四)歸納整理。

請學(xué)生回顧發(fā)表如何作好空間幾何體的三視圖。

(五)課外練習(xí)。

1.自己動手制作一個底面是正方形,側(cè)面是全等的三角形的棱錐模型,并畫出它的三視圖。

2.自己制作一個上、下底面都是相似的正三角形,側(cè)面是全等的等腰梯形的棱臺模型,并畫出它的三視圖。

1.2.2空間幾何體的直觀圖(1課時)。

高一數(shù)學(xué)教案必修篇三

(1)通過實物操作,增強學(xué)生的直觀感知。

(2)能根據(jù)幾何結(jié)構(gòu)特征對空間物體進行分類。

(3)會用語言概述棱柱、棱錐、圓柱、圓錐、棱臺、圓臺、球的結(jié)構(gòu)特征。

(4)會表示有關(guān)于幾何體以及柱、錐、臺的分類。

2.過程與方法。

(1)讓學(xué)生通過直觀感受空間物體,從實物中概括出柱、錐、臺、球的幾何結(jié)構(gòu)特征。

(2)讓學(xué)生觀察、討論、歸納、概括所學(xué)的知識。

3.情感態(tài)度與價值觀。

(1)使學(xué)生感受空間幾何體存在于現(xiàn)實生活周圍,增強學(xué)生學(xué)習(xí)的積極性,同時提高學(xué)生的觀察能力。

(2)培養(yǎng)學(xué)生的空間想象能力和抽象括能力。

二、教學(xué)重點、難點。

重點:讓學(xué)生感受大量空間實物及模型、概括出柱、錐、臺、球的結(jié)構(gòu)特征。

難點:柱、錐、臺、球的結(jié)構(gòu)特征的概括。

三、教學(xué)用具。

(1)學(xué)法:觀察、思考、交流、討論、概括。

(2)實物模型、投影儀。

四、教學(xué)思路。

(一)創(chuàng)設(shè)情景,揭示課題。

1.教師提出問題:在我們生活周圍中有不少有特色的建筑物,你能舉出一些例子嗎?這些建筑的幾何結(jié)構(gòu)特征如何?引導(dǎo)學(xué)生回憶,舉例和相互交流。教師對學(xué)生的活動及時給予評價。

2.所舉的建筑物基本上都是由這些幾何體組合而成的,(展示具有柱、錐、臺、球結(jié)構(gòu)特征的空間物體),你能通過觀察。根據(jù)某種標(biāo)準(zhǔn)對這些空間物體進行分類嗎?這是我們所要學(xué)習(xí)的內(nèi)容。

(二)、研探新知。

1.引導(dǎo)學(xué)生觀察物體、思考、交流、討論,對物體進行分類,分辯棱柱、圓柱、棱錐。

3.組織學(xué)生分組討論,每小組選出一名同學(xué)發(fā)表本組討論結(jié)果。在此基礎(chǔ)上得出棱柱的主要結(jié)構(gòu)特征。(1)有兩個面互相平行;(2)其余各面都是平行四邊形;(3)每相鄰兩上四邊形的公共邊互相平行。概括出棱柱的概念。

4.教師與學(xué)生結(jié)合圖形共同得出棱柱相關(guān)概念以及棱柱的表示。

6.以類似的方法,讓學(xué)生思考、討論、概括出棱錐、棱臺的結(jié)構(gòu)特征,并得出相關(guān)的概念,分類以及表示。

7.讓學(xué)生觀察圓柱,并實物模型演示,如何得到圓柱,從而概括出圓標(biāo)的概念以及相關(guān)的概念及圓柱的表示。

8.引導(dǎo)學(xué)生以類似的方法思考圓錐、圓臺、球的結(jié)構(gòu)特征,以及相關(guān)概念和表示,借助實物模型演示引導(dǎo)學(xué)生思考、討論、概括。

9.教師指出圓柱和棱柱統(tǒng)稱為柱體,棱臺與圓臺統(tǒng)稱為臺體,圓錐與棱錐統(tǒng)稱為錐體。

(三)質(zhì)疑答辯,排難解惑,發(fā)展思維,教師提出問題,讓學(xué)生思考。

1.有兩個面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱(舉反例說明,如圖)。

2.棱柱的何兩個平面都可以作為棱柱的底面嗎?

3.課本p8,習(xí)題1.1a組第1題。

5.棱臺與棱柱、棱錐有什么關(guān)系?圓臺與圓柱、圓錐呢?

四、鞏固深化。

練習(xí):課本p7練習(xí)1、2(1)(2)。

課本p8習(xí)題1.1第2、3、4題。

五、歸納整理。

由學(xué)生整理學(xué)習(xí)了哪些內(nèi)容。

六、布置作業(yè)。

課本p8練習(xí)題1.1b組第1題。

課外練習(xí)課本p8習(xí)題1.1b組第2題。

1.2.1空間幾何體的三視圖(1課時)。

高一數(shù)學(xué)教案必修篇四

1.使學(xué)生掌握的概念,圖象和性質(zhì).

(1)能根據(jù)定義判斷形如什么樣的函數(shù)是,了解對底數(shù)的限制條件的合理性,明確的定義域.

(2)能在基本性質(zhì)的指導(dǎo)下,用列表描點法畫出的圖象,能從數(shù)形兩方面認(rèn)識的性質(zhì).

(3)能利用的性質(zhì)比較某些冪形數(shù)的大小,會利用的圖象畫出形如的圖象.

2.通過對的概念圖象性質(zhì)的學(xué)習(xí),培養(yǎng)學(xué)生觀察,分析歸納的能力,進一步體會數(shù)形結(jié)合的思想方法.

教材分析。

(1)是在學(xué)生系統(tǒng)學(xué)習(xí)了函數(shù)概念,基本掌握了函數(shù)的性質(zhì)的基礎(chǔ)上進行研究的,它是重要的基本初等函數(shù)之一,作為常見函數(shù),它既是函數(shù)概念及性質(zhì)的第一次應(yīng)用,也是今后學(xué)習(xí)對數(shù)函數(shù)的基礎(chǔ),同時在生活及生產(chǎn)實際中有著廣泛的應(yīng)用,所以應(yīng)重點研究.

(2)本節(jié)的教學(xué)重點是在理解定義的基礎(chǔ)上掌握的圖象和性質(zhì).難點是對底數(shù)在和時,函數(shù)值變化情況的區(qū)分.

(3)是學(xué)生完全陌生的一類函數(shù),對于這樣的函數(shù)應(yīng)怎樣進行較為系統(tǒng)的理論研究是學(xué)生面臨的重要問題,所以從的研究過程中得到相應(yīng)的結(jié)論固然重要,但更為重要的是要了解系統(tǒng)研究一類函數(shù)的方法,所以在教學(xué)中要特別讓學(xué)生去體會研究的方法,以便能將其遷移到其他函數(shù)的研究.

教法建議。

(1)關(guān)于的定義按照課本上說法它是一種形式定義即解析式的特征必須是的樣子,不能有一點差異,諸如,等都不是.

(2)對底數(shù)的限制條件的理解與認(rèn)識也是認(rèn)識的重要內(nèi)容.如果有可能盡量讓學(xué)生自己去研究對底數(shù),指數(shù)都有什么限制要求,教師再給予補充或用具體例子加以說明,因為對這個條件的認(rèn)識不僅關(guān)系到對的認(rèn)識及性質(zhì)的分類討論,還關(guān)系到后面學(xué)習(xí)對數(shù)函數(shù)中底數(shù)的認(rèn)識,所以一定要真正了解它的由來.

關(guān)于圖象的繪制,雖然是用列表描點法,但在具體教學(xué)中應(yīng)避免描點前的盲目列表計算,也應(yīng)避免盲目的連點成線,要把表列在關(guān)鍵之處,要把點連在恰當(dāng)之處,所以應(yīng)在列表描點前先把函數(shù)的性質(zhì)作一些簡單的討論,取得對要畫圖象的存在范圍,大致特征,變化趨勢的大概認(rèn)識后,以此為指導(dǎo)再列表計算,描點得圖象.

高一數(shù)學(xué)教案必修篇五

一、教學(xué)目標(biāo):

1、識記消費的不同類型,消費結(jié)構(gòu)的含義以及恩格爾系數(shù)的含義。

2、理解影響消費水平的因素,最主要的是收入水平和物價水平;理解錢貨兩清的消費,貸款消費以及租賃消費時商品所有權(quán)和使用權(quán)的變化。

教學(xué)重難點。

教學(xué)重點、難點:

影響消費水平的因素。

恩格爾系數(shù)的變化的含義。

教學(xué)過程。

教學(xué)內(nèi)容:

(一)情景導(dǎo)入:

學(xué)生活動:就日常生活的體驗得出相應(yīng)的回應(yīng),例如:買文具、食堂吃飯、買零食、買衣服、電話費等日常消費活動。

教師活動:多媒體課件展示豐富多彩的消費活動,其中主要集中于學(xué)生可能并有實際經(jīng)驗的消費內(nèi)容。

所以我們這節(jié)課就影響消費的因素及消費的類型相關(guān)討論。

(二)情景分析:

探究活動一:如何安排生活費?

學(xué)生活動:互相安排并討論各自的消費活動或消費內(nèi)容,發(fā)現(xiàn)其中的區(qū)別。

(1)收入。

教師活動:設(shè)問解疑。

同學(xué)們是否發(fā)現(xiàn)各自的消費有什么不同?而造成這個區(qū)別的原因在此主要是什么?

教師講解:收入是消費的前提與基礎(chǔ)。在其他條件不變的情況下,人們的可支配收入越多,對各種商品和服務(wù)的消費量就越大。收入增長較快的時期,消費增長也較快;反之,當(dāng)收入增長速度下降時,消費增幅也下降。當(dāng)前收入直接影響消費,預(yù)期消費則影響消費信心,當(dāng)預(yù)期消費樂觀時,消費信心就強;預(yù)期消費較低時,消費信心就弱。所以,要提高居民的生活水平,必須保持經(jīng)濟的穩(wěn)定增長,增加居民收入。

(2)物價水平。

教師活動:影響消費的因素除了收入水平還有沒有其他了呢?

學(xué)生活動:就材料進行相應(yīng)的討論,得出初步的結(jié)論,消費活動還受到物價水平的影響。

教師講解:消費品價格的變化會影響人們的購買能力。人們在一定時期的總收入是有限的,如果消費品價格上漲,會引起購買力下降,因而消費需求就降低。反之,則購買力提高,消費需求就增加。因此,物價的穩(wěn)定對保持人們的消費水平,安定生活和穩(wěn)定社會具有重要意義。正是由于這個原因,穩(wěn)定物價才成為國家宏觀調(diào)控的重要目標(biāo)。

教師:雖然我們是用同學(xué)們的消費活動做的說明,但要明白家庭消費的影響因素也是同樣的道理。我們在考察了總體消費狀況的前提下,接著來討論一個具體的消費案例:

探究活動二:小君的苦惱。

(1)按交易方式不同,可分錢貨兩清的消費、貸款消費和租賃消費。

教師活動:按交易方式不同,可分錢貨兩清的消費、貸款消費和租賃消費。

租賃消費也是一種比較常見的消費方式,我們可以通過租賃的方式使商品的所有權(quán)不發(fā)生變更,而獲得該商品在一定期限的使用權(quán)。

貸款消費是一種新興的消費方式,主要用于購買大宗耐用消費品及服務(wù)。因為這些消費品超出消費者當(dāng)前的支付能力,因而預(yù)支自己未來的收入,來滿足當(dāng)前的需要。也就是我們常說的“花明天的錢,園今天的夢”。貸款消費的交易方式,其消費品的所有權(quán)與使用權(quán)沒有完全轉(zhuǎn)移。在消費者按照約定按時還貸的前提下,消費品的所有權(quán)與使用權(quán)逐漸發(fā)生轉(zhuǎn)移,直至還完貸款為止,其所有權(quán)與使用權(quán)才徹底轉(zhuǎn)移到消費者手里。

貸款消費不僅滿足了消費者的生活需要,提高了消費者的生活質(zhì)量,而且促進了經(jīng)濟的發(fā)展,特別是我國經(jīng)濟發(fā)展進入買方市場后,貸款消費對擴大內(nèi)需,拉動經(jīng)濟的增長起來重要的作用。所以,我們要轉(zhuǎn)變傳統(tǒng)的消費觀念,以積極的態(tài)度來對待貸款消費,通過貸款消費滿足來滿足當(dāng)前的需要,通過生活質(zhì)量。當(dāng)然,在貸款消費是也要考慮自己的償還能力,還要講究信用,按時還貸。

學(xué)生活動:就相關(guān)情境進行討論,做出自己的選擇并給出相應(yīng)的解釋理由。

(2)按消費對象分,消費分為有形商品消費和勞務(wù)消費。

教師活動:按消費對象分,消費分為有形商品消費和勞務(wù)消費,有形商品消費消費的是有形的商品,而勞務(wù)消費消費的是無形的服務(wù)。

萬事大吉了!大家知道小君已經(jīng)達到哪種消費層次了嗎?

生存資料消費?發(fā)展資料消費?享受資料消費?

學(xué)生活動:討論并回答相應(yīng)問題,得出享受資料消費的結(jié)論。

(3)按消費的目的不同,可分為生存資料消費、發(fā)展資料消費和享受資料消費。

教師活動:按消費的目的不同,可分為生存資料消費、發(fā)展資料消費和享受資料消費。其中生存資料消費是最基本的消費,滿足較低層次的衣食住用行的需要;發(fā)展資料消費主要指滿足人們發(fā)展德育、智育等方面需要的消費;享受資料消費滿足人們享受的需要。隨著經(jīng)濟水平的提高,發(fā)展資料和享受資料消費將逐漸增加。

探究活動三:考查自己家里的消費結(jié)構(gòu)。

學(xué)生活動:認(rèn)真閱讀并討論得出結(jié)論家庭消費的不同內(nèi)容體現(xiàn)了不同的消費水平。

(1)消費結(jié)構(gòu)。

教師活動:多媒體展示近幾年社會的消費現(xiàn)狀,例:假日旅游、電子產(chǎn)品、汽車等。引導(dǎo)學(xué)生通過不同層面的直觀感受來了解消費結(jié)構(gòu)的變化。

要了解家庭消費水平先要知道一個概念就是消費結(jié)構(gòu),是指人們各類消費支出在消費總支出中所占的比重。消費結(jié)構(gòu)會隨著經(jīng)濟的發(fā)展、收入的變化而不斷變化,變化的方向遵循由生存需要到發(fā)展需要再到享受需要的順序。

(2)恩格爾系數(shù)。

教師活動:恩格爾系數(shù)指食品支出占家庭總支出的比重,用公式表示:恩格爾系數(shù)=食品支出費用/各項消費總支出費用×100%。一般恩格爾系數(shù)越大,越影響其他消費支出,特別是影響發(fā)展資料和享受資料的增加,限制消費層次和消費質(zhì)量的提高,因此生活水平就越低,相反恩格爾系數(shù)減小,生活水平就提高,消費結(jié)構(gòu)會逐步改善。恩格爾系數(shù)是消費結(jié)構(gòu)研究中的重要概念,在國際上受到普遍承認(rèn)和重視。

國際上甚至用它作為區(qū)分國際間消費結(jié)構(gòu)層次高低的最一般標(biāo)準(zhǔn)。聯(lián)合國糧農(nóng)組織在20世紀(jì)70年代中期提出劃分窮國富國的標(biāo)準(zhǔn):恩格爾系數(shù)在60%以上為絕對貧困國家;50%~59%的國家為勉強度日(我們稱之為溫飽型);在40%~49%為小康水平;在20%~39%為富裕水平;20%以下為極富裕國家。

我國這幾年經(jīng)濟結(jié)構(gòu)有了很大改善,消費水平不斷提高。

(三)情景回歸:

教師組織學(xué)生反思總結(jié)本節(jié)課的主要內(nèi)容,并進行當(dāng)堂檢測,了解教學(xué)反饋。

將本文的word文檔下載到電腦,方便收藏和打印。

高一數(shù)學(xué)教案必修篇六

課型

新課

教學(xué)目標(biāo)

1.了解中心投影和平行投影的概念;

3.簡單組合體與其三視圖之間的相互轉(zhuǎn)化.

教學(xué)過程

教學(xué)內(nèi)容

備注

一、

自主學(xué)習(xí)

1.照相、繪畫之所以有空間視覺效果,主要處決于線條、明暗和色彩,其中對線條畫法的基本原理是一個幾何問題,我們需要學(xué)習(xí)這方面的知識.

二、

質(zhì)疑提問

下圖中的手影游戲,你玩過嗎?

光是直線傳播的,一個不透明物體在光的照射下,在物體后面的屏幕上會留下這個物體的影子,這種現(xiàn)象叫做投影.其中的光線叫做投影線,留下物體影子的屏幕叫做投影面.

一、中心投影與平行投影

思考2:用燈泡照射物體和用手電筒照射物體形成的投影分別是哪種投影?

投影的分類:

把一個空間幾何體投影到一個平面上,可以獲得一個平面圖形.從多個角度進行投影就能較好地把握幾何體的形狀和大小,通常選擇三種正投影,即正面、側(cè)面和上面,并給出下列概念:

正視圖:光線從幾何體的前面向后面正投影,得到的投影圖.

側(cè)視圖:光線從幾何體的左面向右面正投影,得到的.投影圖.

俯視圖:光線從幾何體的上面向下面正投影,得到的投影圖.

幾何體的正視圖、側(cè)視圖和俯視圖,統(tǒng)稱為幾何體的三視圖.

三、

問題探究

思考2:如圖,設(shè)長方體的長、寬、高分別為a、b、c,那么其三視圖分別是什么?

思考3:圓柱、圓錐、圓臺的三視圖分別是什么?

思考5:球的三視圖是什么?下列三視圖表示一個什么幾何體?

例1:如圖是一個倒置的四棱柱的兩種擺放,試分別畫出其三視圖,并比較它們的異同.

四、

課堂檢測

五、

小結(jié)評價

1.空間幾何體的三視圖:正視圖、側(cè)視圖、俯視圖;

3.三視圖的應(yīng)用及與原實物圖的相互轉(zhuǎn)化.

高一數(shù)學(xué)教案必修篇七

了解現(xiàn)實世界和日常生活中的不等關(guān)系,了解不等式(組)的實際背景.

(2)一元二次不等式。

會從實際情境中抽象出一元二次不等式模型.

通過函數(shù)圖象了解一元二次不等式與相應(yīng)的二次函數(shù)、一元二次方程的聯(lián)系.

會解一元二次不等式,對給定的一元二次不等式,會設(shè)計求解的程序框圖.

(3)二元一次不等式組與簡單線性規(guī)劃問題。

會從實際情境中抽象出二元一次不等式組.

了解二元一次不等式的幾何意義,能用平面區(qū)域表示二元一次不等式組.

會從實際情境中抽象出一些簡單的二元線性規(guī)劃問題,并能加以解決.

高一數(shù)學(xué)教案必修篇八

教學(xué)目標(biāo)。

理解以兩角差的余弦公式為基礎(chǔ),推導(dǎo)兩角和、差正弦和正切公式的方法,體會三角恒等變換特點的過程,理解推導(dǎo)過程,掌握其應(yīng)用.

教學(xué)重難點。

1.教學(xué)重點:兩角和、差正弦和正切公式的推導(dǎo)過程及運用;。

2.教學(xué)難點:兩角和與差正弦、余弦和正切公式的靈活運用.

教學(xué)過程。

高一數(shù)學(xué)教案必修篇九

教學(xué)目標(biāo)。

熟悉兩角和與差的正、余公式的推導(dǎo)過程,提高邏輯推理能力。

掌握兩角和與差的正、余弦公式,能用公式解決相關(guān)問題。

教學(xué)重難點。

熟練兩角和與差的正、余弦公式的正用、逆用和變用技巧。

教學(xué)過程。

復(fù)習(xí)。

兩角差的余弦公式。

用-b代替b看看有什么結(jié)果?

高一數(shù)學(xué)教案必修篇十

1.閱讀課本練習(xí)止。

2.回答問題:

(1)課本內(nèi)容分成幾個層次?每個層次的中心內(nèi)容是什么?

(2)層次間的聯(lián)系是什么?

(3)對數(shù)函數(shù)的定義是什么?

(4)對數(shù)函數(shù)與指數(shù)函數(shù)有什么關(guān)系?

3.完成練習(xí)。

4.小結(jié)。

二、方法指導(dǎo)。

1.在學(xué)習(xí)對數(shù)函數(shù)時,同學(xué)們應(yīng)從熟悉的指數(shù)問題出發(fā),通過對指數(shù)函數(shù)的認(rèn)識逐步轉(zhuǎn)化為對對數(shù)函數(shù)的認(rèn)識,而且畫對數(shù)函數(shù)圖象時,既要考慮到對底數(shù)的分類討論而且對每一類問題也可以多選幾個不同的底,畫在同一個坐標(biāo)系內(nèi),便于觀察圖象的特征,找出共性,歸納性質(zhì)。

2.本節(jié)課的主線是對數(shù)函數(shù)是指數(shù)函數(shù)的反函數(shù),所有的問題都應(yīng)圍繞著這條主線展開,同學(xué)們在學(xué)習(xí)時應(yīng)該把兩個函數(shù)進行類比,通過互為反函數(shù)的兩個函數(shù)的關(guān)系由已知函數(shù)研究未知函數(shù)的性質(zhì)。

一、提問題。

1.對數(shù)函數(shù)的自變量和函數(shù)分別在指數(shù)函數(shù)中是什么?

2.兩個函數(shù)如果互為反函數(shù),則他們的值域,定義域有什么關(guān)系?

3.是否所有的函數(shù)都有反函數(shù)?試舉例說明。

二、變題目。

1.試求下列函數(shù)的反函數(shù):

(1);(2);(3);(4)。

2.求下列函數(shù)的定義域:。

(1);(2);(3)。

3.已知則=;的定義域為。

1.對數(shù)函數(shù)的有關(guān)概念。

(1)把函數(shù)叫做對數(shù)函數(shù),叫做對數(shù)函數(shù)的底數(shù)。

(2)以10為底數(shù)的對數(shù)函數(shù)為常用對數(shù)函數(shù)。

(3)以無理數(shù)為底數(shù)的對數(shù)函數(shù)為自然對數(shù)函數(shù)。

2.反函數(shù)的概念。

在指數(shù)函數(shù)中,是自變量,是的函數(shù),其定義域是,值域是;在對數(shù)函數(shù)中,是自變量,是的函數(shù),其定義域是,值域是,像這樣的兩個函數(shù)叫做互為反函數(shù)。

3.與對數(shù)函數(shù)有關(guān)的定義域的求法:

4.舉例說明如何求反函數(shù)。

一、課外作業(yè):習(xí)題3-5a組1,2,3,b組1,

二、課外思考:

1.求定義域:

2.求使函數(shù)的函數(shù)值恒為負(fù)值的的取值范圍。

高一數(shù)學(xué)教案必修篇十一

1.要讀好課本。

有些“自我感覺良好”的學(xué)生,常輕視課本中基礎(chǔ)知識、基本技能和基本方法的學(xué)習(xí)與訓(xùn)練,經(jīng)常是知道怎么做就算了,而不去認(rèn)真演算書寫,但對難題很感興趣,以顯示自己的“水平”,好高騖遠(yuǎn),重“量”輕“質(zhì)”,陷入題海,到正規(guī)作業(yè)或考試中不是演算出錯就是中途“卡殼”。因此,同學(xué)們應(yīng)從高一開始,增強自己從課本入手進行研究的意識。

2.要記好筆記。

首先,在課堂教學(xué)中培養(yǎng)好的聽課習(xí)慣是很重要的。當(dāng)然聽是主要的,聽能使注意力集中,要把老師講的關(guān)鍵性部分聽懂、聽會。聽的時候注意思考、分析問題,但是光聽不記,或光記不聽必然顧此失彼,課堂效益低下,因此應(yīng)適當(dāng)?shù)赜心康男缘挠浐霉P記,領(lǐng)會課上老師的主要精神與意圖??茖W(xué)的記筆記可以提高45分鐘課堂效益。

3.要做好作業(yè)。

在課堂、課外練習(xí)中培養(yǎng)良好的作業(yè)習(xí)慣也很有必要.在作業(yè)中不但做得整齊、清潔,培養(yǎng)一種美感,還要有條理,這是培養(yǎng)邏輯能力的一條有效途徑,必須獨立完成。同時可以培養(yǎng)一種獨立思考和解題正確的責(zé)任感。在作業(yè)時要提倡效率,應(yīng)該十分鐘完成的作業(yè),不拖到半小時完成,疲疲憊憊的作業(yè)習(xí)慣使思維松散、精力不集中,這對培養(yǎng)數(shù)學(xué)能力是有害而無益的。

4.要寫好總結(jié)。

一個人不斷接受新知識,不斷遭遇挫折產(chǎn)生疑問,不斷地總結(jié),才有不斷地提高?!安粫偨Y(jié)的同學(xué),他的能力就不會提高,挫折經(jīng)驗是成功的基石?!弊匀唤邕m者生存的生物進化過程便是最好的例證。學(xué)習(xí)要經(jīng)??偨Y(jié)規(guī)律,目的就是為了更一步的發(fā)展。

通過與老師、同學(xué)平時的接觸交流,逐步總結(jié)出一般性的學(xué)習(xí)步驟,它包括:制定計劃、課前自學(xué)、專心上課、及時復(fù)習(xí)、獨立作業(yè)、解決疑難、系統(tǒng)小結(jié)和課外學(xué)習(xí)幾個方面,簡單概括為四個環(huán)節(jié)(預(yù)習(xí)、上課、整理、作業(yè))和一個步驟(復(fù)習(xí)總結(jié))。每一個環(huán)節(jié)都有較深刻的內(nèi)容,帶有較強的目的性、針對性,要落實到位。堅持“兩先兩后一小結(jié)”(先預(yù)習(xí)后聽課,先復(fù)習(xí)后做作業(yè),寫好每個單元的總結(jié))的學(xué)習(xí)習(xí)慣。

1.課前預(yù)習(xí)教材。課前可以把教材上第二天老師要講的內(nèi)容看一下,看看哪些能看懂,哪些不懂。這樣老師在講課的時候我們就能帶著問題去聽,把自己沒看懂的問題聽懂。

2.上課專心聽講。這是很重要的,很多同學(xué)以為自己什么都弄懂了,就自己做自己的題目。其實即使是自己看懂了的,也可以看看老師也沒有另外的理解方法,老師的方法是不是比自己好。聽老師有時候講比自己看更好。

小編推薦:高一數(shù)學(xué)怎么學(xué)才能學(xué)好。

3.課后認(rèn)真復(fù)習(xí)。剛學(xué)的知識,還沒完全被消化吸收成為自己的知識,如果不及時復(fù)習(xí),就很容易忘記。所以,課后一定要抽出一些時間,及時對所學(xué)進行鞏固。

4.通過習(xí)題鞏固。數(shù)學(xué)是理科,需要通過一定量的習(xí)題來鞏固,量變積累到了一定量才能質(zhì)變嘛。這個并非要各位打題海戰(zhàn)術(shù),只要求各位做到熟練為止。

5.錯題反復(fù)研究。自己準(zhǔn)備一個錯題本,把考試時候做錯的題目記錄下來,寫上做錯的原因,反復(fù)研究,避免再次出錯。

高一數(shù)學(xué)教案必修篇十二

教學(xué)目標(biāo)。

o了解向量的實際背景,理解平面向量的概念和向量的幾何表示;掌握向量的模、零向量、單位向量、平行向量、相等向量、共線向量等概念;并會區(qū)分平行向量、相等向量和共線向量.

o通過對向量的學(xué)習(xí),使學(xué)生初步認(rèn)識現(xiàn)實生活中的向量和數(shù)量的本質(zhì)區(qū)別.

o通過學(xué)生對向量與數(shù)量的識別能力的訓(xùn)練,培養(yǎng)學(xué)生認(rèn)識客觀事物的數(shù)學(xué)本質(zhì)的能力.

教學(xué)重難點。

教學(xué)重點:理解并掌握向量、零向量、單位向量、相等向量、共線向量的概念,會表示向量.

教學(xué)難點:平行向量、相等向量和共線向量的區(qū)別和聯(lián)系.

教學(xué)過程。

(一)向量的概念:我們把既有大小又有方向的量叫向量。

(二)(教材p74面的四個圖制作成幻燈片)請同學(xué)閱讀課本后回答:(7個問題一次出現(xiàn))。

1、數(shù)量與向量有何區(qū)別?(數(shù)量沒有方向而向量有方向)。

2、如何表示向量?

3、有向線段和線段有何區(qū)別和聯(lián)系?分別可以表示向量的什么?

4、長度為零的向量叫什么向量?長度為1的向量叫什么向量?

5、滿足什么條件的兩個向量是相等向量?單位向量是相等向量嗎?

6、有一組向量,它們的方向相同或相反,這組向量有什么關(guān)系?

7、如果把一組平行向量的起點全部移到一點o,這是它們是不是平行向量?

這時各向量的終點之間有什么關(guān)系?

課后小結(jié)。

1、描述向量的兩個指標(biāo):模和方向.

2、平面向量的概念和向量的幾何表示;。

3、向量的模、零向量、單位向量、平行向量等概念。

高一數(shù)學(xué)教案必修篇十三

教學(xué)目標(biāo)。

3.讓學(xué)生深刻理解向量在處理平面幾何問題中的優(yōu)越性.

教學(xué)重難點。

教學(xué)重點:用向量方法解決實際問題的基本方法:向量法解決幾何問題的“三步曲”.

教學(xué)難點:如何將幾何等實際問題化歸為向量問題.

教學(xué)過程。

由于向量的線性運算和數(shù)量積運算具有鮮明的幾何背景,平面幾何圖形的許多性質(zhì),如平移、全等、相似、長度、夾角等都可以由向量的線性運算及數(shù)量積表示出來,因此,可用向量方法解決平面幾何中的一些問題,下面我們通過幾個具體實例,說明向量方法在平面幾何中的運用。

思考:

運用向量方法解決平面幾何問題可以分哪幾個步驟?

運用向量方法解決平面幾何問題可以分哪幾個步驟?

“三步曲”:

(2)通過向量運算,研究幾何元素之間的關(guān)系,如距離、夾角等問題;。

(3)把運算結(jié)果“翻譯”成幾何關(guān)系.

高一數(shù)學(xué)教案必修篇十四

1、使學(xué)生理解數(shù)列的概念,了解數(shù)列通項公式的意義,了解遞推公式是給出數(shù)列的一種方法,并能根據(jù)遞推公式寫出數(shù)列的前幾項。

(1)理解數(shù)列是按一定順序排成的一列數(shù),其每一項是由其項數(shù)確定的。

(2)了解數(shù)列的各種表示方法,理解通項公式是數(shù)列第項與項數(shù)的關(guān)系式,能根據(jù)通項公式寫出數(shù)列的前幾項,并能根據(jù)給出的一個數(shù)列的前幾項寫出該數(shù)列的一個通項公式。

(3)已知一個數(shù)列的遞推公式及前若干項,便確定了數(shù)列,能用代入法寫出數(shù)列的`前幾項。

2、通過對一列數(shù)的觀察、歸納,寫出符合條件的一個通項公式,培養(yǎng)學(xué)生的觀察能力和抽象概括能力。

3、通過由求的過程,培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度及良好的思維習(xí)慣。

(1)為激發(fā)學(xué)生學(xué)習(xí)數(shù)列的興趣,體會數(shù)列知識在實際生活中的作用,可由實際問題引入,從中抽象出數(shù)列要研究的問題,使學(xué)生對所要研究的內(nèi)容心中有數(shù),如書中所給的例子,還有物品堆放個數(shù)的計算等。

(2)數(shù)列中蘊含的函數(shù)思想是研究數(shù)列的指導(dǎo)思想,應(yīng)及早引導(dǎo)學(xué)生發(fā)現(xiàn)數(shù)列與函數(shù)的關(guān)系。在教學(xué)中強調(diào)數(shù)列的項是按一定順序排列的,“次序”便是函數(shù)的自變量,相同的數(shù)組成的數(shù)列,次序不同則就是不同的數(shù)列。函數(shù)表示法有列表法、圖象法、解析式法,類似地,數(shù)列就有列舉法、圖示法、通項公式法。由于數(shù)列的自變量為正整數(shù),于是就有可能相鄰的兩項(或幾項)有關(guān)系,從而數(shù)列就有其特殊的表示法——遞推公式法。

(3)由數(shù)列的通項公式寫出數(shù)列的前幾項是簡單的代入法,教師應(yīng)精心設(shè)計例題,使這一例題為寫通項公式作一些準(zhǔn)備,尤其是對程度差的學(xué)生,應(yīng)多舉幾個例子,讓學(xué)生觀察歸納通項公式與各項的結(jié)構(gòu)關(guān)系,盡量為寫通項公式提供幫助。

(4)由數(shù)列的前幾項寫出數(shù)列的一個通項公式使學(xué)生學(xué)習(xí)中的一個難點,要幫助學(xué)生分析各項中的結(jié)構(gòu)特征(整式,分式,遞增,遞減,擺動等),由學(xué)生歸納一些規(guī)律性的結(jié)論,如正負(fù)相間用來調(diào)整等。如果學(xué)生一時不能寫出通項公式,可讓學(xué)生依據(jù)前幾項的規(guī)律,猜想該數(shù)列的下一項或下幾項的值,以便尋求項與項數(shù)的關(guān)系。

(5)對每個數(shù)列都有求和問題,所以在本節(jié)課應(yīng)補充數(shù)列前項和的概念,用表示的問題是重點問題,可先提出一個具體問題讓學(xué)生分析與的關(guān)系,再由特殊到一般,研究其一般規(guī)律,并給出嚴(yán)格的推理證明(強調(diào)的表達式是分段的);之后再到特殊問題的解決,舉例時要兼顧結(jié)果可合并及不可合并的情況。

(6)給出一些簡單數(shù)列的通項公式,可以求其項或最小項,又是函數(shù)思想與方法的體現(xiàn),對程度好的學(xué)生應(yīng)提出這一問題,學(xué)生運用函數(shù)知識是可以解決的。

高一數(shù)學(xué)教案必修篇十五

教學(xué)準(zhǔn)備

教學(xué)目標(biāo)

1、理解平面向量的坐標(biāo)的概念;

2、掌握平面向量的坐標(biāo)運算;

3、會根據(jù)向量的坐標(biāo),判斷向量是否共線.

教學(xué)重難點

教學(xué)重點:平面向量的坐標(biāo)運算

教學(xué)難點:向量的坐標(biāo)表示的理解及運算的準(zhǔn)確性.

教學(xué)過程

平面向量基本定理:

什么叫平面的一組基底?

平面的基底有多少組?

引入:

1.平面內(nèi)建立了直角坐標(biāo)系,點a可以用什么來

表示?

2.平面向量是否也有類似的表示呢?

高一數(shù)學(xué)教案必修篇十六

1. 閱讀課本 練習(xí)止.

2. 回答問題

(1)課本內(nèi)容分成幾個層次?每個層次的中心內(nèi)容是什么?

(2)層次間的聯(lián)系是什么?

(3)對數(shù)函數(shù)的定義是什么?

(4)對數(shù)函數(shù)與指數(shù)函數(shù)有什么關(guān)系?

3. 完成 練習(xí)

4. 小結(jié).

二、方法指導(dǎo)

1. 在學(xué)習(xí)對數(shù)函數(shù)時,同學(xué)們應(yīng)從熟悉的指數(shù)問題出發(fā),通過對指數(shù)函數(shù)的認(rèn)識逐步轉(zhuǎn)化為對對數(shù)函數(shù)的認(rèn)識,而且畫對數(shù)函數(shù)圖象時,既要考慮到對底數(shù)的分類討論而且對每一類問題也可以多選幾個不同的底,畫在同一個坐標(biāo)系內(nèi),便于觀察圖象的特征,找出共性,歸納性質(zhì).

一、提問題

1. 對數(shù)函數(shù)的自變量和函數(shù)分別在指數(shù)函數(shù)中是什么?

2.兩個函數(shù)如果互為反函數(shù),則他們的值域,定義域有什么關(guān)系?

3.是否所有的函數(shù)都有反函數(shù)?試舉例說明.

二、變題目

1. 試求下列函數(shù)的反函數(shù):

(1) ; (2) ;

(3) ; (4) .

2. 求下列函數(shù)的定義域:

(1) ; (2) ; (3) .

3. 已知 則 = ; 的定義域為 .

1.對數(shù)函數(shù)的'有關(guān)概念

(1)把函數(shù) 叫做對數(shù)函數(shù), 叫做對數(shù)函數(shù)的底數(shù);

(2)以10為底數(shù)的對數(shù)函數(shù) 為常用對數(shù)函數(shù);

(3)以無理數(shù) 為底數(shù)的對數(shù)函數(shù) 為自然對數(shù)函數(shù).

2. 反函數(shù)的概念

在指數(shù)函數(shù) 中, 是自變量, 是 的函數(shù),其定義域是 ,值域是 ;在對數(shù)函數(shù) 中, 是自變量, 是 的函數(shù),其定義域是 ,值域是 ,像這樣的兩個函數(shù)叫做互為反函數(shù).

3. 與對數(shù)函數(shù)有關(guān)的定義域的求法:

4. 舉例說明如何求反函數(shù).

一、課外作業(yè): 習(xí)題3-5 a組 1,2,3, b組1,

二、課外思考:

1. 求定義域: .

2. 求使函數(shù) 的函數(shù)值恒為負(fù)值的 的取值范圍.

高一數(shù)學(xué)教案必修篇十七

一、自主學(xué)習(xí)

1.閱讀課本練習(xí)止.

2.回答問題

(1)課本內(nèi)容分成幾個層次?每個層次的中心內(nèi)容是什么?

(2)層次間的聯(lián)系是什么?

(3)對數(shù)函數(shù)的定義是什么?

(4)對數(shù)函數(shù)與指數(shù)函數(shù)有什么關(guān)系?

3.完成練習(xí)

4.小結(jié).

二、方法指導(dǎo)

1.在學(xué)習(xí)對數(shù)函數(shù)時,同學(xué)們應(yīng)從熟悉的指數(shù)問題出發(fā),通過對指數(shù)函數(shù)的認(rèn)識逐步轉(zhuǎn)化為對對數(shù)函數(shù)的認(rèn)識,而且畫對數(shù)函數(shù)圖象時,既要考慮到對底數(shù)的分類討論而且對每一類問題也可以多選幾個不同的底,畫在同一個坐標(biāo)系內(nèi),便于觀察圖象的特征,找出共性,歸納性質(zhì).

一、提問題

1.對數(shù)函數(shù)的自變量和函數(shù)分別在指數(shù)函數(shù)中是什么?

2.兩個函數(shù)如果互為反函數(shù),則他們的值域,定義域有什么關(guān)系?

3.是否所有的函數(shù)都有反函數(shù)?試舉例說明.

二、變題目

1.試求下列函數(shù)的反函數(shù):

(1);(2);

(3);(4).

2.求下列函數(shù)的定義域:

(1);(2);(3).

3.已知則=;的定義域為.

1.對數(shù)函數(shù)的有關(guān)概念

(1)把函數(shù)叫做對數(shù)函數(shù),叫做對數(shù)函數(shù)的'底數(shù);

(2)以10為底數(shù)的對數(shù)函數(shù)為常用對數(shù)函數(shù);

(3)以無理數(shù)為底數(shù)的對數(shù)函數(shù)為自然對數(shù)函數(shù).

2.反函數(shù)的概念

在指數(shù)函數(shù)中,是自變量,是的函數(shù),其定義域是,值域是;在對數(shù)函數(shù)中,是自變量,是的函數(shù),其定義域是,值域是,像這樣的兩個函數(shù)叫做互為反函數(shù).

3.與對數(shù)函數(shù)有關(guān)的定義域的求法:

4.舉例說明如何求反函數(shù).

一、課外作業(yè):習(xí)題3-5a組1,2,3,b組1,

二、課外思考:

1.求定義域:.

2.求使函數(shù)的函數(shù)值恒為負(fù)值的的取值范圍.

高一數(shù)學(xué)教案必修篇十八

要學(xué)好數(shù)學(xué),最關(guān)鍵的是要有一個好的基礎(chǔ)。只有打牢數(shù)學(xué)基礎(chǔ),才能夠把高中數(shù)學(xué)好,同樣只有打好基礎(chǔ),才能夠數(shù)學(xué)取得高分。打好基礎(chǔ)是最關(guān)鍵的!比如:建一棟大樓,如果地基不穩(wěn),不管大樓有多么豪華,都只是華而不實。

想學(xué)好數(shù)學(xué),對數(shù)學(xué)感興趣。

其實學(xué)好數(shù)學(xué)最好的辦法就是發(fā)自內(nèi)心由衷的想要學(xué)習(xí),渴望學(xué)習(xí),才能體會到從學(xué)習(xí)中所收獲的樂趣。自己的成就感提升,對于學(xué)習(xí)數(shù)學(xué)的積極性也就提高了,覺得數(shù)學(xué)并沒有那么難,就愿意去多接觸了。

多做題反復(fù)做,有題感。

其實學(xué)好數(shù)學(xué)辦法就是要大量做題,反復(fù)去做,題做多了就知道哪些方面需要自己去加強學(xué)習(xí),還有就是同樣做數(shù)學(xué)題做多了就會有題感。有些題,它的類型都是一樣的,題做多了之后,即使你不會做,你也會找到一些解題的思路和技巧。

高一數(shù)學(xué)教案必修篇十九

(2)利用平面直角坐標(biāo)系解決直線與圓的位置關(guān)系;

(3)會用“數(shù)形結(jié)合”的數(shù)學(xué)思想解決問題、

用坐標(biāo)法解決幾何問題的步驟:

第二步:通過代數(shù)運算,解決代數(shù)問題;

第三步:將代數(shù)運算結(jié)果“翻譯”成幾何結(jié)論、

重點與難點:直線與圓的方程的應(yīng)用、

問 題設(shè)計意圖師生活動

生:回顧,說出自己的看法、

2、解決直線與圓的位置關(guān)系,你將采用什么方法?

生:回顧、思考、討論、交流,得到解決問題的方法、

問 題設(shè)計意圖師生活動

3、閱讀并思考教科書上的例4,你將選擇什么方 法解決例4的'問題

生:自 學(xué)例4,并完成練習(xí)題1、2、

生:建立適當(dāng)?shù)闹苯亲鴺?biāo)系, 探求解決問題的方法、

8、小結(jié):

(1)利用“坐標(biāo)法”解決問對知識進行歸納概括,體會利 師:指導(dǎo) 學(xué)生完成練習(xí)題、

生:閱讀教科書的例3,并完成第

問 題設(shè)計意圖師生活動

題的需要準(zhǔn)備什么工作?

(2)如何建立直角坐標(biāo)系,才能易于解決平面幾何問題?

(3)你認(rèn)為學(xué)好“坐標(biāo)法”解決問題的關(guān)鍵是什么?

【本文地址:http://www.aiweibaby.com/zuowen/7141736.html】

全文閱讀已結(jié)束,如果需要下載本文請點擊

下載此文檔